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Séminaire de Théorie des Nombres,
Bordeaux, 1, 197-204 (1989)

Les discriminants quadratiques
et la congruence de Stickelberger

par JACQUEs MARTINET

1. Introduction. Le but de cet article est de démontrer une forme
relative du théoréme de Stickelberger sur les discriminants, indiquée sans
démonstration aux Journées Arithmétiques d’Exeter de 1980 ([6], appen-
dice IT) ; nous donnons en outre une généralisation de cet énoncé.

Soit K un corps de nombres, et soit L une extension finie de K. Notons
01/k ou simplement 3 le discriminant relatif de L/ K, ¢ le nombre de places
complexes de L qui sont au-dessus d’une place réelle de K, et N la norme
Nk/q de K sur Q.

1.1 THEOREME. On a (—-1)°N(?) =0 ou 1l mod 4.

Lorsque K = Q, ¢ est le nombre 7, de places complexes de L, et la norme
de 0 est la valeur absolue du discriminant d de L. Comme d a le signe de
(=1)", on retrouve le résultat de Stickelberger publié en 1897 dans les actes
du premier congres international([9]), résultat dont une démonstration tres
simple a été donnée par Schur en 1928 ([7]) :

1.2 COROLLAIRE. Le discriminant d’un corps de nombres est congru a
0oul mod 4.

Soit u le sous-groupe des racines de 1’unité de K dont l’ordre est une
puissance de 2, et notons 2™ le nombre d’éléments de p. Dans le théoréme
1.1, on supposait seulement m > 1. Lorsque m est > 2 (ce qui entraine que
¢ est nul), on a une congruence plus précise :

1.3 THEOREME. Si K contient les racines quatriémes de I’'unité, on a
N(®)=0,10u4 mod 8.

La démonstration des théorémes 1.1 et 1.3 se fait par réduction au cas ol
L/K est une extension quadratique pour laquelle N () est impair. Apres
un paragraphe 2 consacré a1’énoncé de quelques compléments sur les discri-
minants, nous effectuons cette réduction au paragraphe 3. L’énoncé dans le
cas quadratique est démontré au paragraphe 4, sous la forme plus générale
suivante :
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1.4 THEOREME. Si L/K est une extension quadratique dont le discrimi-
nant relatif ® est de norme impaire, et si K contient une racine de I’'unité
d’ordre 2™ (m > 1) on a N(3) = (—1)° mod 2™+1,

Je remercie Jean-Pierre Serre pour ses remarques. En outre, c’est au
cours d’une discussion avec lui qu’a été trouvée une démonstration du th.3.1
ne nécessitant aucune hypothése de séparabilité résiduelle.

2. Compléments sur les discriminants. Dans ce paragraphe, K
désigne un corps sur lequel aucune hypothése particuliére n’est faite, K,
une cloture séparable de K, et V un K-espace vectoriel muni d’une forme
bilinéaire symétrique 7" non dégénérée. On se donne en outre d’une part une
extension séparable finie L de K (on pourrait considérer plus généralement
une algebre étale sur K, c’est-a-dire un produit fini d’extensions séparables
finies de K'), et d’autre part un anneau de Dedekind A de corps des fractions
K et un réseau M de A dans V (A-module de type fini engendrant V).
Lorsque V' = L, on prend pour forme T l’application (z,y) — Trr/x(zy)
et pour M la cléture intégrale de A dans L.

Pour tout idéal premier non nul p de A, le localisé A, de A en p est un
anneau de valuation discréte, et My = A, M est un Ap -module libre. Le
discriminant pour T d’une base de ce module est bien défini dans K*/A;? ;
il en est de méme de sa valuation A\, € Z. En outre, Ap est nul pour
presque tout p, ce qui permet de définir le discriminant d7(M) = 0 de
T sur M : c’est I'idéal fractionnaire de A tel que v, (3) = A, pour tout
idéal premier non nul p de A. On définit de la méme facon le discriminant
dr(V) € K*/K*? A partir d’une K-base de V. Sa valuation est définie
modulo 2 en chaque idéal premier non nul de A.

2.1 PrROPOSITION. Pour tout idéal premier non nul p de A, on a

vp () = vp (d7(V)) mod 2.

En effet, pour tout p, d7(V) est I'image dans K*/K*? du discriminant
local défini dans K*/Ap2.

Les considérations qui précédent s’appliquent en particulier & 1’extension
L/K ; on obtient alors un discriminant d;/x = 9, qui est un idéal entier
de K, et un discriminant dy/k, qui est un élément de K*/K*? ; dr/k
définit une extension de K de degré < 2 (qui est purement inséparable si
car K = 2).

Dans la suite, nous employons 1’expression eztension quadratique pour
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désigner une sous-extension de degré 1 ou 2 de K,/ K. (On pourrait de fagon
plus intrinséque considérer les classes d’isomorphisme d’algebres étales de
dimension 2.)

La théorie de Galois permet d’associer a L/K une telle extension quadra-
tique. En effet, on peut faire du groupe de Galois Gk de K;/K un groupe
de permutation de degré n = [L : K] en le faisant opérer sur I’ensemble des
racines dans K, du polynéme minimal d’un élément primitif de L/K, ou
encore sur 1’ensemble des K-homomorphismes de L dans K,. On montre
sans peine que I’on obtient dans tous les cas la méme classe d’équivalence
forte. Les signatures des permutations définissent alors un homomorphisme
canonique ¢ : Gg — {—1,+1}, auquel on associe une extension quadra-
tique K'/K, qui définit elle-méme un élément de K*/K*? (théorie de
Kummer) si car K est # 2 et de K/p(K) (théorie d’Artin-Schreier ; p
est ’application z +— z? — z) si car K = 2.

Le résultat suivant est bien connu (voir par exemple Weil, [10], pp. 155-
156) :

2.2 PROPOSITION. Sicar K # 2, on adgi x = dp/x dans K*/K*? ; si
car K = 2, dp /i est trivial.

Démonstration. Le cas de la caractéristique 2 est évident, ’extension de
degré 1 ou 2 définie par L/K devant étre a la fois séparable et purement
inséparable. Supposons maintenant car K # 2, et soit § un élément primitif
de L/K. Alors, dp/k est 'image dans K*/K*? du discriminant pour la
forme Trp,k(zy) de la base {1,6,...,6"" '} de L/K, discriminant égal &

1 (70 — 06)2. (Dans ce produit, T et o parcourent l’ensemble, ordonné
7<0
arbitrairement, des K-homomorphismes de L dans K,.) Comme 1’élément

v = [1(70 — 060) de K, vérifie la formule de transformation sy = ¢(s)y pour
tout s € Gk, on a K' = K\/('y), c.q.f.d.

2.3 Remarque. On peut aussi donner une interprétation analogue de K'/K
lorsque K est de caractéristique 2, a condition d’utiliser une forme quadra-
tique convenable a la place de la forme bilinéaire Tr(zy) et de remplacer
en outre I’espace vectoriel L par le produit L x K lorsque n est impair, cf.

1.

3. Réduction aux discriminants quadratiques. Nous conservons
dans ce paragraphe les notations du paragraphe précédent.

3.1 THEOREME. Il existe un idéal entier § de K tel que dp/x = g1/ - §° .
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Le fait que le quotient des discriminants de L/K et de K'/K soit le
carré d’un idéal fractionnaire est une conséquence immédiate des prop. 2.1
et 2.2. Pour montrer que ce quotient est un idéal entier, nous nous servons
du résultat suivant, que nous prouvons en adaptant I’idée utilisée par Schur
dans [7] :

3.2 PROPOSITION. Soit B un ordre de L. Si dy i est non trivial, il existe
un unique ordre B' de K' qui a méme discriminant que B. (Dans le cas ou
dp/k =1, il faut remplacer K' par I'algébre K x K.)

Le théoréme 3.1 est une conséquence facile de la proposition 3.2, puisque,
quelque soit B, Dk /i divise le discriminant de B’.

Pour prouver 3.2, nous examinons d’abord le cas particulier ou B est
un A-module libre. Choisissons une base {wy,...,w,} de B sur A. Le dis-
criminant de B est le carré du déterminant det(o;w;) (0; € Hom(Z, K)).
Ce déterminant est de la forme o — 3, ou « (resp. () désigne la somme
des termes qui apparaissent dans le développement du déterminant avec
le signe + (resp. le signe —). Un élément s du groupe Gk stabilise
ou échange a et (3 selon que ¢(s) vaut +1 ou -1. Mais o et 8 sont les
racines dans K, du polynéme f(X) = X? —(a+ )X + af € A[X]. Ona
K' = K(a - B) = K(a) = K(B), et ’ordre A[a] = A[B] de K' est 1’ordre
cherché : son discriminant, qui est engendré par le discriminant de f, est
égal & (a — 3)%, et coincide donc avec celui de B. Le cas général se ramene
tout de suite au cas précédent par localisation, ou en considérant 1’ordre
engendré sur A par les discriminants des sous-modules libres de B. Quant
a ’unicité de ’ordre B’, elle résulte simplement de ce que les ordres d’une
algébre quadratique étale sont classés par leurs conducteurs, c.q.f.d.

Dans le cas ou ’on suppose les extensions résiduelles séparables, la di-
visibilité de 3.,k par Dk x peut également se démontrer en interprétant
ces discriminants comme les conducteurs d’Artin respectifs du caractére de
permutation de Gk associé a L/ K et de son déterminant, et en appliquant
le théoréme suivant :

3.3 THEOREME. (Serre) Soit p une représentation de Gk dans un espace
vectoriel complexe V. Alors, le conducteur du déterminant det, de p divise
celui de p.

Comme le schéma de démonstration qui est proposé en exercice dans
[5], p. 79, est un peu succinct, nous donnons une démonstration un peu
détaillée ci-dessous.

Par localisation et complétion, on se rameéne au cas ou K est complet.
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La représentation p reléve une représentation encore notée p du groupe de
Galois G' d’une extension finie L/K. Notons alors G; (¢ > 0) la suite des
groupes de ramification de L/ K , et soit g; ’ordre de G;. L’exposant v de
’idéal de valuation de K dans le conducteur de p est alors donné par la
formule (cf. [5], p. 13) :

v = z g codim V.
go
i>0

L’exposant v’ relatif & la représentation det, s’obtient par une formule
analogue, dans laquelle ’espace V' est remplacé par sa puissance extérieure

W= /'{ V. Nous devons prouver l'inégalité v > v', et, pour cela, il suffit de
montrer que I’on a codim V& > codim WS pour tout i. C’est vrai lorsque
G opere trivialement sur V parce que les deux membres sont alors nuls, et
lorque G; n’opére pas trivialement parce que codim W est < 1, c.q.f.d.

3.4 Remarque. Une fois les discriminants de L/K et de K'/K interprétés en
termes de conducteurs, on obtient une autre démonstration du fait que leur
quotient est un carré en appliquant le théoréme de Serre sur les conducteurs
d’Artin des caracteres réels ([8]). On peut aussi procéder en sens inverse, et
utiliser ce théoréme pour associer a tout caractére réel de Gk (i.e. différence
des caractéres de deux représentations de G a noyaux ouverts réalisables
sur R) un conducteur f(x) € K*/K*?: il suffit de considérer I’extension
M /K associée par la théorie de Galois au noyau du caractére

det, :Gg — {-1,+1},

et de poser f(x) = dpyx mod K *2. On obtient une fonction additive sur
le groupe des caractéres virtuels de Gk, qui vérifie en outre une formule
d’induction analogue a la formule de transitivité des discriminants, et joue
vis-a-vis du conducteur d’Artin le réle que joue dy/x vis-a-vis de dp /.

Il résulte immédiatement de 3.1 (et cela peut aussi se voir directement)
que, si 0y, est divisible par un idéal premier p de K au-dessus de 2, il
est alors divisible par p? : il suffit de remarquer qu’un tel idéal, s’il divise
Ok1/K, N’est pas modérément ramifié dans K'/K.

Supposons maintenant que K soit un corps de nombres. Les résultats
précédents s’appliquent avec A = Z g, cloture intégrale de Z dans K. Si la
norme de 3./ est paire, elle est divisible par 4 d’aprés ce que nous venons
de voir. Supposons-la impaire. On a alors N(32) = 1 mod 8. Pour
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achever la réduction au cas quadratique des théoremes 1.1 et 1.3, il suffit
de montrer que les nombres de places complexes w dans L et w’ dans K’
qui sont au-dessus d’une place réelle donnée v de K ont méme parité. Or,
a la place v, d/k et dg//x ont pour signes respectifs (—1)" et (—1)“".
Comme ces deux discriminants ont méme image dans K*/K*2, on a bien
w = w' mod 2.

4. Démonstration du théoréme 1.4. Dans ce paragraphe, m désigne
un entier > 0, K un corps de nombres contenant une racine de 1’unité ¢
d’ordre 2™ et L une extension quadratiqgue de K dans laquelle les idéaux
premiers ramifiés sont tous de norme impaire. Nous désirons prouver la
congruence Ng/q(0r/kx) = (—1)° mod 2™+1,

Ecrivons L = K(,/7), et (v) = a.b?, ot a est un idéal entier sans facteur
carré de K. On a alors 37/ = a. Puisque K contient le corps Q((), les
idéaux premiers de K qui ne divisent pas (2) sont de norme congrue a 1
mod 2™, donc & 1 ou 1+ 2™ mod 2™*!. Soit S (resp. T') ’ensemble des
diviseurs premiers de a dont la norme est congrue a 1 + 2™ (resp. a 1)
mod 2™+1 et soit s le cardinal de S. On a N(a) = 1+ s2™ mod 2™+1,
et tout revient a montrer que s et ¢ ont méme parité. Pour cela, calculons
les symboles de Hilbert quadratiques (a, (), aux différentes places v de K.
IIs sont égaux a 1 lorsque v est complexe, ce qui est le cas de toutes les
places infinies de K lorsque m est > 1, et lorsque v est finie et non ramifiée
dans L/K. Lorsque v est réelle,on am =1, { = —1, et (o, —1), prend la
valeur —1 si et seulement si a est < 0 a v, ce qui alieu exactement lorsque
v se prolonge a L en une place non réelle. Reste a examiner le cas ol v
est une place finie correspondant & un idéal premier p de K ramifié dans
L. Alors, p divise a, et, comme p est modérément ramifié, le symbole ne
dépend que de I'image de ¢ dans le quotient (Zx /p)* : il vaut +1 lorsque ¢
est un carré modulo p et —1 dans le cas contraire ; il prend donc les valeurs
+1sur T et —1sur S. La formule du produit entraine alors tout de suite
le théoréme 1.4, les contributions respectives a ce produit des places finies
et infinies étant (—1)° et (-1)°, c.q.f.d.

La démonstration que nous venons de donner du th. 1.4 est de type
“corps de classes”. Voici une démonstration de type “Kummer” qui s’appli-
que dans le cas habituel de la congruence modulo 4.

Soit donc L = K(,/7) une extension quadratique de K, avec (7) = a.b?,
ol a est un idéal entier sans facteur carré de Zx. Quitte a remplacer b
par un idéal équivalent, on peut le supposer entier et premier & 2. Pour un
idéal p au-dessus de 2 dans K, “v, (?) pair” équivaut & “vp (a) =07, et,
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lorsque cette condition est vérifiée, “vp () = 0” équivaut a “a est congru
4 un carré modulo p* ()7 (cf. [4], §39). 1l en résulte que, lorsque L/K
est non ramifiée en 2, a est congru & un carré modulo 4 (que I’on pourrait
du reste choisir égal & 1). Cela entraine la congruence N(a) =1 mod 4.
Mais N(a) = (-=1)°.|N(a)|, et |N(a)| est la norme de 1’idéal principal ().
On en déduit

N(a) = N(a).N(b)? = |N(@)| = (-1)° mod 4.

4.1 Remarque. Lorsque m = 2, les trois classes modulo 8 a priori possibles
compte tenu du théoréme 1.3 pour une extension quadratique sont effec-
tivement réalisables, comme on le voit en prenant K = Q(¢), les valeurs de
N(d) pour a =14, 1+ 44 et 1+ 2¢ étant respectivement 16, 17 et 20.

4.2 Remarque. Signalons que la congruence de Stickelberger a été con-
sidérée par Frohlich dans le cadre des discriminants idéliques ([3], [4]).
Nous laissons au lecteur le soin de vérifier que, pour un corps global, la
connaissance du discriminant idélique est équivalente a celle du couple
(d7r(M), dr(V)) qui a été utilisé tout le long de cet article.
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