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Class Groups of Number Fields:
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Dedicated to Dan Shanks on his 10th birthday

Abstract. Extending previous work of H. W. Lenstra, Jr. and the first author, we give
quantitative conjectures for the statistical behavior of class groups and class numbers for
every type of field of degree less than or equal to four (given the signature and the Galois
group of the Galois closure). The theoretical justifications for these conjectures will appear
elsewhere, but the agreement with the existing tables is quite good.

1. Introduction and Notations. In [3], H. W. Lenstra, Jr., and the first author
developed a method for conjecturing quantitative results on class groups of quadratic
fields and cyclic extensions of prime degree. In a forthcoming paper [4] we shall
show that this technique can be extended to a much wider class of number fields,
and also to relative extensions.

The aim of the present paper is to rapidly make available the numerical conjec-
tures obtained, for people not really interested in our heuristic reasoning or not
wanting to wait for [4] to appear. Hence, apart from a total lack of justifications for
the conjectures that we present, this paper is essentially self-contained. The plan is as
follows.

In the rest of this section we present the notations used in the sequel. Some of
them being nonstandard (and in general differing from the notations of [3]), we urge
the reader to read the notations carefully before applying the conjectures.

In the next section we present templates for the subsequent conjectures, and then
the conjectures themselves, illustrated by numerical examples, first for their own
sake, and second as a double check for the reader to understand the templates. These
conjectures are given for all types of fields of degree less than or equal to four.

In the final section we comment on the consistency of the conjectures with
existing tables (which is quite good).

Combinatorial Notations:

* If X is a set, | X| denotes its cardinality.

* For an integer p > 2 and « an integer or oo, we set: (p), = I, _, (1 — p~%);
in particular (p),, = IT,o1(1 — p7 %), (p)o=1.

Remark. 1t would have been more consistent with the usual notations of combina-
torics to write this as (1,/p),, but the present notation is typographically simpler.
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124 H. COHEN AND J. MARTINET

Algebraic Notations:

* The letter K will stand for the generic algebraic number field whose class group
we want to study.

* Hy (resp. Hy ,, for relative extensions) will denote the subgroup of the class
group consisting of elements whose order is not divisible by the given bad prime or
primes (resp. and in the kernel of the norm map from K to k).

Warning. H, does not denote the class group itself, in general.

* hy = |Hgl, hy s = Hg il

* The letter M will denote a Galois closure of K over Q, and I' = Gal(M/Q).

* A will denote a direct product of Dedekind domains A; (in fact, in our cases, A4
will either be a direct product of copies of Z or a single Dedekind domain).

% If G is an A-module, Aut, G (or simply AutG) will denote the group of
A-automorphisms of G, and G; will denote the component of G on the factor A4, of
A (hence G = I1G)).

* If p is a maximal ideal of a Dedekind domain A, we will write r(G) for the
p-rank of G as an A-module, i.e., the dimension of G/pG over A/p. We shall write
rpZ(G) for the p-rank of G when G is viewed only as a Z-module. Note that when A4
is the ring of integers of a quadratic field then

(i) if p splitsin A4, say p4 = pp,

r(G) = r(G) +r(G);

(ii) if p isinertin A4,

rpZ(G) =2r/(G).

If A = Z we write simply 7,(G) instead of 7,(G).

Analytic Notations:

% In the templates, the letter f will stand for a “nice” function (not further
specified!) defined on isomorphism classes of finite A-modules.

* If A =TI, ;.. A, where the 4, are Dedekind domains, then the zeta function

of A is by definition a function of m complex variables defined by analytic
continuation to C™ of the following function:

¢s)= 11 ¢%(s),

Il<ism
where s = (s,...,s,) and {“ is the Dedekind zeta function of 4, (when it is
defined).
Warning. This differs from the usual definition of { 4 a function of one complex
variable s, which one recovers by setting s, = -+ =5, = 5.

% The Z function of A is defined by
ZAs) = [1¢ (s + k- 1),
k>1
wherel = (1,...,1) is an m-dimensional vector.
% The Z function of A relative to the function f is obtained by analytic
continuation of

-5

Z4(f:8) = LG Aut G716, - 16,1,
G

where the summation is over all 4-isomorphism classes of finite A-modules G.
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* If 1 is the constant function equal to 1 everywhere, then it is a theorem (not a
conjecture!) that

Z4(1,5) = ZA(s)

(see [3, Corollary 3.7] or [4]), whence the notation.

* C(A)=Res,_,Z%(s) = Res,_; {*(s)1;.,{"(k) (used only when A4 is a
Dedekind domain).

* If £ is a prime number which we want to exclude (a “bad” prime), we use
§4 ,(s) and Z4 ,(s) to mean that we omit the Euler factors corresponding to prime
ideals dividing ¢, and more generally ZZ ,(f;s) to mean that in the sum defining
Z*(f;s) we take only finite A-modules of order not divisible by 7.

* Finally, we set

MA(fis) = Z3.(119)/Z4 (),

where it is understood that the limit is taken if both the numerator and denominator
vanish.

2. The Conjectures. Let K be a generic algebraic number field, M a Galois
closure of K, and I' = Gal(M /Q) as usual.

For a given I' we first give a diagram indicating interesting subfields of M and
their interrelations (although usually not the conjugates of K), then the “bad” prime
¢ (when [K: Q] < 4 there is only one such), the ring 4, and in the non-Galois case,
relations between class groups outside the bad prime as always (these relations being
theorems, not conjectures!). We indicate the degrees of the field extensions, except
when they are equal to two.

We then consider the set % of isomorphism classes of fields K having given T, r,
r, (number of real and complex embeddings of K ). If f is a function (see notations),
we define the average of f as the following limit, if it exists:

H(f)=lim ¥ f(Hg)/ X1,
X-o keg Ke@
[Dgl< X [Dgl< X
where Dy is the discriminant of K. (If we work with relative extensions, replace H X
by Hy ,, in this definition.)

We then give a general heuristic prediction linking .#(f) to the function
M7 ,(f;s) defined above, and we specialize this prediction to a number of interest-
ing functions f. In many cases, / will be the characteristic function of a property P
of Hy (ie, 1 if P is true, 0 if not), and in this case we shall speak of the
“probability” that P holds (written pr(P)), although evidently . ( f) is only finitely
additive.

For each of the functions / we give a few numerical examples, the numbers being
rounded to six decimals.

In what follows:

* ¢ will be the bad prime.

* H will be a finite A-module of cardinality .

* h and m will denote integers not divisible by Z.

* p will denote a good prime, and p a prime ideal of 4 dividing p.
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We shall give in turn:

(a) Pr(Hy = 4 H), Pr(hy = h).

(b) Pr(m | hg).

(c) Pr(r'( Hy) = r) and similar quantities.

(d) The average of (N p)" () (n a positive integer).

(e) The average of h.

(f) In a few cases, some additional conjectures.

For relative extensions, we of course replace Hy and h, above by Hy . and
Pk sk

Recall once more that H, denotes the class group with its #component removed.

(1) Quadratic Fields.

K I'=172/27Z
| bad prime: /= 2
Q A=1
(1.1) Complex quadratic fields.
("1 =0,n= 1)’

M(f)=MZ,(f;0).
(a) pr(Hy = H) = 0, pr(hy = h) = 0.
(b) pr(m I hl() = 1—[p"||m(1 - (p)oo/(p)cx—l)‘
Examples.

m = 3:0.439874; m
m=T7:0.163204; m

(©) pr(r,(Hg) =)= p~"(P)o/(P)}-
Examples.

5:0.239667;
9:0.159811.

p=3:r=0:0.560126; r= 1:0.420095;
r=12:0.019692; r > 3:0.000087;
p=>5:r=20:0.760333; r=1:0.237604;
r > 2:0.002063.
(d) A(prtiT0y = T p "0 (p),/(P)i(P)-i)-

Examples.
n=1:2; n=2:p-+3.
(e) M(hy)= 0.
(1.2) Real quadratic fields.
(r,=2,r,=0),
j{(f)=M£2(f;1)-
(a) pr(Hy = H) = (2h(2),C(Z)| Aut H|) ™,

il = 1) = (202, c@ TT (p).]) 1
pellh

Examples.

h=1:0.754458; h = 3:0.125743;
h =5:0.037723; h=17:0.017963;
18

h = 9:0.015718 (H = Z,/9Z: 0.013971; H = (Z/3Z)": 0.001746).

[
o
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B) pr(m | hy) = TLm (1 = (P)oo/(P)DE0 < p< ol PP(P)) 7).
Examples.

m = 3:0.159811; m = 5:0.049584;
m = "7:0.023739; m = 9:0.019779.

(©) pr(r,(Hg) =r)=p """ D(p) /() P),:1)-
Examples.

p=3:r=20:0.840189; r=1:0.157535;
r> 2:0.002275;
p=5:r=20:0.950416; r=1:0.049501;
r > 2:0.000083.
(d) A (p" ) = T o p D),/ () P) ).

Examples.
n=1:1+p n=2:2+4+p ' +p2
() M(Hy) = oo.
(f) (Also conjectured by C. Hooley [11])
X
Y hQ(‘/;)~§ as x — 0.
p<x

p prime, p=1 (mod 4)

(2) Cyclic Cubic Fields.

K I'=1272/3Z
3] bad prime: /= 3
Q A=1Z[jl (j=e*"")

K is totally real ~ (r, = 3, r, = 0),
M(f) = ME(f:1).

(a) pr( = 1) = (Sn@).cOnlam, a1
pr(hy = h) = (-9§;12(3)mc(f1))‘1 L TTw)

Here, a runs through all integral ideals of A of norm 4, and p through prime
ideals dividing a.
Examples.

h=1: 0.850072; h = 4:0.070839 (here H = , (Z,/2Z)%);

h =17: 0.040480 (50% for each of the two A-isomorphism classes);

h = 13:0.010898 (50% for each of the two A-isomorphism classes);
h=16:0.004723 (H = , (Z/4Z)%: 0.004427; H = , (./2Z)": 0.000295).
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(b) pr(m | Hy) = P, P,, where
p=TI (1 ~((pi/(p)7) X (pm”y(p)/s(p)y)_l)’

pffnmh3) P
-1
e I (-0 X (o))
pilim 0<B<a/2
p=2(mod3)
Examples.

m = 2and m = 4: 0.081950; m = 5:0.001667;
m = 7:0.046914; m = 8and m = 16: 0.005446.

(©) pr(rf{(Hy) = r) = (Np) """ D(ND) o, /(ND) (ND), 1)
If p = 1 (mod 3), then

pr(r?(Hy) =r) = (p)a X pr = D/ ((pY (p) () P) i)

tt+u=r
If p =2 (mod 3), then
0 if risodd
Z . _ 9
Pr(’”p (Hy)=r)= {p"'(’+2)/2(p2)°0/((pz),./z(pz)(r/zHJ) otherwise.

Examples.

p=2:r=0:0.918050; r=2:0.081604;
r > 4:0.000346;
p=>5:r=0:0.998333; r> 2:0.001667;

p=T:r=0:0.953086; r=1:0.046331;
r > 2:0.000583.
(d) If p = 1 (mod 3) then

n

j/(p"fﬁ‘(HK)) = Z p"("f'.wl)(P)n/((P)i(P)nfi)’

i=0

‘//{(pnr;f(ll,()) _ (.//f(p""*/](”x)))z.
Examples.
n=1:(1+ p'l)z; n=2:(2+p! +p‘2)2.
If p = 2 (mod 3) then

n

A (PP} = o prF ) = 3 p2 0 (p?), /() (07),00):

i=0
Examples.
n=1:1+p% n=2:2+p2+p*
(e) M (hy) = 0.
(3) Non-Galois Cubic Fields.
- M\\3 r=s
bad prime: /=3
& k A=17
3\.\Q Hy = Hg X Hy
N
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(3.1) Complex cubic fields.
(n=1n=1), _
M([)=MZ(f:1).
3 =1
(a) pr(Hy = H) = (511(3)00C(Z)|Aut Hl) ,

1

prlhe = 1) = (31O TL ().

peh
Examples.

h=1:0.518642; h=2:0.259321;
h = 4:0.086440 (H = Z,/47: 0.064830; H = (Z,/27)": 0.021610);

h = 5:0.025932.
(B) pr(m | hg) =T = (P)o/(P)) 2 (P*P(p)p)7™h).
0<fB<a
Examples.

m=2:0.422424; m = 4:0.133636;
m = 5:0.049584; m = 7:0.023739.

(© pr(r,(Hy) = r) = p~""* D p) o /((P),(P),11).
Examples.

p=2:r=0:0577576; r=1:0.385051;
r=2:0.036672; r > 3:0.000702.
For p > 5 see 1.2(c).
(d), (e) See 1.2(d) and 1.2(e).
(3.2) Totally real non-Galois cubic fields.
(r,=3,r,=0),

M([)=ME(1:2).

(a) ] B Y e (%h2(3)mC(Z)|AutH])_l,

pr(h =) = |0 T ()

p®||m
Yz

Examples.

h=1:0.758339; h=2:0.189585;

h=4:0.031597 (H = Z,/4Z: 0.023698; H = (Z,/2Z)": 0.007899).
(®) pr(m | hg) = Tley, (1 = ((P)oo/(P)2)E0 < p < o Pm(!))ﬁ)—l)-
Examples.

m = 2:0.229898; m = 4:0.037373;
m = 5:0.009983; m = 7:0.003400.

(© pr(r,(Hg) = r) = p~" " 3(p) o, /(P) (D), 12).
Examples.

p=2:r=20:0.770102; r=1:0.220029;
r=12:0.009779; r > 3:0.000090;
p=5:r=20:0990017; r=1:0.009980;

Fz2: 33 % 1078,
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(dy A (protioy =X p" P (p) W/ ((P) P
Examples.

n=1:1+p2% n=21l+pt+p+p™
(€) M(hy)=4n?/27 = 1.462164.
(4) Cyclic Quartic Fields.

K I'=2/41
| bad prime: £= 2
k Hy = H, X Hg
| hence only Hy , is interesting
Q A=1[i]
(4.1) Totally complex cyclic quartic fields.
(ry =0,7=2).

Here, k is real quadratic.

M(f) =M (f50).
Remark. 1f one wants the full class group Hy, then the template is
M(f) =M (f:1,0),
where B = Z X Z[i].

) (@) pr(Hy =4 H) = 0, pr(hg i = h) = 0.
(b) pr(m | hy ) = PPy, where

= TII [1-(p) X (p*(p)p(p)y) |

polim 0<B+y<a
p=1(mod4)
Py = 1—[ (1- (Pz)w/(lﬂ)ua*n/zl)-
o b o

Examples.
m=3: 0.123440; m =5: 0.421894;
m="7: 0.020825; m =9: 0.123440;
m = 11:0.008333; m = 13:0.158813.
(© pr(r{'(Hy ;) = r) = (ND)"(Np),./(ND)}.
If p =1 (mod4), then

pr(r2(Hy ) =r)=(p) X o7 /((p)i(p)0)-

t+u=r
If p = 3 (mod4), then
0 if r is odd,

Z — ) =
Pr(rp (HK/k) ") p—r-2/2(p2)w/(p2)3/2 otherwise.

Examples.
p=3:r=0:0.876560; r=2:0.123266;
r>=4:0.000173;
p=5:r=0:0578106: r=1:0.361316;
r=12:0.059592; r > 3:0.000986.
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(d) If p =1 (mod4), then

//,(pnr;'("wn) =2 0" (p)/((P)i(P) i),

i=0
//(pnr,?‘(ﬂx/ﬂ) _ (%(p""{v‘("h\'/k)))z.
Examples.

n=1:4; n=2:(p+3)".
If p = 3 (mod 4), then

M pPrriem ) = gy pref i) = > PP (p?),/((p?)(P?)0s).
i=0

Examples.
n=1:2; n=2:p*+3.

(€ M(hy ) = oo.
(4.2) Totally real cyclic quartic fields.

(ry=4,r,=0),

M(f) =M (f:1).
Remark. For the full class group H,

M(f) = Mgz(fﬂ,l),
where B = Z X Z]i].

(a)
Py =4 1) = () A, HI)
il = 1) = (E020).c0) T TT (vl

Na=h P%la

Here, a runs through all integral ideals of A of norm 4, and p through prime
ideals dividing a.
Examples.

h=1: 0.864608;
h =5: 0.086461 (50% for each of the two A-isomorphism classes);

h=9: 0.012008 (here, H =, (2/3Z)%);
h = 13:0.011085 (50% for each of the two A-isomorphism classes).
(b) pr(m | h ) = P, Py, where

P= I (1—((p)i/(p)f) ¥ (p“”“(p)ﬁ(p)y)'l),

s
-1
pe I (=) ()7,
pelim 0<B<a/2
p =3 (mod 4)
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Examples.

m=3: 0.013870; m=5: 0.096709;
m=T7; 0.000425; m=9: 0.013870;
m = 11:0.000069; m = 13:0.012774.

() pr(r(Hy ;) = r) = (N) " D(Np)_ /(ND) (ND), 1)
If p =1 (mod4), then
Pr<",;Z(HK/k) = ") =(p)e X p () ()i 2)u(P) i)
t+u=r
If p = 3 (mod4), then
0 if risodd,
L He ) =) = s .
pr(rp ( K/A) r) {P ( 2)/2(Pz)oc/((l’z)r/z(PZ)(,-/zw—l) otherwise.
Examples.
p=3:r=20:0986130; r=2:0.013867,
r>4:21x107%
p=5:r=0:0.903291; r=1:0.094093;
r>=2:0.002617.
(d) If p =1 (mod4), then
A (prriten) = X p ),/ () (P)a ),

i=0
%(p”"/?'(”'\'/k)) _ (%(pm'i}'(llk/x)‘))z.
Examples.
n=1:(1+p") n=2:(2+p" )
If p = 3 (mod4), then

n

M ( p2iiem) = pitinar) = 3 pHe 0 (p?),/((p7)(P7),).
i=0
Examples.
n=1:14+p% n=2:2+4+pr+p°
(€) M(hy )= 0.
(5) Bicyclic Fields.

K
e _ >
o k|2\k3 I = (2,22)

bad prime: /= 2
~_ 17 Hy = H, X H, X H,
\ P 1 2 3
Q
Our heuristics predict that these three groups behave independently, hence the
desired conjectures for Hy or Hy , = H, X H, can easily be deduced from the
conjectures in the quadratic case. For the sake of completeness we give the
templates.
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For Hy we take 4 = 7>,
For Hy . we take A = Z7.
(5.1) Totally complex bicyclic fields.
(r; =0, r=2).

For Hy (A =7%): M (f)= M2,(£;0,0,1).
For Hy ,, (A =177%)

if k4 is complex: #(f)= M1,(f;0,1),

if kyisreal: A (f)= M2,(f;0,0).
(5.2) Totally real bicyclic fields.

(r,=4,r,=0).

For Hy (A =7%): M(f)= M*,(f;1,1,1).
For Hy ), (A =17%): M(f)= M,(f;1,1) (here ky is real).
(6) Dihedral Quartic Fields.
I' = Dy
bad prime: /= 2
Note. In this diagram Gal(M /k ) = Z./4Z,
while Gal( M /k) = Gal(M/k’) = (Z./2Z)’.
Only the relative class group Hy ;. is
interesting, and we have
Hyyp = Hy, X Hy o and Hy, 0 = Hy .

A=17
(6.1) Totally complex dihedral quartics with complex quadratic subfield k.

(r,=0,r,=2),

M([)=MZ(f51).
For specific f and examples, see (1.2) (real quadratic fields).
(6.2) Dihedral quartics of mixed signature.
(n=2,r,=1).

Same as (6.1).
(6.3) Totally complex dihedral quartics with real quadratic subfield k.
(r,=0,r,=2),

M(f)=MZ,(/;0).
For specific f and examples, see (1.1) (complex quadratic fields).
(6.4) Totally real dihedral quartic fields.
(r,=4,1r,=0),
M(f)=ME,(f;2).
(a)

1

19 122).c(2) | Aut H|)7 ,

772

pr(Hy = H) = (

prlingse =4 = (K50 T ()] -

peh



134 H. COHEN AND J. MARTINET

Examples.

h=1:0.930775; h = 3:0.051710;
= 5:0.009308; h = 7:0.003166;

h = 9:0.002155 (H = Z,/97: 0.001915; H = (Z,/3Z)": 0.000239).

(b) pr(m | hK/k) = I—[[)"”m(l - ((p)oo/(p)2)20</3<a(p3B(p)B)_1)'
Examples.

m = 3:0.054787; m = 5:0.009983;
m = 7:0.003400; m = 9:0.002275.

© pr(r,(Hy i) = 1) =p"" " 2(0) oo/ (P) (D)1 42)-
Examples.

p=3:r=0:0945213; r=1: 0.054532;
r > 2:0.000256;
p=5:r=0:0.990017; r=1:0.009980;
r>2:33x10°6
(d) A (p"r ey = T0_o p' T 2(p)/ ()P i)

Examples.
n=1:1+p% n=21+pt+p2+p*

(€) M(hg )= 72/8 = 1.233701.

Remark. The conjectures that we obtain in the case Dy are, as expected, the same
as the ones that we would obtain for quadratic extensions of a fixed quadratic field
k (such an extension being of type Dy with probability 1).

(7) Quartic Fields of Type A,.

/ \L\\ I=4,

\ yd bad prime: ¢ = 2

Hpy e = Hg X Hg X Hy (Hy = HLI/C)
/ A=1Z
Q

(7.1) Totally complex quartic fields of type A .
(n=0r= 2),
M(f)=ME(f;1).

For specific f and examples, see (1.2) (real quadratic fields).

(7.2) Complex quartic fields of type A, of mixed signature.

(r,=2,r=1).
These fields to not exist!

(7.3) Totally real quartic fields of type A,.
(n=4n= 0),
M(f)=ME(f;3).
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(a)
128 -
o Hy = B = ( e (z>wc(Z)|AutH|) ,
g 5] = ( 1B e0).c) T1 (») ) )
Tm 2§(3) * pelim “
Examples.
h=1:0.978989; h=3: 0.018129;
h = 5:0.001958; h = 7:0.000476;

h=9:0.000252 (H = Z,/9Z: 0.000224; H = (Z,/3Z): 0.000028).
®) pr(m | hg) =Tl = (P)oo/(P)31)E0<p <l P*(P)p) 7).
Examples.

m = 3:0.018433; m = 5:0.001999;
m =7:0.000486; m = 9:0.000256.

© pr(r,(Hg) = 1) =p~""*I(p) o, /() (D), +13)-
Examples.
p=3:r=0:0.981567;, r=1:0.018404;
r > 2:0.000029;
p=35:r=20:0.998001; r > 1:0.001999.

(d) A (p"r 0y = Ko p' () W/ (P) () =)
Examples.
n=1:1+p3 n=2:1+p2+p3+p°

(e) M (hg) = %£(3) = 1.051800.
(f) A (h%) = &m*(3) = 1.297606.
(8) Quartic Fields of Type S,.

M

Sy v

LK r=s,

Kk bad prime: /=2

K/ L/Z L= C(M) with NC/Q(m) € Q*?
LY

I/kC Hy o= Hg X He X Hy and
C 3 Hy = H, ,c
3 S; A=17
k
Q/

(8.1) Totally complex quartic fields of type S,.
(r,=0,r,=2),
M(f)= Ma%z(ﬂl)-

For specific f and examples, see (1.2) (real quadratic fields).
(8.2) Quartic fields of type S, and mixed signature.

(n=2nr=1),
M(f)=MEZ,(f;2).
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For specific f and examples, see (6.4) (totally real dihedral quartic fields).
(8.3) Totally real quartic fields of type S,.

(m =dy 0 = 0),

M(f)=MZ(f:3).

For specific f and examples, see (7.3) (totally real quartics of type A,).

3. Discussion. The tables that we have at our disposal (some of which having been
extended specifically to test our conjectures) are as follows:

— Complex quadratic fields, |Dy| < 2.5 X 107 [2].

~ Real quadratic fields Q(y/p ) with p prime, p < 10 [15].

— Cyclic cubic fields, Dy < 2.56 X 10% ([9], [8]).

~ Noncyclic complex cubic fields, [Dg| < 2 x 104 [1].

— Pure cubic fields Q(\/>) with p prime, p < 10° ([13], [15]).

— Noncyclic totally real cubic fields, |Dg| < 5 X 10° 7).

— Some tables for fields of degree 4 and 6, which are not sufficiently extensive to
make any significant statistics ([10], [12], [6]). In addition, C. P. Schnorr [14]
kindly computed for us a few samples for [Dg| = 5 X 10® for complex quadratic
fields.

The first observation is that for imaginary and real quadratic fields, and for cyclic

cubics, the agreement with the tables is very good.

The second observation is that for noncyclic complex cubic fields, the agreement
is not so good. Now in the non-Galois cubic case, as will be explained in [4], we have
every reason to believe that the prime 2 behaves like a good prime. The poor
agreement with the tables would seem to indicate that, either our whole strategy in
the non-Galois case is wrong, or at least that 2 should be considered also a bad
prime. However, the discriminants involved in the table of [1] are not very large. If

we look at the subtable of pure cubic fields, the discriminant of Q(\/_) is 3p? or
27p?, according as p = +1 (mod9) or not, hence in the table of [15] the discrimi-
nants go up to more than 3 X 10'2. If we assume that, as a whole, pure cubics
behave like any other complex cubics, then ordering them as usual by discriminants
(and not by p!) we find very good agreement with the tables. Thus we believe that
the poor agreement with [1] is due to the fact that the discriminants are not
sufficiently large.

However, there is another phenomenon which has been stressed several times

([13], [15]) and which we repeat here: If one considers only Q(f) with p =2
(mod 3) prime (so as not to be bothered by the 3-part), and if one distinguishes
between p = —1 (mod9) and p = 2,5 (mod 9), one notes a marked distinction in the
behavior of the class group. For example, class number 1 seems to occur with
probability 0.60 for p = -1 (mod?9), but with probability 0.40 for p = 2,5 (mod9).
This is apparently due to the higher 2-part of the class group in the second case, and
although a sort of reinterpretation of this phenomenon has been given in [5], no
satisfactory heuristic explanation has yet been found.

Since D, < x is equivalent to p < W for p = -1(mod9) and p < /x/27 for

p = 2,5 (mod9), by taking together all the Q(f) with p = 2 (mod 3) and discrimi-
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nant < x, we find an approximate probability of
3 X 0.60 + 2 X 0.40 = 0.52

of having class number 1, very close to the predicted probability 0.5186.
A similar remark can be made about quartic extensions of type A 4 and S;: The
prime 3 could be bad. However, we think that this is not the case.
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