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Les discriminants quadratiques
et la congruence de Stickelberger

par JACQUES MARTINET

1. Introduction. Le but de cet article est de démontrer une forme

relative du théorème de Stickelberger sur les discriminants, indiquée sans
démonstration aux Journées Arithmétiques d’Exeter de 1980 ([6], appen-
dice II) ; nous donnons en outre une généralisation de cet énoncé.

Soit K un corps de nombres, et soit L une extension finie de K. Notons
’OLIK ou simplement a le discriminant relatif de L/K, c le nombre de places
complexes de L qui sont au-dessus d’une place réelle de h’, et N la norme
NK/Q de K sur Q.

Lorsque K = Q, c est le nombre r2 de places complexes de L, et la norme
de a est la valeur absolue du discriminant d de L. Comme d a le signe de
( -1 )’’2 , on retrouve le résultat de Stickelberger publié en 1897 dans les actes
du premier congrès international ([9]), résultat dont une démonstration très
simple a été donnée par Schur en 1928 ([7]) :

1.2 COROLLAIRE. Le discriminant d’un corps de nombres est congru à
0 ou 1 mod 4.

Soit y le sous-groupe des racines de l’unité de K dont l’ordre est une
puissance de 2, et notons 2’n le nombre d’éléments deg. Dans le théorème
1.1, on supposait seulement m &#x3E; 1. Lorsque m est &#x3E; 2 (ce qui entraîne que
c est nul), on a une congruence plus précise :

1.3 THÉORÈME. Si 1( contient les racines quatrièmes de l’unité, on a
~V(O) =0,1 ou 4 mod 8.

La démonstration des théorèmes 1.1 et 1.3 se fait par réduction au cas où

LIK est une extension quadratique pour laquelle A"(0) est impair. Après
un paragraphe 2 consacré à l’énoncé de quelques compléments sur les discri-
minants, nous effectuons cette réduction au paragraphe 3. L’énoncé dans le
cas quadratique est démontré au paragraphe 4, sous la forme plus générale
suivante :
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1.4 THÉORÈME. Si LIK est une extension quadratique dont le discrimi-
nant relatif a est de norme impaire, et si K contient une racine de l’unité
d’ordre 2~ (m &#x3E; 1 ) on a N(ô) - (-1)~ mod 

Je remercie Jean-Pierre Serre pour ses remarques. En outre, c’est au
cours d’une discussion avec lui qu’a été trouvée une démonstration du th.3.1
ne nécessitant aucune hypothèse de séparabilité résiduelle.

2. Compléments sur les discriminants. Dans ce paragraphe, K
désigne un corps sur lequel aucune hypothèse particulière n’est faite, Ks
une clôture séparable de K, et V un K-espace vectoriel muni d’une forme
bilinéaire symétrique T non dégénérée. On se donne en outre d’une part une
extension séparable finie L de K (on pourrait considérer plus généralement
une algèbre étale sur H, c’est-à-dire un produit fini d’extensions séparables
finies de k), et d’autre part un anneau de Dedekind A de corps des fractions
IÉ et un réseau M de A dans V (A-module de type fini engendrant V).
Lorsque V = L, on prend pour forme T l’application (x, y) H TrL/I«xy)
et pour M la clôture intégrale de A dans L.

Pour tout idéal premier non nul p de A, le localisé Ap de A en p est un
anneau de valuation discrète, et Mp = Ap M est un Ap -module libre. Le
discriminant pour T d’une base de ce module est bien défini dans 7~/A~ ;
il en est de même de sa valuation ~1~ E Z . En outre, Bp est nul pour
presque tout p, ce qui permet de définir le discriminant aT(M) - D de
T sur M : c’est l’idéal fractionnaire de A tel que vp (b) = Bp pour tout

idéal premier non nul p de A. On définit de la même façon le discriminant
dT(V) E K*IK *2 à partir d’unè k-base de V. Sa valuation est définie
modulo 2 en chaque idéal premier non nul de A.

2.1 PROPOSITION. Pour tout idéal premier non nul .p de A, on a

En effet, pour tout p, dT(V) est l’image dans du discriminant
local défini dans 

Les considérations qui précèdent s’appliquent en particulier à l’extension
L/ K ; on obtient alors un discriminant D L/K = D, qui est un idéal entier
de k, et un discriminant qui est un élément de K*/H*2 ; 
définit une extension de K de degré  2 (qui est purement inséparable si
car K = 2).
Dans la suite, nous employons l’expression extension quadratique pour
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désigner une sous-extension de degré 1 ou 2 de Ks/K. (On pourrait de façon
plus intrinsèque considérer les classes d’isomorphisme d’algèbres étales de
dimension 2.)
La théorie de Galois permet d’associer à L/K une telle extension quadra-

tique. En effet, on peut faire du groupe de Galois GK de un groupe
de permutation de degré n = [L : K] en le faisant opérer sur l’ensemble des
racines dans K~ du polynôme minimal d’un élément primitif de L/K, ou
encore sur l’ensemble des K-homomorphismes de L dans Ks. On montre
sans peine que l’on obtient dans tous les cas la même classe d’équivalence
forte. Les signatures des permutations définissent alors un homomorphisme
canonique - : GK -~ ~-1, -~1~, auquel on associe une extension quadra-
tique K’ / K, qui définit elle-même un élément de (théorie de
Kummer) si car K est f 2 et de (théorie d’Artin-Schreier ; p
est l’application x H x2 - x) si car K = 2.

Le résultat suivant est bien connu (voir par exemple Weil, [10], pp. 155-
156) :

2.2 PROPOSITION. Si car K ~ 2, on a = dL/K dans K*11 C*2 si
car K = 2, dL/K est trivial.

Démonstration. Le cas de la caractéristique 2 est évident, l’extension de
degré 1 ou 2 définie par devant être à la fois séparable et purement
inséparable. Supposons maintenant car 2 , et soit 0 un élément primitif
de L/K. Alors, dL/K est l’image dans K*IK*2 du discriminant pour la
forme de la de LIK, discriminant égal à
Il (T9 - ulJ)2. (Dans ce produit, T et (1 parcourent l’ensemble, ordonné
ru

arbitrairement, des h’-homomorphismes de L dans .) Comme l’élément
y = fl(T0 - a0) vérifie la formule de transformation sy = pour
tout 8 E GK, on a K’ _ ]( 01), c.q.f.d.

2.3 Remarque. On peut aussi donner une interprétation analogue de 
lorsque K est de caractéristique 2, à condition d’utiliser une forme quadra-
tique convenable à la place de la forme bilinéaire Tr(xy) et de remplacer
en outre l’espace vectoriel L par le produit L lorsque n est impair, cf.
[1].

3. Réduction aux discriminants quadratiques. Nous conservons
dans ce paragraphe les notations du paragraphe précédent.

3.1 THÉORÈME. Il existe un idéal entrer 8 de 1( tel 
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Le fait que le quotient des discriminants de L/h’ et de soit le

carré d’un idéal fractionnaire est une conséquence immédiate des prop. 2.1
et 2.2. Pour montrer que ce quotient est un idéal entier, nous nous servons
du résultat suivant, que nous prouvons en adaptant l’idée utilisée par Schur
dans [7] :

3.2 PROPOSITION. Soit B un ordre de L. Si est non trivial, il existe
un unique ordre B’ de Il’ qui a même discriminant que B. (Dans le cas où

1, il faut remplacer K’ par l’algèbre K X K.)

Le théorème 3.1 est une conséquence facile de la proposition 3.2, puisque,
quelque soit B, divise le discriminant de B’.

Pour prouver 3.2, nous examinons d’abord le cas particulier où B est
un A-module libre. Choisissons une base ~wl, ...,wn~ de B sur A. Le dis-
criminant de B est le carré du déterminant det(O’iwj) (ai E Hom(L,Ks).
Ce déterminant est de la forme a - {3, où a (resp. (3) désigne la somme
des termes qui apparaissent dans le développement du déterminant avec
le signe + (resp. le signe -). Un élément s du groupe Gx stabilise
ou échange a et {3 selon que -(s) vaut +1 ou -1. Mais a et (3 sont les
racines dans Ks du polynôme f(X) = X2 - (a + + E A[X]. On a
K’ = K(a - (3) = .k(a) - K(,3), et l’ordre A[a] = de K’ est l’ordre
cherché : son discriminant, qui est engendré par le discriminant de f, est
égal à ( a - ~3 ) 2 , et coï nci de donc avec celui de B . Le cas général se ramène
tout de suite au cas précédent par localisation, ou en considérant l’ordre
engendré sur A par les discriminants des sous-modules libres de B. Quant
à l’unicité de l’ordre B’, elle résulte simplement de ce que les ordres d’une
algèbre quadratique étale sont classés par leurs conducteurs, c.q.f.d.
Dans le cas où l’on suppose les extensions résiduelles séparables, la di-

visibilité de 1) LI K par peut également se démontrer en interprétant
ces discriminants comme les conducteurs d’Artin respectifs du caractère de
permutation de G~ associé à et de son déterminant, et en appliquant
le théorème suivant :

3.3 THÉORÈME. (Serre) Soit p une représentation de GK dans un espace
vectoriel complexe V. Alors, le cond ucteur d u déterminant detp de p divise
celui de p.

Comme le schéma de démonstration qui est proposé en exercice dans
[5], p. 79, est un peu succinct, nous donnons une démonstration un peu
détaillée ci-dessous.

Par localisation et complétion, on se ramène au cas où h’ est complet.
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La représentation p relève une représentation encore notée p du groupe de
Galois G d’une extension finie L/K. Notons alors Gi (i &#x3E; 0) la suite des
groupes de ramification de et soit gi l’ordre de Gi. L’exposant v de
l’idéal de valuation de K dans le conducteur de p est alors donné par la
formule (cf. [5], p. 13) :

L’exposant v’ relatif à la représentation detp s’obtient par une formule

analogue, dans laquelle l’espace V est remplacé par sa puissance extérieure
n

W = 1B V. Nous devons prouver l’inégalité v &#x3E; v’, et, pour cela, il suffit de
montrer que l’on a codim codim W G· pour tout i. C’est vrai lorsque
Gi opère trivialement sur V parce que les deux membres sont alors nuls, et
lorque Gi n’opère pas trivialement parce que codim WGi est  1, c.q.f.d.

3.4 Remarque. Une fois les discriminants de L/h’ et de K’IK interprétés en
termes de conducteurs, on obtient une autre démonstration du fait que leur
quotient est un carré en appliquant le théorème de Serre sur les conducteurs
d’Artin des caractères réels ([8]). On peut aussi procéder en sens inverse, et
utiliser ce théorème pour associer à tout caractère réel de GK (i.e. différence
des caractères de deux représentations de Gx à noyaux ouverts réalisables
sur R) un conducteur e H*/K*Z : il suffit de considérer l’extension

M / K associée par la théorie de Galois au noyau du caractère

et de poser = mod 1(*2. On obtient une fonction additive sur
le groupe des caractères virtuels de GK, qui vérifie en outre une formule
d’induction analogue à la formule de transitivité des discriminants, et joue
vis-à-vis du conducteur d’Artin le rôle que joue dL/K vis-à-vis de 

Il résulte immédiatement de 3.1 (et cela peut aussi se voir directement)
que, si est divisible par un idéal premier p de K au-dessus de 2, il
est alors divisible par p 2 : il suffit de remarquer qu’un tel idéal, s’il divise

n’est pas modérément ramifié dans I(I/K.’

Supposons maintenant que K soit un corps de nombres. Les résultats

précédents s’appliquent avec A = Zx, clôture intégrale de Z dans K. Si la
norme de est paire, elle est divisible par 4 d’après ce que nous venons
de voir. Supposons-la impaire. On a alors N(J’2) == 1 mod 8. Pour
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achever la réduction au cas quadratique des théorèmes 1.1 et 1.3, il suffit
de montrer que les nombres de places complexes w dans L et w’ dans Il’
qui sont au-dessus d’une place réelle donnée v de K ont même parité. Or,
à la place v, DLIK et ont pour signes respectifs (-1)w et (20131)~ .
Comme ces deux discriminants ont même image dans on a bien
te = w’ mod 2.

4. Démonstration du théorème 1.4. Dans ce paragraphe, m désigne
un entier &#x3E; 0, K un corps de nombres contenant une racine de l’unité (
d’ordre 2"z et L une extension quadratique de .K dans laquelle les idéaux
premiers ramifiés sont tous de norme impaire. Nous désirons prouver la

(-1)~ mod 2m+

Écrivons L = h’(~), et (1) = a . ~2, où a est un idéal entier sans facteur
carré de h’. On a alors a. Puisque 7~ contient le corps Q((), les
idéaux premiers de k qui ne divisent pas (2) sont de norme congrue à 1

mod 2’n, donc à 1 ou 1 + 2’’’z mod 2m+l. Soit S (resp. T) l’ensemble des
diviseurs premiers de a dont la norme est congrue à 1 + 2"~ (resp. à 1)
mod 2m+l , et soit s le cardinal de S. On a N( a) == 1 + . 2m mod 2m+l ,
et tout revient à montrer que s et c ont même parité. Pour cela, calculons
les symboles de Hilbert quadratiques (a, ~)~, aux différentes places v de K.
Ils sont égaux à 1 lorsque v est complexe, ce qui est le cas de toutes les
places infinies de K lorsque m est &#x3E; 1, et lorsque v est finie et non ramifiée
dans Lorsque v est réelle, on a m = 1, ( _ -1, et (a, -1 )v prend la
valeur -1 si et seulement si a est  0 à v, ce qui a lieu exactement lorsque
v se prolonge à L en une place non réelle. Reste à examiner le cas où v
est une place finie correspondant à un idéal premier p de K ramifié dans
L. Alors, p divise a, et, comme p est modérément ramifié, le symbole ne
dépend que de l’image de ( dans le quotient (Z~/p)* : il vaut +1 lorsque (
est un carré modulo p et -1 dans.le cas contraire ; il prend donc les valeurs
+1 sur T et - 1 sur ,5’. La formule du produit entraîne alors tout de suite
le théorème 1.4, les contributions respectives à ce produit des places finies
et infinies étant (-1 )s et (-1 )~ , c.q.f.d.
La démonstration que nous venons de donner du th. 1.4 est de type

"corps de classes". Voici une démonstration de type "Kummer" qui s’appli-
que dans le cas habituel de la congruence modulo 4.

Soit donc L = K(V1) une extension quadratique de avec (y) = a . ~2,
où a est un idéal entier sans facteur carré de Zx. Quitte à remplacer b
par un idéal équivalent, on peut le supposer entier et premier à 2. Pour un
idéal ~p au-dessus de 2 dans K, " vp ( a ) pair" équivaut à ( a) = 0 ", et,
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lorsque cette condition est vérifiée, "vp (0) = 0" équivaut à "a est congru
à un carré modulo 1311, (4)" (cf. [4], §39). Il en résulte que, lorsque L /IÉ
est non ramifiée en 2, a est congru à un carré modulo 4 (que l’on pourrait
du reste choisir égal à 1). Cela entraîne la congruence N(a) - 1 mod 4.

Mais N(a) _ (-1)~ . IN(a)l , et IN(a)l est la norme de l’idéal principal (a).
On en déduit

4.1 Remarque. Lorsque m = 2, les trois classes modulo 8 a priori possibles
compte tenu du théorème 1.3 pour une extension quadratique sont effec-
tivement réalisables, comme on le voit en prenant K = ~(i), les valeurs de
N(a) pour a = i, 1 + 4 i et 1 + 2 i étant respectivement 16, 17 et 20.

4.2 Remarque. Signalons que la congruence de Stickelberger a été con-
sidérée par FrÕhlich dans le cadre des discriminants idéliques ([3], [4]).
Nous laissons au lecteur le soin de vérifier que, pour un corps global, la
connaissance du discriminant idélique est équivalente à celle du couple

dT(V)) qui a été utilisé tout le long de cet article.
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