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§ 1. Introduction

Le probléme de la répartition des nombres de classes et des groupes de classes
d’idéaux de corps de nombres se pose depuis Gauss. Bien que lon ait fait de
remarquables découvertes dans ce domaine (par exemple le théoréme de Brauer-Siegel et
le théoréme de Goldfeld-Gross-Zagier), on peut raisonnablement affirmer que 'on ne
connait presque rien. Par exemple on ne sait pas s'il existe des groupes de classes de corps
quadratiques imaginaires avec un p-rang arbitrairement grand (sauf bien siir pour p=2),
ou s’il existe une infinité de corps quadratiques réels de nombre de classes égal a 1.

En faisant certaines hypothéses heuristiques sur la répartition des groupes de
classes, [C-L] donnent des résultats conjecturaux sur ces groupes, essentiellement dans
le cas des corps quadratiques. Le but du présent article est de généraliser ces conjectures
a des extensions quelconques de corps de nombres. Les résultats numériques correspon-
dants pour tous les types d’extensions de degré inférieur ou égal a 4 de @ ont déja été
publiés dans [C-M 2].

Comme dans [C-L], pour formuler des conjectures raisonnables il est nécessaire
d’enlever aux groupes considérés les p-composantes pour certains “mauvais” nombres
premiers p. La situation est la suivante:

Soit L/K, une extension de corps de nombres de cloture galoisienne K/K, et de
groupe de Galois I'= Gal (K/K ). Nous verrons qu’il est possible de comparer le groupe
des classes relatives Cl; ., avec le groupe eCly ,,, ot e est un idempotent de I'algebre de
groupe @ [I'] lié a la représentation de permutation de I' correspondant a L/K , (cf. § 7).

Une fois Clg, débarass¢ de certaines “mauvaises” p-composantes, le groupe
abélien fini G =eClg g, peut étre muni d’une structure de O-module, ou O est un ordre
maximal de la @-algebre semi-simple A=e@[I'] contenant eZ[I']. On est alors
ramené 4 une situation semblable a [C-L].

Le plan de Particle est le suivant: dans les paragraphes 2 a 5, nous développons

‘ les outils combinatoires et analytiques nécessaires a la généralisation des principes de

i [C-L]. Tous les résultats de ces paragraphes (ainsi que ceux du § 7) sont des théorémes,
et non des conjectures.

*) Unité de Recherche Associée du C.N.R.S. ne 226.
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Il est intéressant de noter que, comme dans [C-L], la fonction analytique de base
(que nous avons notée Z(s)) est intimement liée 4 la fonction zéta de 'algebre
semi-simple 4. Nous renvoyons a [Deu] pour tout ce qui concerne les algebres
semi-simples et leur arithmétique.

Dans le paragraphe 6, nous ¢nongons ’hypothése heuristique fondamentale qui
généralise les deux hypotheses heuristiques de [C-L]. Il sagit d’une égalité conjecturale
entre la moyenne d’une fonction définie sur les groupes de classes d’une part, et la
moyenne de cette fonction sur les O-modules finis relativement & une certaine “mesure”
d’autre part (voir le paragraphe 6 pour un énoncé correct). Cette derniére moyenne est
calculable analytiquement en pratique.

Dans le paragraphe 7 on montre comment relier les groupes Clpk, et eClg, €t
on discute la notion de “bonne” p-composante.

Enfin le paragraphe 8 regroupe un certain nombre de conséquences, commentaires
et généralisations possibles.

Nous serons malheureusement obligés d’introduire de nombreuses notations. Nous
utiliserons en particulier les deux notations suivantes (différentes de celles utilisées dans

[C-L]):

« si E est un ensemble fini |E| désigne le cardinal de E,

% siq+0on posepourneZ: (n),= [T A—=q* si nz0,

1Zksn

(n),= o si n<0

(on peut en fait définir ce symbole pour ne C quelconque mais nous n'en ferons pas
usage).

Nous avons eu avec J.-F. Jaulent, G. Henniart, H. W. Lenstra, J. Oesterlé, J.-P.
Serre et M. Taylor des discussions fructueuses qui nous ont beaucoup éclairées; nous
les en remercions. Nous remercions également D. A. Buell, G. Fung, D. Shanks et H. €
Williams qui nous ont fourni ou fait connaitre des données numériques trés utiles.

§ 2. Dénombrement d’homomorphismes

Comme dans le paragraphe 1, A désigne une @@-algebre semisimple; on note
(ei)1<i=m SCS idempotents centraux irréducibles, et A;=Ae; ses facteurs simples.

L’algrébre A s’identifie donc au produit [] 4;, et chaque algébre A; est isomorphe a

une algébre de matrices M,,(D;) ou D; est un corps gauche de rang fini sur @ dont le

centre est un corps de nombres K;. On pose

d?=[D;:K;] et hi=[4;:K]; donc, h=1ld;, avec LeZ.

Le centre K de A est une algébre étale qui gidentifie au produit des K;. L'anneau Zy
des entiers de K s’identifie au produit des anneaux Zy,, et ses idéaux maximaux sont en

bijection avec les couples (i, p), ot ie[1, m]etp estun idéal maximal de Z,.
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Etant donné un tel couple (i, p), la complétion de A en (i, p) (ou, ce qui revient au
méme, de A; en p) est I'algebre

A :Ki,p®Ai5

iLhp-
ou K; , désigne le complété de K; en p. Cest une K; ,-algebre centrale simple de rang
hi; (,lle est donc isomorphe d une algébre de matrices M, (D; ,) ou D; , est un corps

i

gauche de centre K; ,. Comme dans la situation globale, on pose
di,=[D;, :K;,], donc hi=1;,4d;,

Remarque 2. 1. Le corps gauche D; , nest pas nécessairement le compléte de D;
en p, mais D; ® K; , peut étre identifié a

A/Id,/d ([)l p)

ip

Pour tout p, on a d; |d; et []l; ,. D’autre part d; , =1 (donc l; y = h;) pour presque tout
p, et d; est le PPCM des d, ,,, donc [; est le PGCD des [; , (cf. [Deu]).

Donnons nous maintenant un ordre maximal O de A4 (ou plus généralement un
ordre maximal de A relativement a un localis¢ de Z), et soient O;=De; ses
composantes sur les facteurs simples de 4. Si M est un O- module a gauche on note
encore M,=e; M ses composantes sur les facteurs simples de A4; chaque M; est muni
canoniquement d’une structure de O;-module.

Par complétion, on associe 4 O des ordres maximaux O, , de 4; , (relativement au
complété B;, de Z, en p), et a M des O; ,-modules M, .. Le corps gauche D; ,
contient un umque ordre maximal, noté o; s et lon peut ch0131r I'isomorphisme de A4, ,
sur M, (D ,p) de fagon que DO, , ait pour image M, (o; »)- En outre, o; , contient un
unique 1dedl a gauche maximal, noté p’; c’est un idéal bilatére de i p-

Notons que o, ,/p’ est une extension de degré d; , du corps fini B; ,/pB; , (ou B, ,
est comme ci-dessus le complété de Zy, en p), donc que
— — - R s Jyy|disp -
g=Np' =10, /0| = |B;, /0 By |0 =1Zx /ol
donc

q=Nq =(Np)h>.

Ces notations étant introduites, nous pouvons en arriver au but de ce para-
graphe: si P est un O-module (& gauche) projectif de type fini, et si G est un O-module
fini, nous voulons calculer les cardinaux suivants:

|[Homg (P, G)|, [Homj (P, G)|, |Auty (G)],

ot Homi (P, G) est le sous-ensemble de Homg (P, G) formé des homomorphismes
surjectifs. Pour cela, nous avons besoin des définitions suivantes:
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Définition 2. 2. (i) Soit V' un A-module de type fini. On appelle rang de V, et on
note u(V), le m-uplet (u, (Vy). ..., u,(V,,)) € @™ ou:

(i) Soit P un O-module projectif de type fini. On appelle rang de P, et on note
encore u(P), le rang du A-module @ ® P.

Définition 2. 3. Soit G un O-module fini, soient G; ses composantes, et pour tout
p soit G; , le sous-module de G; formé des ¢léments dont I'annulateur est une puissance
de p; G; , est canoniquement muni d’une structure de o; ,-module.

(i) On appelle p’-rang de G, le nombre rationnel

(. ,
dlmo,‘m/p' (Gi,p/p Gi,p)'

rp’ (Gl) = hT

(i) On appelle p-rang de G; le nombre rationnel
rp (Gl) = di%p rp’ (Gl)

Remarque 2.4. Lorsque le corps gauche D; est réduit a son centre (d;=1), il est
inutile de compléter pour la définition 2. 3: les p-rangs et p’-rangs coincident et sont
¢gaux a dimy, , (G;/p G)).

Notons tout de suite la proposition suivante, qui résultera de la démonstration du
théoréme 2. 6.

Proposition 2. 5. (i) On a l;u;(P) € Z (donc h;u;(P) € d; 7).
(i) Onal;r,(G)eZ (donc h;r,(G) € d; 7).

Nous pouvons maintenant énoncer:

Théoréme 2. 6. Avec les notations ci-dessus, on a

[Homy (P, G)| = [] |G;|"®.

i=1

(Nous noterons souvent |G|“®) cette derniére expression.)

Démonstration. On se raméne immédiatement au cas ou A est simple (i.e. m=1)
et ou G est annulé par une puissance d’un idéal premier p du centre K de A. Apres
complétion en p, on peut alors supposer que O est un ordre au-dessus d’un anneau de
valuation discrétre B ayant pour corps des fractions K, et identifier 4 4 une algebre
M,(D) (ou D est un corps gauche de centre K) de fagon que O s’identifie a I’anneau
M, (v) des matrices carrées d’ordre [ a coefficients dans I'unique ordre maximal o de D.
On note p’ I'idéal maximal de o.
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Puisque P est projectif, 'application qui a
¢ € Homg (P, G)
associe I’¢lément
¢ € Homg,, o (P/p'P, G/p'G)

déduite de ¢ par passage au quotient, est surjective, et son noyau est clairement
Homg (P, p’ G). On a donc:

(1) [Homg (P, G)| =|Homg, o (P/p’ P, G/p’ G)| [Homg (P, p' G)|.
Par récurrence, on en deduit que:

(2) [Homy (P, G)| = [ ] [Homg,, o (P/p’P, p"“G/p"* " G)|.

k=0

Pour pouvoir continuer, il nous faut des renseignements sur les structures de
O-modules de P et de G. Pour tout anneau R, notons M, (R) le M;(R)-module a
gauche formé des matrices a [ lignes et ¢ colonnes a coefficients dans R. On a alors:

Lemme 2.7. (1) Si P est un D-module projectif de type fini, alors P est
O-isomorphe a M, (o) avec v=1u(P).

(i) Si G est un O-module fini annulé par une puissance de p (ou de p’, cela revient
au méme), alors G est O-isomorphe a M, ,(0)/1, ou I est le sous-module de M, (o) formé
des matrices de la forme

’m 'rm
b “.p n

[ lignes < . . ) (m; entiers >0),
p | S p n

et on a n=1lr,(G).

Démonstration. (i) Rappelons que O = M,(0). En décomposant P en somme
directe de modules irréductibles on voit que

al “ee al}
P;( ) (I lignes, a;=0)
a, - a,

Lo

ou les a; sont des idéaux de o, donc principaux, d’ou I'isomorphisme avec M, , (o). On a

1 . 1 .
u(P) =42 dimg (@ ® P) =2 dimg (M, , (D))
.
TR

d’ou (1).

Puisque [; est le PGCD des [; ,, cela montre également le (i) de la proposition 2. 5

(qu’on aurait également pu obtenir directement par localisation, sans compléter).
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(i) L’isomorphisme avec un M, ,(0)/I résulte de la structure énoncee ci-dessus
pour les O-modules projectifs. Quant a la valeur de n, on a

2

) 12 11
r,(G) :%z’ dim LI

(GG =" =1,

o/p’
d’ou le lemme.
Pour la suite, nous poserons

F,=vo/p’, ou q=Np"

Corollaire 2. 8. En tant que M([F,)-modules a gauche, on a

Plp'P=M, ,(F,),
G/}),G = Ml,n(lqu)

avec v=1u(P), n=1r,(G).

Proposition 2. 9. L’ application

Mu,n(ZFq) - Holi(Fq) (Ml,v(”:q)a Ml,n(Fq))>

m = (X > Xm)

est un isomorphisme de [F-espaces vectoriels.
La démonstration de cette proposition est trés facile et laissée au lecteur.

On déduit donc de ce qui précede que
|Homg,, 5 (P/p' P, G/p’ G)| =M, ,(FF,)l = ¢""".

Or, Ir,(p’* G) représente le nombre de m; >k dans le lemme 2.7, et on a donc

Z lrp(p,kG): Z mis
i=1

k=0
d’ou: ;
v 'gl mi kgovlrv(p’kG)
GrO=GP=g =g
= |1 Homg,.o (P/p' P, p'*G/p"* " G)|

k=0

=[Homy (P, G),

d’ou le théoréme 2. 6.

Théoréme 2. 10. Rappelons que I'on pose:

m,= [I (1—q* pour n=20, (n),=00 si n<0.

15kzn
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Le nombre d’homomorphismes surjectifs de P dans G est donné par la formule

|[Hom§, (P, G)

= ﬁ [lGiIUl(Pi) n (li,p u; (P))q/(li,p(“i(P)“ ";‘(Gi)))qil
i=1

» < Zk;

ol g=Nyp%» et oi p parcourt les idéaux maximaux de Zy,. Noter que ce produit est fini
puisque r,(G;) =0 pour presque tout p.

Démonstration. On suit pas a pas la démonstration du théoréme 2.6 en se
limitant aux homomorphismes surjectifs. Les mémes réductions étant faites, le lemme de
Nakayama montre que ¢ € Homg (P, G) est surjectif si et seulement si

@ € Homg, o (P/p' P, G/p'G)
est surjectif. L’analogue de la formule (1) est alors
(3) |Hom}, (P, G)| = [Homg, .o (P/p' P, G/p' G)| [Homg (P, p’ G)|.

(Il 0’y a pas de condition de surjectivité dans Homg (P, p'G))

D’aprés le théoréme 2. 6, on a

u(P)
4) - [Homg (P, p’' G)| = |p'G|*® = < ,,,,,,,,, )

< IGl >u(P) |G|u(1’) IGlu(l’)
bt mt) = ame

d’aprés le corollaire 2. 8.

D’autre part en se ramenant au cas [=1, il est facile de voir que les matrices
me M, ,(F,) correspondant aux homomorphismes surjectifs par I'isomorphisme de la
proposition 2.9 sont celles qui définissent par multiplication a droite des applications
surjectives de [F,” sur [F)', c’est-a-dire qui sont de rang n. Le nombre de telles matrices est
évidemment égal a

@ =@ =) (@ —q"")=q""©),/v—n),

(méme si n>v puisqu’on a posé¢ (v—n), = co dans ce cas).

D’aprés (3) et (4), on a donc
[Homg, (P, G)| = |G["P (v),/(v — n),,
d’ou le théoréme 2. 10 puisque, d’apres le lemme 2. 7,

v=1u(P), v—n=I1u(P)—r,(G)).

31 Journal fiir Mathematik. Band 404
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Enfin nous avons:
Théoréme 2. 11.  Soient p < Zy, un idéal maximal et G un O-module fini annulé par

une puissance de p. Posons q= N p». Soient u,, ..., u, les valeurs distinctes des m; données
n

t
par le lemme 2.7, et ky, ..., k, les multiplicités correspondantes (donc, ), k=Y my).
i=1 j=1
Alors,
Z inf (piy puj)kik; '
=i, jSit -
|Autg (G)l = ¢ [1 (ki)
1

Remarque 2. 12. 1) Avec les notations du lemme 2. 7, 'exposant

Y. inf(u, w;) kik;

151, )51
e . =
s'écrit aussi ) inf(m;, m;).
1=<i,j<n

2) Si G est un O-module fini quelconque, il est clair que

m

|AUtD(G)|:]I ]] |AUtD(Gi,p)|

i=1 pczy

ou G; , désigne le sous-module de G; formé par les ¢léments dont I'annulateur est une

puissance de p, et donc le théoréme 2. 11 fournit |Autg (G)| en toute généralité.

Démonstration. Reprenons les notations du lemme 2.7 (ii). Comme dans la
proposition 2.9, on voit aisément que les homomorphismes de M, ,(0) dans lui-méme
sont donnés par multiplication a droite avec une matrice m € M, (o).

Pour que cela induise un O-homomorphisme de G dans G par passage au
quotient par I, il est nécessaire et suffisant que 'on ait Im <1 (puisque M, ,(o) est
projectif, noter que tout O-homomorphisme de G dans G s’obtient de cette fagon). Si

m= (aij)l <i,j<n>
on voit que cette condition équivaut a
agep™ ™ pour m;<m.

Quitte a réordonner les m;, on peut supposer que m; < --- <m,.

On déduit immeédiatement de ce qui préceéde que les O-homomorphismes de G
dans G sont en n-isomorphisme avec le module quotient

Imy —my - My —m
A p p n 1
/iy

Iy rmy
prtp p

p/m,, —Mp~1
/iy,

/'y MY s
prmtop p

D D oD
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Les D-automorphismes correspondent aux classes modulo I de matrices dont le
déterminant est inversible modulo p’. Avec les notations y;, k; introduites dans I’énoncg,
un représentant d’une telle classe, réduit modulo p’, est de la forme:

Ky
k[ : * 0 0
u
: * * 0
| 1y
k, | : * * *
H
Hyoo iy fo el fy Hyeee 1y
k, k, k,

3 On en déduit que le nombre de telles matrices inversibles, modulo p’, vaut

/.2. kikj 1
q'==iEt [T IGL, (Rl

|
i i=1

=555 ] (k)
i=1

Or, le nombre d’éléments de o/p’* qui se réduisent modulo p’ en un élément donné
: de [F,=o/p" est égal 4 ¢"" ', et le nombre d’¢léments de p"~"/p'" (pour i< j) qui se
‘ réduisent 4 0 modulo p’ est égal a g*i.

Il en résulte que le nombre de matrices dans le module quotient (5) qui modulo p’
se réduisent en une matrice donnée comme ci-dessus est égal a

2 inf(uippkiky — X kik;
15i,jst 1s5isjs1

q

Multipliant ceci par le nombre de matrices possibles modulo p’ fournit bien le
théoreme 2. 11.

i § 3. La fonction Z d’une Q-algébre semi-simple

Soient A une @-algebre semi-simple, m le nombre de composantes simples de A.

Dans ce paragraphe, nous allons associer & A une fonction Z“#(s) de m variables

‘ complexes, qui s’exprime comme produit eulérien des fonctions locales associ¢es aux
} algébres simples sur les complétés des corps de nombres aux places finies. Ces diverses
} fonctions sont liées aux fonctions zéta correspondantes.
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On conserve les notations du paragraphe 2. En particulier, O est un ordre
maximal de 4, la lettre P désigne toujours un O-module projectif de type fini, et la lettre
G un D-module fini. Si u,ve R™, la notation “u>v” signifie que Vi, u;>v;, et l'ex-
pression u — oo signifie que Vi, u; — co.

Nous avons vu (théoréme 2. 10) que le nombre d’homomorphismes surjectifs de P
dans G ne dépend de P qu’a travers son rang u(P). Cela justific la définition suivante:

Definition 3.1. (i) Soit u le rang d’'un O-module projectif de type fini P. On
pose

5,(G
et w(G)= i 580

5,(G)=|Homg (P, G) A _(G)l Gl
o

(i) On pose

s |
W, (G)=w(G)= lAut?(i(i)i )
)

Les rangs u de ©O-modules projectifs de type fini, ainsi que oo, seront appelés
multi-indices admissibles.

Noter qu’il résulte encore du théoréme 2. 10 que:

wy, (G) = lim w,(G),

U= x
ce qui justifie la notation.

Proposition 3. 2.  Soient P un O-module projectif de rang u et G un O-module fini.
Alors

. (O~ (| — | A
{Q < P:P/Q=G}|=|G|*w,(G),
ou la notation Q < P signifie que Q est un sous-O-module de P, et ou I'isomorphisme est un
isomorphisme de O-modules.

Démonstration. L’ensemble des Q< P tels que P/Q=~G est en bijection avec
I'ensemble des noyaux des homomorphismes surjectifs de P dans G. Or, deux tels
homomorphismes surjectifs ¢, et ¢, ont méme noyau si et seulement si il existe un
automorphisme o de G tel que

Pr=0°@y.
Le cardinal cherché vaut donc

s.(G)/|Aut (G,

d’ou la proposition.
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Proposition 3.3. Soient G, et G, deux O-modules finis. Pour tout u admissible,
on a:

Y w(G){H<=G:H=G, et G/H=G,j|=w,(G)w,(Gy).
G/~
(La notation G/~ signifie que G est pris a O-isomorphisme prés.)

Démonstration. L.a somme étant finie, le cas u= oo résulte du cas u= oo, par
passage a la limite. Si u= oo, soit P un O-module projectif de rang u. Comme dans
[C-L], théoréme 3.5, on compte de deux fagons différentes le nombre de couples
(Py, P,) de sous-modules de P avec

P/P,~G, et P,/P;=G,

en utilisant la proposition 3. 2.

* Définition 3. 4. Pour tout multi-indice admissible u et tout idéal maximal
p < Zk,, on pose, sous réserve de convergence:

Z; P (s)= ), w(6)IG|™*

u
G|~
(ou G parcourt les classes d’isomorphismes annulées par une puissance de p), et

ZMs)= ) w,(G)|G|*

| G/~

ouseC™

Remarque 3.5. 1) A priori, on devrait écrire Z»% et Z;> 4 la place de Z;"" et
Z2. Nous verrons ci-dessous que ces définitions ne dépendent pas de 'ordre maximal O
de A que I'on choisit, ce qui justifie les notations.

2) On écrira souvent Z4?(s) et Z4(s) a la place de Z%'*(s) et Z4 (s). De plus, si
cela ne préte pas a confusion, nous omettrons l'indication de la ¢D-algebre A dans la
notation.

Théoréme 3. 6.  Sous les hypothéses de la définition 3. 4 on a:

(i) Z:: (s)= H (1 _(Np)—(his,-+jdl.)p)).._1.

1=jsh,pui

m

i) Z,s)=1[] [] Zis) pour Re(s)>0.

i=1 pcZk;

1 (iii) Siu et v sont admissibles:
| Z3.,(8)=Z5 (s +w) Z3(s),
Zyy(8)=2,(s+u)Z,(s)

et en particulier

1 Z,(8)=2(3)/Z(s+u).

32 Journal fiir Mathematik. Band 404
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Démonstration.  On peut procéder exactement comme dans le paragraphe 3 de
[C-L]: on établit une formule pour s,,,(G) qui, combinée avec la proposition 3.3,
démontre (iii). Puis on calcule explicitement Zi,,(s), ce qui donne (i), et (ii) en résulte
par linéarite.

Toutefois on peut raisonner tout a fait autrement: avec les notations du théoréme
2. 11 on voit que la classe de O-isomorphisme de G est caractérisée par la donnée des
couples (u;, k)i <<, et la donnée supplémentaire de g= N p?» détermine |Autg(G)|.

D’autre part la formule pour le nombre s,(G) ne fait intervenir que u,l; , et

li o1 (G hn—z k;.

ji=1

Enfin, |G| :cl(z"f"f)""". On a donc:

(6) Z;'”(S) x p”|, ;. nbl(q)
ou (v),(v Z k;), = 2 inf (ues my)kik; —s Xk;
Fo@= Y —AvTLMe i Fbani
120 I—[ (kj q
=js Jj

Posons f(z)=F, ((1/z). Si v>0 et Re(s)> —1, il est immédiat de vérifier que f est une
fonction holomorphe de z dans le disque ouvert |z| <1 et que f(0)=1.

Or le corollaire 3.7 de [C-L] nous dit que Z*(s)=/(1/p)= [] (1—p i %!
pour p premier. l=jsv
La fonction g(z)= [] (1—z/")"" est clairement holomorphe pour |z|<1 si
1= v
v>0et Re s> —1, et égale a f(z) sur I'ensemble non discret formé de 0 et des inverses

des nombres premiers. Elle est donc égale & f(z) pour tout |z| <1, ce qui donne

F, @)= [] (A—z79771

1jsv

En remplagant v, s, z par [, u;, [; ,s; et Np~%» on obtient le théoréme 3. 6 (i), et le reste
du théoréme en découle dxsement.

Remarque 3.7. La démonstration ci-dessus permet également de ne pas se
préoccuper de problémes de convergence. Par exemple on voit aisément que

m

Zi ()< [T1Z%(hi Re(sy)!.

i=1

1
Corollaire 3. 8. Soient K un corps de nombres, et u € Y N. Alors
i

Z,0(s)=Zy, (hs),
et en particulier,

ZMn &) (5)= ZXK(h5),

i
|
|
|
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C’est une conséquence immédiate du théoréeme 3. 6 puisqu’on a ici m=1, [, =h,
d,=1 pour tout p.

Corollaire 3.9. Posons 1=(1,...,1)

(i) Z4(s)=[] lals +k1)
k=1

ot par abus de notation on a écrit {,(s) a la place de || {,,(s;)-
i=1
(La fonction {,(s) telle qu’elle est définie habituellement est une fonction d’une seule
variable complexe s et vaut { (s - 1) avec nos notations.)

‘ Démonstration. En changeant j en [; ,—j, on voit immédiatement que le facteur
‘ local Z{**(s —1) vaut [T (1—(@p) ®simidi)=1 ce qui est bien le facteur local
\ - 0= jSlp-1

|

de {,(s) (voir [Deu]), d’ou (i).

Pour (ii) on remarque que le théoréme 3. 6 (iii) implique par récurrence que
=1
Z4(s)= < ITZ,(s+ kl)) ZA(s +rl)
k=0

:<ﬁ Lals +k1)> ZA(s +rl),

k=1
d’ou (i) puisque lim Z4(s +r1)=1. Remarquons d’ailleurs que la convergence absolue
pour Re(s)>0 du produit infini [] {,(s +k1) provient du fait que

k21

Las+kl)=14+0Q275).

Proposition 3. 10. (i) Ona

1= j=Shiu

1 Zi(s)= ﬁ |: 11 CK.-(hiSi‘*‘j)Ei_Ja
‘ i=1

o

(1 _(Np)“(hisi+j))

\ pcK.-E[f,pn (1 — (Np)~usitidip)

(le produit eulérien E; est un produit fini).
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(ii) Les fonctions Z(s;) possédent un prolongement méromorphe a C tout entier.
Leurs poles sont parmi les rationnels négatifs ou nuls de dénominateur divisant h;. En
particulier le pole en s; =0 est simple, de résidu

1 [ (-avp)
C’ﬁi _ C:\," 1=j=hiu;
l hi o pe KiI}i,n>j n (1_(Np)7j(li"')

1)l pui

avec Cf =Res,—y () [ Cx()-
2=5jsk
Démonstration. (i) résulte immeédiatement du théoréme 3. 6. Pour (ii), on re-
marque que I’énoncé est clairement vrai si u# oo d’aprés le prolongement analytique des
fonctions { de Dedekind; pour u= o0, il suffit d’utiliser le corollaire 3.9 (ii) puisque le

produit infini converge normalement sur tout compact inclus dans le complémentaire
des pdles des fonctions (4, (s; + k).

§ 4. Les fonctions Z (f, s)

On conserve les notations des paragraphes précédents.

Soit y une fonction définie sur I'ensemble des classes d’isomorphisme de
O-modules finis G.

Définition 4. 1.  On dira que p est de type w si yp n’est pas identiquement nulle, et
si pour tout couple (G,, G,) de O-modules finis on a

Y w(G){HcG:H=G, et G/H=G,}|=p(G,)p(G,).

G/~
Par exemple, d’aprés la proposition 3. 3, les fonctions w, pour u admissible, et en
particulier la fonction w=w_, sont de type w, d’ou I'appellation.

Deéfinition 4. 2. Soit yp de type w, et soit a une fonction définie sur les classes
d’isomorphisme de O-modules finis. On appelle yp-série de Dirichlet associée a a la série

- p(G)a(G)
ér~ 1GI*

sous réserve de convergence. En particulier on pose
Z(a,5)=2,,(a,s) et Z(a, s)=Z,(a, s)=2Z,(a, s).

Remarquons qu’en regroupant les O-modules de méme cardinal on obtient une série de
Dirichlet ordinaire. Toutefois, il est plus naturel de ne pas les regrouper (comme par
exemple on ne regroupe pas les idéaux de méme norme pour les fonctions zeta de
Dedekind), mais de les considérer comme un type particulier de serie de Dirichlet pour
lequel il faut décrire des régles de calcul. La structure de C-espace vectoriel est évidente
mais la structure d’algebre I'est un peu moins:

|
|
|
|
|
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1 Définition 4. 3. Soient a et b deux fonctions définies sur les classes d’isomor-
\ phisme de O-modules finis. On appelle O-convolution de a et b, notée a * ob, la fonction
! deéfinie par:

(@xob)(G)= Y a(G)b(Gy)[{H<=G:H=G, et G/H=G,}|.
G/~
Gaf~

On a alors:

Proposition 4. 4. Soient y de type w et a et b deux fonctions définies sur les classes
d’isomorphisme de O-modules finis. Sous réserve de convergence, on a

Zw(a * Db5 _S) = ZU)(aa ‘_S‘)Z,p(ba 35)

Démonstration immeédiate.

On voit donc que le produit de y-séries de Dirichlet en est encore une de fagon
naturelle.

Exemples 4. 5. Soient y de type w, et G, et G, deux O-modules finis. Alors:
() Sif(G)=|{H=G:H=G, et G/H=G,}|,ona

(G,) v(G,)
Zw(fs s) =£~;—--»:177 ,,/((; '2{ )
I 2

(i) Sif(G)=|{HcG:H=G}| ou f(G)=|{HcG:G/H=G}|,ona

‘ ou lon écrit Z,(s) a la place de Z,(1, s) (noter que la notation Z,(s) est bien
‘ compatible avec celle donnée au paragraphe précédent).

(i) Si f(G)=|{H<G}

le(fa :S): Z;(_‘)

Les démonstrations sont immédiates.
Le théoréme suivant est important pour la suite.

‘
; Théoréme 4. 6. Soient v de type w, u un multi-indice admissible, P un O-module
\ projectif de rang u, et G, et G, deux O-modules finis.
i
1

(i) Sous réserve de convergence, on a
Z Jé}ltﬁ‘r(G)Iwu((;)lp((;) o Zl/)(:s)
G/~ |GI* Z,(s +u) .

33 Journal fir Mathematik. Band 404
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(i) Pour f(G)=|{gp € Homg(P, G): G/Im @ =G, }|, on a
L

r . l/)((Ivl) Zl/(‘l__l_{)
z,(f =20t Lot
! I(Il 'LV Zq‘(»i\j)
(iii) Pour f(G)= ¥ HH<=G/Im¢g:Hx~G, et (G/Im ¢)/H =~ Gy} ona

@ eHomo (P, G)

_v(G) v(Gy) Z,(s—u)

Z,(f, 5= 220 ¥(Ga) Zyls —u)
' 1Gi[* Gl Z,(s)
(iv) Pour f(G)= > {H<G/lmo:H=G,}|, ona
@eHomgp (P, G)
p(Gy)
|/>(fa j):[agl_\,_7 q;(S __l)

Démonstration. Posons provisoirement

Zyu(8)= 3 'A”to(G)llG‘«;f<G)l/)(c)

Nous allons démontrer (i), (iii), (iv) avec Z, (s —u) a la place de Z,(s —u)/Z,(s) (et
donc Z,(s)Z,, (s —u) a la place de Z,(s —u) dans (iv)), puis nous en déduirons (i), ce
qui fournira les formules finales du théoréme. Pour montrer (i), on effectue une
sommation sur les ¢ dimage G’ donnée a isomorphisme pres. On obtient:

Z,(f.s)= Y %(—;;—SE(G’)I{HCG:H;G’ et G/H=G,)],
G,G'|~ 1|

et on conclut par 4. 5 (i).

Pour prouver (iii), on effectue une sommation sur les classes d’isomorphisme de
quotients G/Im ¢. On obtient:

Z,(f,s)= ) {HcG':Hx~G, et G'/H=G,)}| > GF Ho:G/Imp =G},
G/~ G/~ -

et on remplace la somme intérieure par sa valeur calculée en (i), puis on utilise a
nouveau I'exemple 4. 5 (i) (c'est-a-dire le fait que p est de type w). Enfin par sommation
de (iii) sur les classes d’isomorphismes de G,, on obtient (1v), sous la forme suivante:

Zl/}(.f(ip ‘i) = ULGI) Zu)(‘_S‘)Zu,w(é _Ll)

| 1"

avee

f6,(G)= )  |{H<cG/Imp:H=G,}.

@eHom(P, G)
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Dans cette formule, prenons G, = {0}. D’ aprés la définition 4. 1, on vérifie immédiate-
ment que 1 ({0})=1. On a donc

Z,(fiop 8)=2,(8)Z,, ,(s —u).
Par ailleurs, il est clair que par définition,
fi0,(G) =|Hom (P, G)| =|G|* (théoréme 2. 6),
donc que Z ,(fop 8)=Z,(s —u), dou (i) et le théoréme 4. 6.

Remarque 4.7. 1) On peut démontrer (i) directement sans difficulte.

JAuty (G)) w,(G) p(G)
G/~ IG*
série Z,(s). Il en résulte que si Z,,(s) converge absolument pour Re(s)> g, il en est de

2) La série Z, ,(s)= est majorée en module par la

i

méme de Z, ,(s), et de plus que

u,yp

hm Zu,l/)(ﬁ) = Zgg,w(‘i): Z(p(‘_s‘)’

u =

ce qui d’ailleurs est clair d’apreés (i). On en déduit en particulier:

Corollaire 4. 8. Posons Z, ,(s)=Z, ,(s). Alors, la série définisant Z, ,(s) converge
pour Re(s)>0et on a

Z,(s)  Z,(s)  Z,(s)Z,(s)
Zy(s+u) Zs+p)  Zy,s)

Z, ,(s)=

Démonstration. Nous venons de montrer I'assertion de convergence. La premiére
égalité n’est autre que le théoréme 4. 6 (i). La troisiéme résulte du théoréme 3. 6 (iii), et
la seconde par symétrie. Noter que cette symétrie n’est pas évidente a priori.

Pour terminer ce paragraphe nous démontrons un résultat qui, pour f=1, se
réduit au corollaire 3. 8.

Théoréme 4.9. Soient K un corps de nombres et [ une fonction définie sur les
classes d’isomorphismes de Z-modules finis; soit F la fonction analogue relative a l'ordre
O =M, (Zx) qui, pour tout n-uple (a,,..., a,) d’idéaux non nuls de Zy est telle que

a; - -a, n
F<Mh,n(ZK)/< : ’ >> :f<® ZK/ai>
ay a i=1

n
(ceci a bien un sens puisque les O-modules finis sont décrits a isomorphisme prés par des

1
quotients de M, ,(Zx)). Alors, pour tout u multiple de Lona

ZY"O(F, $)=Zy,(f. hs).
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Démonstration. Soient G un Zg-module fini, P un Zx module projectil de rang
v="hu. A G on peut associer un O-module fini & comme ci-dessus et tout O-module fini
s’obtient de cette fagon. De méme, si

1)

12

v
@ q
i=1

on peut lui associer

ag - q,
B :< : : ) (h lignes).

al...a

v

Comme dans la proposition 2.9 on vérifie que Homy (P, ®) est canoniquement

: \ [% . ; T

isomorphe a Homj (P, G). Comme u(iB)zl—zu et |®|=|G|", on obtient immédiate-
h

ment le théoréme 4. 9.

§ 5. Valeurs moyennes

Dans ce paragraphe, on conserve les notations des paragraphes précédents.

Définitions 5. 1. Soit f une fonction a valeurs complexes définie sur I'ensemble
des classes d’isomorphisme de ©O-modules finis, soient u et v deux multi-indices
admissibles, et soit P un O-module projectif de type fini de rang u.

On appelle valeur moyenne de f (pour u et v) la limite suivante, si elle existe:

16 Y wy(G) f(G/Im )

. . |Gl =x @ e Hom(P, G)
M, ,(f)= lim 0
S 3 AT T W)
|Gl=x @ eHom (P, G)

(la notation |G| < x signifie que pour tout i, |G;] < x;). En particulier on pose
M, (f)=M,, ,(f) (valeur moyenne de f pour u).

On remarque que si f est constante, ces valeurs moyennes coincident bien avec
cette constante. D’autre part d’aprés le théoréme 2. 6, le dénominateur peut s’écrire plus
simplement

Dans les applications, on aura toujours

M,(f)=lim M, ,(f).

2= ®
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En fait, seule la moyenne M,(f) nous intéressera vraiment, et lorsqu’il s'agira de
groupes de classes, u sera impos¢ (ce sera le rang d’un groupe d’unités).

Malgré l'absence d’additivité dénombrable, on convient de parler de “(u, v)-
probabilite” lorsque f est la fonction caractéristique d’une certaine propriété.

Nous rappelons le lemme taubérien suivant (voir [C-L] pour une forme
équivalente).

Lemme 5. 2. On suppose que A est une algébre simple. Soit ¢ une fonction a
valeurs réelles positives ou nulles, définie sur les classes d’isomorphisme de O-modules
finis.

Supposons que la série

D(s)= ), ¢(G)IG|™*

G/~

soit convergente pour Re(s)>0, et qu'il existe une constante C e C telle que D(s)— C/s
posséde un prolongement holomorphe sur un voisinage du demi-plan fermé Re(s)= 0.
Alors, quand x — oo,

Y. ¢(G)~Clogx

|Gl =x
(si C=0, ceci signifie que Y. ¢(G)=o(logx)).
|Gl =x

Définition 5. 3. Pour tout multi-indice admissible u = (u,, ..., u,,), on pose

ci=1I ci
i=1
ou Cyi est le résidu en s =0 de la fonction Zgi(s), donné par la proposition 3. 10 (ii).

Proposition 5. 4. Quand x — o0

w,(G)~Cd [ logx;.

|Gl=x i=1

En effet on se raméne au cas ou A est simple, et dans ce cas la proposition résulte
de la proposition 3. 10 et du lemme 5. 2.

Remarques 5.5. 1) En raisonnant différement (i.e. sans utiliser de théoréme

taubérien), on peut obtenir un résultat avec reste et non un simple équivalent. Nous n’en
aurons pas besoin ici.

2) Par définition, |G| <x signifie que pour tout i, |G| <x; donc, puisque w,(G)

est multiplicative sur les facteurs simples, la somme Y w,(G) est tout simplement le
[Gl=x

produit des sommes analogues sur les facteurs simples. Il en aurait été tout autrement si

Pon avait écrit )’ w,(G) avec x a une seule variable.
1G] =x
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Nous ne savons pas quel est 'équivalent dans ce cas.

Le théoréme fondamental qui va nous permettre d’effectuer les calculs explicites
qui interviennent dans les formules heuristiques décrivant le comportement asympto-
tique des groupes de classes est le suivant:

Théoréme 5.6. Soit f une fonction définie sur les classes d'isomorphisme de \

O-modules finis, positives ou nulle, et multiplicative par rapport aux facteurs simples de
m

U'algebre (i.e. telle que f(G)= “ f(e;G); on note fy, ..., fu les fonctions attachées aux
i=1

Sacteurs simples). Supposons que l() séries ZJ( [, s) convergent pour Re(s)>0 et qu'il

existe des constantes C; telles que Z2(f, s)— Cy/s possedent un prolongement holomorphe

dans un voisinage du demi-plan Re (s )>0 Alors:

(i) Quels que soient les multi-indices admissibles u et v, on a

M D=0 28 |

et en particulier si pour tout i, u;>0:

s (o)

, Muu(/):—z ( )

(il) Quel que soit le multi-indice admissible u, on a

ZA(f, 5)
M =1 o
u( / ) bs_lr»lu ZA( ) b ;
|
et en particulier si pour tout i, u;>0: j
N 2w
M T
M ="Zaw)

Démonstration. Toutes les assertions découlent trivialement de la premiére ‘
assertion de (i). Il est clair également qu’il suffit de se restreindre au cas ou l'algebre A |
est simple. Dans ce cas on peut écrire (cf. définition 5. 1): ‘

N (x) f
u,v(f) S D( ) i

Nous avons vu que D(x)~ Clogx, ou

CA=Res,— o Z2(s)= lim SZMs+u)Z2 ,(s)

d’aprés le théoréme 3. 6.
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D’autre part la série de Dirichlet associée au numérateur vaut

e)=Y Y f(G/Ime)w,(G)|G] >

G~ o
= ¥ T l{o:Gimo=G}iw, ()61
Gi/~ G|~
=(Y GGG ) Z, (9
Gy~

d’aprés le théoréme 4. 6 (ii); donc, @(s)=Z2(f, s+u) Z2 ,(s).

|

} Or, on remarque que le lemme taubérien 5.2 peut s’appliquer a la série ¢(s): en
1 effet, si u=0, Z;,(s)=1, donc 'hypothése du théoréme équivaut a celle du lemme (i.e.
on a un prolongement, mais surtout un pdle au plus simple en s=0), alors que, si u >0,
Z1(f, u) existe, et Z2,(s) a un pdle simple (si v >0). On a donc

N(x)~N -logx,

ou

u,v

N =Res;_q@(s)=lim sZA(f, s+u) Z2 (s).
s 0

On en déduit immédiatement le théoréme.

Ceci termine les longs préliminaires combinatoires et analytiques qui nous
permettront de faire des calculs explicites utiles. Nous allons maintenant aborder la
partie heuristique de cet article.

§ 6. L’hypothése heuristique fondamentale

Nous allons montrer dans ce paragraphe comment on peut de fagon naturelle
généraliser les heuristiques de [C-L]. Rappelons celles-ci briévement dans le cas d’une
extension quadratique de @. On définit la moyenne d’une fonction f définie sur les
classes d’isomorphisme de groupes abéliens finis par la formule:

ou Cl' désigne la partie impaire du groupe des classes d’un corps quadratique K, les
corps K parcourant soit 'ensemble des corps quadratiques imaginaires, soit I’ensemble
des corps quadratiques réels (bien entendu les moyennes ainsi obtenues seront en
général distinctes). Une reformulation des hypothéses heuristiques et des résultats de
[C-L] est que M(f)=M{>(f), ou u est le rang du groupe des unités de K (0 dans le
cas imaginaire, 1 dans le cas réel; voir la définition 5.1 et I'hypothése 6.6 pour M > (/).
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Nous allons généraliser ceci non seulement & des extensions quelconques de @
(galoisiennes ou non) au lieu d’extensions quadratiques, mais également au cas ou le
corps de base m’est plus @ mais un corps de nombres quelconque K,. Dans ce cas,
Pobjet intéressant a étudier est le groupe des classes relatives Cly g, forme des classes
d’idéaux de L dont la norme est triviale (i.e. principale) dans K.

Soit donc L/K, une extension finie de corps de nombres de degré n, de cloture
galoisienne K/K,. Posons I'=Gal(K/K,) et I''=Gal(K/L)

K
| )17
Lo

n |

K

0

A Textension L/K, est associée une représentation de permutation définie a isomor-
phisme prés par son caractére rp;-. Ce caractére contient une fois exactement la
représentation unité, et nous posons

Apjp =Ty — 1 (caractére d’augmentation).

D’autre part & tout caractére  de I', on associe un idempotent e, par le procédé
sutvant:
{OIRS
Il et
e, =y ¢ oula sommation porte sur les caractéres absolument irréductibles contenus

Si y est un caractére absolument irréductible, on pose e, = x(s™1)s, puis

x . o, . . ’ . . N N
dans . Cette définition sera appliquée en particulier dans le cas ou y est le caractére
d’augmentation ay .

Nous verrons au paragraphe suivant comment le groupe Clp ., est relic au groupe
Carsr Clgo» €Xpression qui n'a de sens que si I'on convient d’enlever de Clg, les
p-composantes correspondant aux p qui apparaissent dans le dénominateur de
Pidempotent. Ceci permet de se ramener a une situation galoisienne, et nous allons donc
généraliser les heuristiques de [C-L] a des groupes eClg, convenables. Ceci conduit
aux définitions suivantes.

Nous nous donnons un groupe fini I', un idempotent e du centre de A=@Q[I'] et
un corps de nombres K,. Nous reprenons les notations du paragraphe 2; en particulier
O désigne un ordre maximal de A contenant Z[I']. Pour p premier, nous notons
Zpys Ogpys -+ les localisés en p de Z, O, ....

Définition 6. 1. On dit qu'un nombre premier p est bon pour e si, pour toute
composante irréductible e’ de e, on a:

(1) (?/ € Z(p) [_IJv

(i) ' Z,y[I'] est un ordre maximal de A relativement a Z,,

et qu’il est mauvais pour e dans le cas contraire.
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On dit que p est bon pour un caractére y il est bon pour I'idempotent e, associé

.
=

Définition 6. 2. Ftant donnés un O-module fini G et un ensemble S de nombres
premiers, on note G® la partie de G premiére a S.

La condition (i) de 6. 1 permet de définir le produit e-x lorsque x est un élément
de la p-composante d’'un Z,[I']-module fini quelconque (par exemple, un groupe de
classes). La condition (i) permet d’utilisir les résultats combinatoires et analytiques des
paragraphes précédents.

Soit maintenant K une extension galoisienne de K, de groupe de Galois I".

Convention 6. 3. Etant donnée une extension galoisienne comme ci-dessus, on
convient, lorsque I'on considére un groupe eCI§ k., que S contient les nombres premiers
f mauvais pour e.

Définition 6.4. (i) On appelle e-rang du groupe des unités de K, et on note
1g.(K), le rang du O-module (@ ®, Ex), au sens de la définition 2.2, ou E, est le
groupe des unités de K; cest donc un élément de @™, ou m est le nombre de
composantes simples de A.

(i) On dit qu'un ¢élément u de @™ est admissible pour le triplet (K, I, e) il
existe une extension galoisienne K/K,, de groupe de Galois isomorphe a I' et telle que
1g. (K)=u.

Définition 6. 5. Soit u un multi-indice admissible et soit f une fonction définie sur
ensemble des classes d’isomorphisme de O-modules finis. On définit la moyenne de f
relativement au quintuplet (K, I, e, u, S) par

i Z f(@CIi/KO)
| IMS(f) = lim L= ,
X o Z 1

ldx|sx

] ou les sommations portent sur les extensions galoisiennes K/K, contenues dans une
cloture algébrique donnée de K,, ayant un groupe de Galois isomorphe a I' et un
e-rang €gal 4 u. Cette moyenne dépend bien sir du choix de S, mais le plus souvent
nous prendrons pour S I'ensemble des mauvais nombres premiers.

L’hypothese heuristique fondamentale est alors la suivante:

Hypothése 6.6. Soit e un idempotent central de @[I'], orthogonal a lidem-
potent e, =~—~—1—;~- Y 5. Soit S un ensemble de nombres premiers contenant ceux qui sont
mauvais pour e, et soit enfin ¥ un multi-indice admissible. Alors, pour toute fonction f
“raisonnable” définie sur 'ensemble des classes d’isomorphisme de Og-modules finis, on a:

M (f) =M (f),
ou M7 (f) est définie ci-dessus (définition 6. 5) et ME(f)=M,(fs), ou M, est définie en

‘ 5.1 et fg est la fonction définie par
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(Il revient au méme de restreindre G a des O-modules finis premiers a S dans les
sommations de la définition 5. 1, cf. [C-L], proposition 5. 6 et 5.7.)

Commentaires et remarques. (i) De méme que dans [C-L], nous ne pouvons
préciser la notion de fonction “raisonnable”: il faut certainement se restreindre aux
fonctions vérifiant le théoréme taubérien 5. 6, ce qui est le cas des fonctions intéressantes
en pratique.

(i) La valeur, et méme lexistence de la quantite M (f) figurant a gauche de
P’égalité 6. 6, est inconnue pour presque toutes les fonctions. En revanche, le membre de
droite est de nature combinatoire et analytique, et peut se calculer dans la pratique en
utilisant les résultats des paragraphes précédents, exactement comme dans [C-L].

(i) Comme les fonctions raisonnables au sens du théoréme 5. 6 sont multipli-
catives sur les facteurs simples, les calculs de moyennes se raménent tout de suite au cas
ou e est irréductible. Tl est clair que Iidempotent e, doit étre exclu: en effet, les mauvais
p sont alors exactement ceux qui divisent 'ordre de I', et le groupe e, CI3 k, est réduit a
Pélément neutre. (En général Iensemble des mauvais p est seulement contenu dans
Pensemble des diviseurs de |I'], cf. proposition 7. 1; toutefois les bons p divisant |I'l
posent des problémes particuliers, cf. 8. a).

Dans la pratique, pour appliquer I'hypothése heuristique fondamentale a une
classe de corps donnée, on procéde de la fagon suivante:

1) Dans le cas ou il sagit d’'une classe d’extensions non galoisiennes L/K,, on
essaie de comparer Clyx, @ un groupe du type eClgy, ou K parcourt I'ensemble des
clotures galoisiennes des extensions de la classe considérée, en utilisant des méthodes
décrites au paragraphe suivant. (Le groupe I est donné a isomorphisme prés comme
groupe de permutation, et I'on s’impose en outre les classes de conjugaison des
Frobenius a l'infini.)

On s’occupe maintenant de tels groupes; le cas le plus intéressant est celui ou e
est irréductible dans @[I'] (ce qui rend inutile les multi-indices).

2) On détermine les p qui sont bons pour e, et on choisit un ensemble S
contenant les mauvais p, le plus souvent I'ensemble des mauvais p lui-méme.

3) Le choix de u est maintenant dicté par le comportement des places a l'infini
dans les extensions considérées, grace au théoréme de Herbrand dont l‘énonce est le
suivant (voir [A-T] pour une démonstration):

Théoréme 6.7 (Herbrand). Soit K une extension galoisienne finie de K, de groupe
de Galois T'. Pour chaque place infinie v de K, soit I, (défini a conjugaison prés) le
groupe de décomposition d’une place de K au dessus de v. Alors, le @Q[I']-module
@ ® Ex a pour caractére

' xg=—1+) Indf (15).
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Soit alors y un caractére de I' irréductible sur @, et soit ¢ une composante
absolument irréductible de y. Le caractére du module V=e, (@ ® Ey) est égal a

Y Ly x> @=L, 1> %

?lx

(ceci est indépendant de ¢). Identifions e, @ [I'] a une algébre M, (D), ou D est un corps
gauche de centre K, de rang r? sur K. Soit K’ un sous-corps commutatif maximal de D.

On a:
dimg. (K’ ®q V) =hryg, ¢,

donc dimy (K’ ®¢ V)= hr*{yg, ¢, d’ou d’aprés la définition 2. 2:

(. , !
U= e dimg (K’ ®g V) =% s @O
1
= (2 () p(S)].
< hir| Sezl‘yl()p ))

4) Les résultats heuristiques obtenus sur eClg, ne sont en général pas suffisants
pour obtenir ce que l'on cherche sur Clj g . Nous devons faire une hypothése
supplémentaire d’indépendance de moyennes pour parvenir au résultat final.

L’exemple ci-dessous va clarifier ce que nous voulons dire.

Exemple 6.8. Corps quartiques totalement réels de type diédral. Soit L/ de degré 4,
a cldture galoisienne K, de groupe de Galois I' diédral (d’ordre 8); L est fixé par un
sous-groupe I'={l, 7} non distingué¢ d’ordre 2, et contient un unique sous-corps

quadratique, noté k; le diagramme ci-contre résume la situation (noter que L et I
ont un corps conjugué sur @ distinct d’eux-mémes).

L

k kq
N
K

L/

K
I
B
/1N

Il =

8]
\«t

(=]

On écrit I'=<{0,1) avec t?=0*=1et to1 ‘=0 .

Le caractere ap,. est de degré 3, somme de deux caractéres absolument
irréductibles ¢, de degré 1, et y, de degré 2; I'idempotent e qui lui est associé est de la
forme 4/8 avec Ae Z[I'], et 2 est 'unique nombre premier mauvais pour e (et il I'est
cffectivement pour e, e, et e,). On choisit S = {2}.

Si Kgckc L est une tour d’extensions, on montre immédiatement que 'on a la
décomposition

Cli/K(, = Cll;:/k @ CIE/K()
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dés que S contient les diviseurs premiers de [L:k]. Il en résulte que I’étude heuristique
de CI¥ se raméne 4 celles de CI{ et de Clj,. La premiére est classique ([C-L], §9, IT;
[C-M1], §2, (1.2)). Pour la seconde, on vérifie sans difficulté que le Z-module eXCl‘f(
est isomorphe au produit CI3, x Cl3, (cf. §7, ou utiliser Papplication qui au couple
(a, b) d’idéaux de L associe le produit agb étendu a K).

i
L’algebre e, @[I'] est isomorphe a M, (&). Posons D=Z[~2-] et O = M,(o). Les

groupes e, Cly et e, (O ®;r Ex) sont des O-modules, dont le dernier est de rang 1 d’apres
le théoréme de Herbrand (on a h=2, yy=r;p—1, donc {xz, @)= yp, x> =x(1)= 2).
Notre hypothése heuristique fondamentale nous dit donc que si F est une fonction définie
sur les classes d’isomorphismes de O-modules finis, on devrait avoir M3 (F) = M (F)
(“O-moyenne”). Or tout O-module G est de la forme gxg pour un o-module g
convenable. Ainsi, pour G=e,Cl§, on peut prendre g=Cl3,, qui est justement le
groupe que nous voulons étudier.

Comme dans le théoréme 4.9, a toute fonction F comme ci-dessus, on peut
associer la fonction f définie sur ensemble des classes d’isomorphismes de o-modules
par f(g)=F(gxg). D’aprés ce théoréme, on a

M3 (F)=M3(]).

Enfin, la quantité qui nous intéresse, que nous noterons IMS(f) est égale a

Z f((:li/k) Z Ffe, Cl13)
i dLsx = lim dr. £x B
e Y R SRl
dL=x dr.=x

(K étant déterminé par L). Il est alors nécessaire de supposer que cette derniére limite
est egale a
Y F(e,CI3)

dg =x

MY (F) = lim
)= Jim
dg =x
(ou on somme sur dg au lieu de d;). Ceci revient essentiellement a supposer que le
comportement du groupe des classes relatives de L/k est indépendant du corps
quadratique (réel) k choisi.

Dans ce cas précis, une justification est fournie par 'argument suivant: pour k
fixé, les extensions quadratiques L/k telles que L/@ soit de type diédral sont de densité
1 parmi toutes les extensions quadratiques de k([B]). On peut donc appliquer
hypothése heuristique fondamentale directement a I'ensemble des extensions quadra-
tiques totalement réelles de k.

La conclusion de cette discussion est donc que I’hypothése heuristique raisonnable
a faire pour les corps quartiques totalement réels de type diedral, est que

M (f)=M3(f),

ce qui correspond bien & ce qui est annoncé dans [C-M2], § 6. 4.
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[On notera que les résultats sont les mémes pour L/k et L'/k’. 1l en est de méme
quand K est imaginaire, ou 'on a I'une des deux situations suivantes: k et k' réels, L et
Ll totalement imaginaires, ou bien k et L imaginaires et k' réel et L' de signature mixte
(a échange pres de (k, L) et (k’, L')). La discussion est analogue au cas totalement réel,
sauf quici le rang de Eg sur M,(Z) est 1/2 dans le premier cas et 0 dans le second. Des
calculs de Lakein ([L]) lorsque k est imaginaire confirment nos conjectures.]

§ 7. Classes relatives et idempotents

Dans ce paragraphe, K désigne une extension galoisienne finie d’un corps de
nombres K, I' son groupe de galois, I'" un sous-groupe de I', et L la sous-extension de
K fixe par I"". On note ¢ I'idempotent associ¢ a la représentation d’augmentation a,,-,
et on se donne un ensemble S de nombre premiers contenant ceux qui sont mauvais
pour e.

Nous désirons comparer les groupes eCl§ i et CIf . Pour cela, nous comparons
d’abord eCl§, au groupe des classes “ambiges” (Clyx,)"", puis nous démontrons
Pégalite entre CIj g, et (CI} )" dans certains cas de produits semi-directs qui incluent
en particulier tous les degrés <4 de [C-M 2] (I’égalité n’est pas vraie en général).

Auparavant, nous donnons quelques résultats concernant les bons p, justifiant les
choix faits pour I'ensemble S dans tous les cas traités dans [C-L] et [C-M2] (dans le
cas du groupe symétrique S5, on utilise 7. 1 (ii)).

Proposition 7.1. Soit y un caractére de I' a valeurs rationnelles et soit By
lidempotent associé.

(i) Si p ne divise pas |I'|, p est bon pour e,.

(i) Si I' est diédral d’ordre 2m avec m impair, et si y ne contient pas de caractére
de degré 1, 2 est bon pour e,.

(iii) Le nombre premier 3 est bon pour les caractéres de degré 3 de A, et de S,.

Démonstration. Le calcul explicite de 'ildempotent montre tout de suite que la
condition e, € Z,)[I'] est vérifice dans chaque cas. Nous allons vérifier que e, 2, 1]
est un ordre maximal en calculant des discriminants dans ZylI'] pour la trace ou
pour la trace réduite selon les cas. Posons n=|I|.

(i) Le discriminant (pour la trace) de la base canonique de Z[I'] sur Z est égal
a +n". Il est donc inversible dans Zy si p ne divise pas n.

(i) On a n=2m; l'exposant de 2 dans le discriminant de Z[I'] est donc égal a
2m. Comme il y a (m—1)/2 caractéres absolument irréductibles de degré 2, le passage de
la trace a la trace réduite divise ce discriminant par 24~ 1/2 =212 et les caractéres de
degré 1 contribuent pour un facteur 22 (a cause de Iindice 2 de Z[g] dans lordre
maximal, ou g est le quotient d’ordre 2 de I'). L’image de Z[I'] dans le produit des
facteurs simples non commutatifs de ¢ [I'] a donc un discriminant impair pour la trace
réduite, et est donc un ordre maximal.
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(i) On fait un calcul analogue a celui fait en (ii). Pour A4,, I'exposant 12 de 3
dans le discriminant de Z[I'] se répartit ainsi dans la décomposition

QIIN=@Q x@Q(3)xM;(@Q):

2 pour Iindice de la partie commutative, 1 pour le discriminant de @(Ls5), et 9 pour le
passage de la trace réduite a la trace dans M;(@).

Pour S,, on a un exposant 24, décomposé en 6 provenant du quotient isomorphe
a S, (calculé en (ii)) et en 2 fois 9 pour chaque facteur simple isomorphe a M;(@), d’'ou
la proposition.

1
Soit G un Z[I']-module fini, et soit A€ @[I']; écrivons ,12;1_ Y. a(s)s, ou les

sel
a(s) sont des entiers dont le PGCD avec m vaut 1. Pour x € G, on définit le produit Ax
lorsque I'une des deux conditions suivantes est verifiée:

(i) Y a(s)sx=0, et alors on pose Ax =0;
(i) m est premier a 'ordre de G.

Etant donné un caractére ¥ de @[I'], la y-composante G,=e, G de G est définie
lorsque e, vérifie I'une des conditions ci-dessus. Lorsquil en est ainsi pour tous les
caractéres irréductibles, on a I'égalité

(7.2) G=PG,

X

(somme sur 'ensemble des caracteres irréductibles de G).

. Nous pouvons maintenant comparer lgs groupes (CI% k)" et.le(/KO (ou e est
Pidempotent associé au caractére d’augmentation ay). Il suffit d’appliquer le théoreme
suivant au groupe CI% g,

Théoréme 7. 3. Soit G un Z[I']-module fini, verifiant les conditions suivantes:

(i) La composante p-primaire de G est nulle pour tout nombre premier p mauvais
pour e.

(i) La composante de G sur le caractére unité est nulle.

(ili) Si y est un caractére irréductible orthogonal a ap et si p divise Pordre de I,
la composante p-primaire de G, est nulle.

Alors il existe un Z[I']-module fini H tel que les groupes (eG), et G, soient
isomorphes respectivement a

H{eer> et H#m2 en tant que Z-modules

pour tout caractére irréductible y de I'. (ap désigne le caractére d’augmentation de I’
lui-méme, égal a ar,.)
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Remarque 7.4. La condition (iii) est conséquence des conditions (i) et (ii) si I" est
diédral et I'" d’ordre 2, ou si I est isomorphe a A, et I'" fixe une lettre.

Démonstration du théoréme. 11 s’agit de construire pour tout caractére irréductible
1 x de G un groupe H, égal 4 sa y-composante et vérifiant les propriétés du théoréme. En
{ décomposant G en la somme de ses composantes p-primaires, on est tout de suite
i ramené au cas ou G est un p-groupe abélien. Traitons d’abord le cas ou G est annulé

par p.

} G est alors un [F,[I']-module (une “représentation de I' sur [F,”). Lorsque p ne
divise pas |I'|, on effectue un calcul de dimensions a l'aide des caractéres. Si V désigne
un [F,[I']-module de caractére y, on a dim V= (Resf(y), 1>, pour tout sous-groupe 4
de I, dot dim V" =<(Rest (x), 1 )r = {x Indf. (1)>, =<y, rreor =% 10+ <% arpror.
Comme V"= (0) on a {y, 1) =0, dou I'¢galité¢ dim V" =y, ar;>.

Appliquons ce calcul en prenant pour V une composante irréductible de G. Si y
n’est pas contenu dans ap;-, on a (eV),=(0)=V", et on peut prendre H,=(0). Sinon,
on a (eV),=V,, et dimV,(1)=<{y, ar). En regroupant les composantes isotypiques, on
obtient le résultat cherché.

Il faut maintenant généraliser ce calcul au cas ou p est seulement supposé bon
‘ pour ap. Or, le fait que eZ,[I'] soit un ordre maximal fait que eV se reléve en un
module projectif sur Z,,[I']. On est alors dans la situation qui est l'objet de la
proposition 46 du § 16.4 de [Ser], ou il est encore possible d’identifier les caractéres de
eZ,[I'] avec des relevements dans @ [1']. Lorsque y est contenu dans ay~, on a encore
dim V, = (1), et la dimension de V', qui se calcule a l'aide du caractére modulaire
correspondant (ibid., § 18. 1, (ix)) est aussi donnée par la méme formule, vu que y est
nul sur les éléments p-singuliers de I' (ibid., cor. a la proposition 46). Lorsque y est
orthogonal a ay, (e V), =(e,e) V est réduit & (0), et V' I'est aussi par hypothése.

Nous devons maintenant revenir au cas général ou l'on suppose seulement G
annulé par une puissance de p. Lorsque la y-composante de G est nulle, il n’y a pas de
probléme puisqu’il suffit de prendre H,=(0). On peut donc se limiter aux caractéres y
contenus dans ar,~. En outre, G étant un module de type fini sur eZ, [I'], il existe une
suite exacte

0->P—->L—>G—0

ou L est libre de type fini sur eZ, [I']. Notant G; le sous-groupe de G annulé par p’,
on en déduit pour tout i des suites exactes

0O—-P—>L,—G—0

dans lesquelles P; et L; sont sans torsion, donc projectifs sur eZ, [I'] puisque eZ,,[I']
est un ordre maximal, et méme projectifs sur Z,,[I"] puisque eZ,,,[I'] est facteur direct
dans Z, [I']. Il en résulte que pour tout i, G; est un Imodule cohomologiquement
trivial, ce qui montre en utilisant la suite exacte |

0—Gi— Gy — Gy y/Gi— 0
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que la suite

00— GI == (’,H (G,-,,,I/G,.)’”—»O

est également exacte, ce qui permet enfin d’identifier les groupes (G, ,/G)"" et Gl /G

De I’étude faite pour les I'-modules annulés par p, il résulte que pour tout i=0 les
nombres des facteurs invariants de eG et de G'" annulés par p' sont dans le rapport
(s apy/<y apyr-» (ou sont tous deux nuls), ce qui assure l'existence de H,, d’ou le
théoreme.

Remarque 7.5. Soit M un eZ[I']-module fini; pour tout p premier, tout entier
i>0 et tout y irréductible, notons M, , le sous-module de la y-composante de M
annulé par p’. La connaissance des facteurs invariants des M, , caractérise M a
isomorphisme prés en tant que eZ[I']-module. En particulier, la classe d’ isomorphisme
de H, en tant que e,Z[I"]-module est déterminée par le théoréme 7. 3. Par exemple,
dans ]e cas d'un groupe I' diédral d’ordre 2m, m=3, les groupes (eG), et (G"),
(I'" d’ordre 2) portent des structures de module sur Z[{;+ (g 7 pour un diviseur d> 1
convenable de m, et H, est déterminé en tant que module sur Z[{,+ ;"

I S . ~aQ Y
Il reste maintenant a comparer les groupes (CI§x,) et. Cljk,- Les cas ou §
contient tous les diviseurs premiers de I'ordre de I' est facile et bien connu (cf. prop. 7. 6
ci-dessous et son corollaire). Des cas moins triviaux ont été traités par J.-F. Jaulent (non

publi¢; cf. th. 7. 8).

L’injection i:I;, — Iy et la norme n:Ig — [, induisent, par passage aux classes,
des homomorphismes

i*:Cl,— Clg et n*:Cly— Cl,.
Théoréme 7. 6. Soit m=[K : L]. Le noyau (resp. le conoyau) de
i*:Cl, — CIL  est annulé par m (resp. m?).
Corollaire 7.7. Si S contient tous les diviseurs premiers de I'', 'homomorphisme
i*: Clf g, — (Clgg,)"  est un isomorphisme.
Démonstration de 7. 6. Comme n* o i* est I'application ¢ — ¢™, (Keri*)" est réduit
4 Pélément neutre. Pour étudier Coker i*, nous introduisons, en suivant Hilbert, le

sous-groupe Clg,, de Cli, formé des classes de K qui contiennent un idéal invariant. Si
¢ € Cli,,, est représentée par I'idéal invariant a de K, ¢™ est représenté par

a”=ion(a) e Imi,

donc m annule le conoyau de i* dans Cl,,. Soit maintenant c € Cl,, représentée par
un idéal a. Pour tout s e I', il existe a, € K* tel que sa=aya. L’application s+ (a,) est
un l-cocycle de I'" a valeurs dans le groupe Py des idéaux principaux de K. Comme
H(I', P;) est annulé par m, il existe un élément a e K* tel que pour tout sel”
(@")=(a - sa”'); I'idéal (aa) est donc invariant et représente c; donc Clf;,/Clg,, est un
groupe annulé par m, ce qui démontre le théoreme.
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La structure de Keri* (la “capitulation”) est mal connue. Toutefois, on a:

Théoréme 7.8 (Jaulent). Supposons que I' soit produit semi-direct de I'' par un
sous-groupe distingué A sur lequel I'' opére fidélement. Notons M le sous-corps de K fixe
par A. Alors 'homomorphisme

A* . I" . . .
i*: Cly g, — Clg;  est un isomorphisme .

(La restriction aux classes relatives a K, est indispensable ici: il est en effet facile de
donner des exemples dans lesquels Cl; contient des classes non triviales provenant d’une
classe de K, qui capitule dans M.)

Démonstration. Soient v= ) setv'= ) sles normes dans les algébres Z[4] et

sed sel”
Z[I'"]. Soit R lalgebre Z[I']/vZ [I'] (noter que v est dans le centre de Z[1']) et soit R’
la sous-algebre ) R(s—1)+v'R de R.

sel”

Le théoréme résulte évidemment de la conjonction des deux assertions suivantes:
Lemme 7. 9. (i) Légalité R' =R entraine la conclusion du théoréme 7. 8.
(i) Sous les hypothéses de 7.8, on a R’ = R.

Démonstration du lemme. (i) Si R=R’, il existe dans Z[I'] des éléments a;
(sel”), b, ¢ tels que

=) afs—1)+vb+vec.

sel”

Si a est un idéal de L qui devient principal dans K, I'identité ci-dessus montre que,
modulo le groupe engendre par les idéaux de K, a est équivalent a I'idéal Ny, (ba), qui
est principal dans K, d’ou linjectivité de i* (et la surjectivité de la norme de Cly,, vers
Cly/k,)-

Si ¢ est une classe invariante de Cly ), le méme calcul montre que cette classe est
représentée par i* o n*(bc), d’ou la surjectivité de i*.

(i) Les orbites de I opérant sur A-{1} sont équipotentes a I". Soit § = A un
systtme de représentants de ces orbites. On a dans Z[I'], Y ) sts™'=v—1,

sel” ted
identité qui s’écrit encore 1=v-1—3% 3 st(s7'—1)—> ) st et est donc de la
ted sel” ted sel”

forme 1= 3" a/(s—1)+v'b+vcen posant a;=) s 't,b=) tetc=1, dou le lemme

sel” ted ted
et le théoréme 7. 8.

La conjonction des théorémes 7. 3, 7. 6 et 7. 8 donne des identifications de Cly, a
un produit de copies de Cl ., dans tous les cas considérés dans [C-M 2] (il s’agit bien
de produits semi-directs). On peut obtenir des démonstrations directes a partir
d’identités convenables, ce qui a été fait en 6. 8 pour le groupe diédral d’ordre 8. C’est
ainsi qu’initialement nous avons étudié les groupes diédraux et le groupe A,.
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§ 8. Commentaires et remarques diverses

a) Sur la notion de bons nombres premiers. A priori, il semble raisonnable
d’appliquer les calculs heuristiques de moyennes a des sous-familles restreintes d’exten-
sions dont le comportement a linfini est donné: par exemple, s'il sagit de discriminants
premiers, ou congrus a —1 (mod 3), ou les deux, ou encore s'il s’agit de corps cubiques
non galoisiens, se limiter 4 ceux qui sont associés a un corps quadratique donné.

La discussion qui est faite dans [C-M2], §3, & propos des calculs de Shanks et

Williams sur les corps cubiques purs @(]3/;)), p= —1(mod 3), montre qu’il faut étre
extrémement prudent lorsque 'on n’exclut pas le nombre premier 2, qui est bon au sens
de la définition 6. 1, mais qui divise le degré de la cloture galoisienne. (Rappelons que le
comportement de la 2-composante du groupe des classes semble tres différent selon que
p=—1(mod9), ou que p=2 ou 5 (mod9).) Quant aux mauvais nombres premiers, ils
offrent aussi des possibilités d’interprétations heuristiques, comme le montre le résultat
de Gerth ([G]), signalé dans [C-M 2], 3. 6, relatif au 4-rang du groupe des classes des
corps quadratiques. La aussi, la plus grande prudence est de rigueur comme le montre
un exemple de Lenstra concernant la 2-composante des groupes des classes des corps
quadratiques (communication privée). On observera que le comportement a linfini d’une
famille d’extensions galoisiennes K/K, a groupe de Galois isomorphe a un groupe I’
donné, se fixe en imposant pour toute place réelle de K, que le Frobenius a I'infini
correspondant définisse une classe de conjugaison donnée de I' d’ordre 1 ou 2 (2 un
automorphisme extérieur pres de I').

Il semble raisonnable de supposer que l'on peut, sans changer le comportement
statistique des groupes Cl§, pour S contenant les diviseurs premiers de [K:Kg],
imposer que les Frobenius en un nombre fini de places finies de K, soient dans des
classes de conjugaison données de I', sauf peut-étre en des places au dessus de 2 lorsque
K/K, est de degré pair, a cause du “phénoméne de Griinwald-Wang” (cf. [A-TT, Ch. 10).

Signalons enfin des calculs en cours de G. Fung et H. Williams sur les corps
cubiques de discriminants négatifs qui montrent que les “bons” nombres premiers qui
divisent le degré de la cloture galoisienne ne sont pas aussi bons que nous I'espérions.

b) Sur les multi-indices admissibles. Dans I'égalit¢ de I'hypothese heuristique
fondamentale 6.6, le membre de gauche a la valeur O lorsque u n’est pas admissible,
alors que le membre de droite est en général non nul. Par exemple lorsque K parcourt
I'ensemble des corps quadratiques imaginaires, seule la valeur u=0 est autorisée pour
I'indice.

Fixons alors un nombre premier I, limitons nous aux corps pour lesquels [ se
décompose, et remplagons I'anneau des entiers de K par celui des €élements de K qui
sont entiers en dehors de l'un des facteurs de I Le rang du groupe des unités est 1, et
Pon constate sur les tables que le comportement du groupe des classes du nouvel
anneau est tout a fait comparable a celui des anneaux d’entiers de corps quadratiques
réels. Bien siir, rendre inversible les deux idéaux premiers au dessus de [ ou des idéaux
premiers non décomposés ne changerait rien.

Nous conjecturons que, lorsque l'on rend inversible des nombres premiers
Pys..., P décomposés, il faut prendre u=k pour faire I'ctude heuristique, et nous
laissons au lecteur le soin de généraliser cette conjecture a des situations autres que
celles des corps quadratiques imaginaires.
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c) Interprétation de caractéres. Au paragraphe 7, nous avons concentré notre
attention sur les idempotents e, pour lesquels y est le caractére d’augmentation d’une
représentation de permutation, situation particuliérement importante a cause de
linterpretation de e, Clg g, a 'aide d’un groupe de classes relatif Cl .

Il est possible d’interpréter d’autres caractéres en utilisant des extensions inter-
médiaires. Voici I'exemple d’une extension K/K, a groupe de Galois I" isomorphe a S,,.
Les caracteres de I” sont &, ¢ (la signature), ¢ de degré 2 provenant du quotient de I’
isomorphe a S;, et deux caractéres y et @=¢cy de degré 3, y provenant de
laugmentation attachée aux permutations de S,/S;. Le groupe e, Cl% ¢, (pour S ={2, 3})
s'interpréte a laide du groupe Clg, x, (cf. §7), ou K, est une sous-extension de degré 4
de K/K,. On peut de méme relier e, Cl§, 4 CI%,x,, oo Kg=K,K,, K, désignant la
sous-extension quadratique de K/K,.

Une autre interprétation possible des groupes précédents est la suivante: soit K,
une sous-extension cubique de K/K,, (résolvante cubique); on lui associe canoniquement
deux sous-extensions K¢ et Ky de K/K,, non galoisiennes sur K,, et telles que le
discriminant de K4/K; dans K¥/K%? ait une norme triviale sur K.

Les groupes e, Cly, et e, CI§ g, sont alors également reliés respectivement aux
groupes Clg g, et Clg k..

d) Le ‘“Spiegelungssatz”. Le cas particulier di a Scholz du théoréme de
symétrie de Leopoldt indique qu’entre les 3-rangs des groupes de classes r de k= @(W}
et 7 de E=@([/—3m), m>0 on a la double inégalité r <F<r+1, I’égalité r=F ayant
lieu chaque fois que I'unité fondamentale de k n’est pas un cube modulo Iidéal | de k,
égal a (3%) si 3 n’est pas ramifié dans k, et & p> si (3)=p? dans k. En faisant une
hypothése trés raisonnable sur les classes de k modulo f (cf. g) ci-aprés), on peut déduire
les résultats heuristiques sur la valeur de r des résultats correspondants concernant 7
(ou réciproquement); ce travail a été fait par Dutartre ([Du]) et concorde avec les
prédictions. L’¢tude d’autres cas du Spiegelungssatz donnerait sans doute d’autres
résultats confirmant la consistence interne de nos conjectures.

e) Le théoréme de Brauer-Siegel. Soit K, un corps totalement réel. Considérons
Pensemble & des extensions quadratiques totalement imaginaires de K,. Le rang relatif
du groupe des unités de K étant nul, les résultats heuristiques de cet article prévoient
que pour chaque entier impair m, I'ensemble des K € & tels que hy g, soit égal 2 m & une
puissance de 2 prés est de densité nulle. Ce résultat ne semble pas connu. Bien entendu,
si 'on se limite a des extensions K/K, dans lesquelles un seul idéal premier est ramifié
(dans ce cas, hyg est impair), le théoréme de Brauer-Siegel précise alors le résultat: il n’y
a qu’un nombre fini de corps K € & tels que hy =m.

f) Une moyenne liée aux discriminants cubiques. Soit p un nombre premier
impair. Soit K, un corps de nombres, et soit &, I'ensemble des extensions quadratiques
de K, dans lesquelles ¢ places réelles de K, sont ramifiées. Pour K € &,, soit r le p-rang
du groupe Clgg,. On s’intéresse 4 la moyenne de la fonction p” sur &,.

Considérons sur 'ensemble des groupes abéliens finis (2 isomorphisme prés) la
fonction définie par

f(G)=|{H=G:H=Z/pZ}|.
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G _q
Si r(G) désigne le p-rang de G on a f(G) :p—m—lf—', donc

M(p ) =(p—-1M(/)+1.

Avec les notations du § 5, on a ;

L Z(fu |

Mu(j) - —‘Z(Lli)ﬁl

ou |
f6) w1 /(G) |

Z(f9=2, lAutGHGr“,,;?.(”:., |Aut G|’ |

et ‘

Z(s)=27(1,s).

\
Or, d’aprés [C-L], prop. 4. 1, on a I'égalité |
i

1 n 1
G,cG:G, = e e
2 |Aut G| i Ellll= <|H|> |Aut H|

|Gl=n

valable pour tout groupe abélien fini H, w(m) étant nul lorsque m n’est pas entier, et

1
égala ) KTGT sinon. En utilisant cette égalité avec H =Z/pZ on obtient:
|G| =m

. NS '_177 71~ ny 1 w(m)  Z(s)
2= p 2, w< >* pi(p—1) ; m  p'(p—1)’

d’ou, en appliquant I'hypothése heuristique fondamentale, M (p"?¥) =1+ —,, u désignant
p

la différence des rangs des unités de K et de K,. En notant (ry, r,) la signature de K, et w
o le nombre de places réelles de K, ramifiées dans K/K, on voit que la signature de K ‘
est 2r; —20, 0 +2r,), d’ou

1

r1+r2 o |

M(p@)=1+
14

Or, pour p=3, cette moyenne a été étudiée (en liaison avec I'étude du nombre
d’extensions cubiques de K, ayant un discriminant de norme donnée) par Datskowski
et Wright ([D-W], th. L. 3), et la formule ci-dessus est un théoréme pour p=3 (qui
généralise un résultat ancien de Davenport-Heilbronn pour les cas ou Ko=@; cf.
[C-L], §9, L, (C5) et II, (CO)).

Pour p >3 la moyenne de p"® est liée aux discriminants des extensions de degré p
de K. a cloture galoisienne diédrale; on ne posséde pas de théoreme statistique sur ces
0
discriminants.
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g) Classes modulo un conducteur. Soit L un corps de nombres, et soit | un
“module” (ou “idéal généralis¢”) de L. Rappelons que f est le produit formel d’un idéal
entier f, de L et d’une famille finie f,, de places réelles de L, que le groupe (Z,/f)* est le
produit (Z,/fo)* x{£1}=. Le groupe Cl,; est le quotient I, ;/P,; du groupe des
idéaux de L premiers a f par son sous-groupe formé des idéaux principaux possédant
un générateur « tel que v, (e —1)=0,(f,) pour tout p premier divisant f, et tel que o soit
positif aux places de {,,. On a alors une suite exacte:

0— (Z./H*/ImE, — Cl . — Cl, — 0.

En outre, si L est une extension d’un corps K, et si { provient d’un idéal f, de
Ky, la norme de L a K, envoie I, ; dans Iy, ; et P, ; dans Py ;, et 'on obtient un
homomorphisme N : Cl; ; — Cl, ; compatible avec la suite exacte ci-dessus.

Il est naturel de chercher le comportement heuristique des groupes de classes
modulo { comme nous I'avons fait précédemment pour les cas j=1, 'interprétation par
la théorie du corps de classes consistant a remplacer de corps de classes de Hilbert de K
par le corps de classes de rayon j. On doit alors s'imposer la fagon dont les diviseurs
premiers de f, se décomposent dans L, et, plus précisément, se donner pour toutes les
places finies ou non qui interviennent dans f les classes de conjugaison de Frobenius
dans Gal(K/K,), K désignant une cloture galoisienne de L sur K. L’¢tude heuristique
de Cl, ; se divise en deux parties: (i) étude de (Z./f)*/Im E; (ii) étude des sections de
Papplication Cl; ; — Cl;. Nous allons examiner briévement quelques exemples dans
lesquels K, =@. Le cas ou f{ est réduit a la place infinie de @ est particuliérement
intéressant: Cl,, ;, noté Cl; , est le groupe des classes au sens restreint de L.

Une relation de “Spiegelungssatz non semi-simple” existe sur le groupe Cl;, 4.
qui entraine des limitations quant aux structures possibles de Cl;: les 2-rangs des
groupes Cl et Cl, et le nombre r, de places réelles de L sont liés par linégalité

d,(Clf)— (IZ(CIL)§E21, cf. [O]. Ainsi, si L est cubique réel, et si d,(Clf/Cl,) atteint sa

valeur maximale, égale a 2, Cl, est d’ordre pair, et la suite exacte Cl; — Cl, — 1 n’est
pas scindée. Dans le cas ou L/@ est cyclique, on a un résultat plus précis: Cl; et Cl,,
ont méme 2-rang, et cela bien que L/@Q soit galoisienne de degré impair. Nous
conjecturons toutefois que, quelque soit f soumis aux condition que nous avons
énoncées, pour une proportion définie de corps, les groupes (Z,/f)*/ImE;, et Cl; ; ont
une structure donnée. Nous n’avons cependant pas dans le cas général de valeurs a
proposer pour ces densités. Les tables étendues de Ennola et Turunen de corps cubiques
totalement réels [E-T] plaident en faveur d’une telle conjecture, avec des pourcentages
respectifs de Pordre de 55% et 0,50% pour la proportion de corps cubiques avec
Cl;}/Cl, d’ordre 2 ou 4.

Lorsque (Z,/f)* est d’ordre impair, la situation semble plus claire. On se limite bien
siir toujours aux bonnes composantes. En ce qui concerne le quotient (E,/f)*/ImE,,
nous pensons que l'image de E; est un sous-groupe “au-hasard” de (E,/f)*, remarque
qui est a la base des heuristiques sur les groupes de classes (cf. [C-L], derniére ligne de
la premiére page, mais l'idée n’est pas explicitée). Ainsi, si L parcourt les corps
quadratiques de discriminant d =5 modulo 8, et que nous prenons {=(2), le groupe
(Z./)* est d’ordre 3. 11 n’y a rien a dire si d est <0, le groupe quotient par 'image de

4> Journal fiir Mathematik. Band 404
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E, étant d’ordre 3 pour d= —3 et trivial pour d = —3. En revanche, dans le cas réel,
nous conjecturons que ce groupe quotient est d’ordre 3 pour 1 corps sur 3, résultat en
bon accord avec les calculs faits par Stephens et Williams dans [St-W] (noter que
I'image de E, est triviale dans (Z/(2))* si et seulement si I'unité¢ fondamentale de L est
dans Z[]/d]). Si nous rendons inversible un facteur d’un nombre premier impair
décomposé¢ de L de fagon a rendre E; de rang 2 (cf. 8.b), nous pensons que
(Z,.)(2))*/Im E,, est d’ordre 3 pour seulement 1 corps sur 9,.... En ce qui concerne le
rang de la 3-composante de Cl, ,,, nous devons tenir compte de la probabilite que nous
estimons étre correcte pour qu’une suite exacte 0— H — E — G — 0 soit scindee
lorsque H est un groupe d’ordre 3, que G est un groupe de type (3, 3, ..., 3) de rang ¢ et
que P’on impose a E d’étre abélien. De fagon générale, lorsque H et G sont des groupes
abélien, et que G opére trivialement sur H, l'ensemble HJ (G, H) des éléments de
H?(G, H) correspondant a une extension de H par G qui est un groupe abélien,
constitue un sous-groupe de H?(G, H) qui s’identifie 4 Ext} (G, H). 1l est possible que la
proportion de groupes CIf ; (f étranger a (2) et aux places infinies, et S contenant les
mauvais nombres premiers) ayant une structure donnée compatible avec des structures
données pour (Z,/f)*/ImE, et pour Cl,, soit proportionnelle au nombre d’éléments de
HZ,(G, H) donnant naissance a cette structure.

h) Application aux discriminants. Le but de ce sous-paragraphe est d’indiquer
une approche heuristique de certains problémes de densité de discriminants. On montre
facilement que le nombre de corps quadratiques, dans le cas réel comme dans le cas

imaginaire, dont la valeur absolue du discriminant est <x, est équivalent a — x
T

(la mé tant . 1 )
a meme constante — =—_—----).
n? 20(2)

On montre difficilement (Davenport et Heilbronn, cf. [D-W]) que, dans le cas

y ;i B . X .
cubique, le nombre de corps K avec |dg| < x est équivalent a 22735 dans le cas non réel

" X , . . . ; g
et a ]2C(3) dans le cas réel. Que l'on ait des estimations proportionnelles 4 x est une
conséquence des diverses conjectures que nous avons faites, si I'on veut bien admettre
qu’il existe des termes de reste assez bons pour permettre certaines sommations infinies.
On écrit un discriminant cubique D sous la forme df? ou d est un discriminant
quadratique (ou d=1) et f un entier =1, sans facteur carré autre que 9. Pour f=1le

r

_— =1 .
nombre de discriminants D est ———, ou r est le 3-rang du groupe des classes de
: 4 : :
Q(W), soit en moyenne 2 pour d <0 et 3 pour d >0, cf. g). Passons a f=2, ce qui
impose d =5 modulo 8. Si r;=0, le nombre de discriminants D égaux a 4d est égal a 1

; ; 1 . .

si d< —3, mais seulement 4 — en moyenne si d est >0. Si r;>0, on n’a aucun
3 r

discriminant si la suite exacte de 8.g) est non scindée, mais =5 dans la cas contraire

r

sidest <—3, et 3y en moyenne si d est >0. On traite de fagon analogue les cas

ou f est premier ou égal a 3%, Dans le cas général, le nombre de diviseurs premiers de [
intervient mais ce nombre est petit par rapport a f. Finalement, le nombre de
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discriminants D a considérer s’obtient au moyen d’une sommation Z,,,__,-,,,’

N(d, f), a d fixé, est assez petit pour que la série soit convergente. L’estimation en
constante x x du cas quadratique doit donc s’étendre au cas cubique. Il serait du reste
intéressant de préciser, pour d fixé, le nombre de discriminants cubiques de la forme
D=df?* pour |D| <x, en cherchant un équivalent de la forme A(d) ]/;, avec si possible
un terme de reste; le cas d=1 a été examiné par Cohn ([Cohn]). Le passage du cas
cubique non abélien au cas quartique de type S, est analogue: on cherche les
discriminants quartiques 4 sous la forme A= Dg? ou D est un discriminant cubique, (et
'on fait de méme pour le type A, en prenant pour D un discriminant de corps cubique
‘ cyclique). On connait les eéquivalents pour les cas cycliques et bicycliques (respective-
} ment ¢x'/? et ¢’x'?*log?x pour des constantes c¢ et ¢’ convenables), et Bailey ([B])
i donne pour le cas diedral un encadrement ¢; x <N(x, 4)<c,x ou ¢; et ¢, sont des
constantes et N (x, 4) est le nombre de corps de type diédral avec |[4] < x (il y a bien sir
des constantes ¢, ¢, ¢y, ¢,, pour chaque signature).

h. 1) Conjecture. Pour chacune des signatures a priori possibles, le nombre de
corps quartiques de discriminant A avec |A| < x posséde un équivalent de la forme ¢ x dans
le cas diédral comme dans le cas symétrique, et de la forme ¢ ]/; dans le cas alterné, pour
des constantes ¢ convenables.

Des calculs récents de Buchmann et Ford ([B-F]) concernant les corps totalement
réels de discriminant <10° sont en bon accord avec la conjecture ci-dessus pour les
1 corps diédraux et symeétriques, et confirment I'extréme rareté des corps alternés.

h.2) Remarque. Des arguments fondés sur des dénombrements de polyndmes
ont conduit & conjecturer que, pour chaque degré n et chaque signature (ry, r,) avec
ry+2r, =n, presque tout corps de degré n est a cloture galoisienne de groupe de galois
isomorphe a S,. La conjecture h. 1) entraine que le degré 4 est une exception.

Ces méthodes heuristiques, faisant usage de la théorie du corps de classes, ne
peuvent étre adaptées a 4, ni a S, pour n= 5. Toutefois, les corps résolubles de degré 5
ou 7 pourraient étre examinés comme les corps cubiques, et, au prix d’un certain
effort, il devrait étre possible de trouver (conjecturalement) un équivalent du nombre de
corps dont la valeur absolue du discriminants est inférieure ou égale a x.

i) Vitesse de convergence. Posons:

PICH
RS(f x) =520 gp(f).
1
ign

Par définition, RJ(f, x) tend vers 0 quand x — co; on peut se poser la question de
trouver un eéquivalent. En effet les tables semblent montrer, pour les fonctions f
intéressantes, un comportement a peu prés régulier et monotone.

Notre hypothése heuristique fondamentale affirme que Ion doit avoir

M (f)=M(f).
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Il n'est pas raisonnable d’¢mettre une conjecture au sujet de RS(f, x), mais aprés un
examen empirique des tables, nous posons la question suivante: existe-t-il une fonction
universelle k(x) tendant (lentement) vers + oo et telle que lorsque x — oo:

Y, G (G/Im @) iy (G)
RS(f,x)~t015V2e M)
3161 Wi (6)
(la condition |G|§Vx dans la sommation (avec |G| premier a S) est suggérée par le
théoréme de Brauer-Siegel). Des choix possibles pour k(x) pourraient étre C(logx)”
(peut-étre avec o =1/2), ou encore C,(loglog x)”.

Si la réponse a cette question est positive, au moins en un sens assez faible, on
peut en déduire par exemple le sens de la monotonie en moyenne de la convergence et il
est bien en accord avec celui observé dans les tables, par exemple la croissance de la
proportion de corps quadratiques imaginaires de nombre de classes divisible par 3, ou
la décroissance de la proportion de corps quadratiques réels de discriminant premier et
de nombre de classe égal a 1.
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