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METHODES GEOMETRIQUES DANS LA RECHERCHE
DES PETITS DISCRIMINANTS

Jacques Martinet

On sait depuis Hermite qu'il n'y a, a isomorphisme prés, qu'un nom-
bre fini de corps de nombres dont le discriminant a pour valeur un entier
donné. 11 est donc naturel de chercher a classer les corps de nombres par
leur discriminant, c'est-a-dire de donner pour chaque entier la liste des
corps de nombres ayant cet entier pour discriminant. En plus du discrimi-
nant, il est raisonnable de faire intervenir la signature (nombres de
places réelles et complexes); on sait en effet depuis Minkowski que,
degré égal, les discriminants ont tendance a croitre avec le nombre de
places réelles. Par ailleurs, dans 1'état actuel de nos connaissances,
on n'a pas d'autre moyen pour décrire les corps de degré >5 que donner
un polyndme définissant le corps. La question précise que 1'on se pose
est la suivante : étant donné un entier n, un couple (r,s) avec
r+2s=n et un réel positif M, trouver des réels M1,...,Mn tels que
tout corps de degré n, de signature (r,s) et de discriminant <M en
valeur absolue puisse &tre défini par un polyndme

'Xn--a1xn'1 +a2Xn'2 .. +(-1)nan de QIX] avec |a;|<M; pour

1<i<n, et, en fait, trouver le plus de contraintes poss1b1es pour les

coefficients ai.

Un probleme technique apparait alors : s'il s'agit d'un corps im-
primitif, c'est-a-dirg contenant un sous-corps non trivial, i1 faut s'as-
surer que les éléments définis a conjugaison prés par les polyndmes ne
sont pas dans un sous-corps. On peut faire en sorte qu '] en soit ainsi,
mais i1 semble & 1'expérience plus commode de majorer les discriminants




des sous-corps éventuels et de définir les corps imprimitifs par des po-
lynémes & coefficients dans un sous-corps non trivial, dont on majore
les coefficients en chacune des places a 1'infini. '

Nous allons donner dans la suite, en toute généralité, des inéga-
1ités permettant de résoudre les problemes considérés. Nous utilisons la
géométrie des nombres, en nous placant dans le cadre de 1a "méthode de
Hunter® (cf. [Hul); on pourrait utiliser la théorie des formes quadrati-
ques - cf. [DyD 2] pour un exposé récent. Les inégalités en question sont
écrites dans le paragraphe 2, précédé par le paragraphe 1 consacré a des
rappels de géométrie des nombres, et suivi du paragraphe 3 consacré a

des exemples.

On donne dans le paragraphe 4 un complément trés utile au paragra-
phe 2, a savoir 1'utilisation des méthodes analytiques par Tle biais des
scorrections locales" : si 1'on se contente des discriminants qui ne dé-
passent pas trop les minorations issues des méthodes analytiques, on peut
diminuer considérablement le nombre de polyndmes a examiner.

On examine dans le paragraphe 5 les techniques permettant a tout
possesseur d'une calculatrice de poche programmable de traiter les ques-
tions inévitables liées a la classification des corps de discriminant
donné : irréductibilité des polyndmes, détection de sous-corps, tests
d'isomorphisme,... En particulier, (az) présente un algorithme commode,
et, semble-t-il, original.

On montre dans le paragraphe 6 comment les minorations de discrimi-
nants peuvent étre utilisées dans 1'identification des corps de nombres;

on montrera en particulier que certains corps sont caractérisés par leur
discriminant et leur signature sans avoir recours aux calculs un peu pé-

nibles du paragraphe 5.

Enfin, le paragraphe 7 est une bibliographie commentée des diverses

. 3 3 . *
listes de corps dont j'ai eu connaissance.

§ 1 - Rappels de géométrie des nombres.

Soit E un espace vectoriel euclidien de dimension n. Rappelons
qu'un réseau de E est un sous-groupe discret de E qui engendre E
en tant qu'espace vectoriel. Si R est un réseau de E, le déterminant
d‘une base (e1,...,en) de R par rapport a une base orthonormee de mé-
me sens que E est un réel >0 qui ne dépend que du réseau, et que 1'on
appelle discriminant du réseau; notation : A(R). Son carré est le dé-

" Divers compléments ont été ajoutés en octobre 1984 aprés le §7.
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terminant des produits scalaires e . €5 Soit U wun ouvert de E con-
tenant 1'origine. La borne inférieure des discriminants des réseaux R
permis pour U (i.e. tels que UNR= {0}) est un nombre réel >0 (ou
+o), appelé constante de réseau de U, que nous notons c(U), et évi-
demment fini si U est borné. L'un des problémes de la géométrie des
nombres est la détermination de c(u) pour certains ouverts U, ou tout
au moins 1'obtention de bonnes minorations de c(U). On en déduit alors

des inégalités utiles en écrivant que 1'on a A(R) > c(u) pour tout ré-

seau permis R.

On va s'intéresser en particulier au cas o U est une boule de
centre 0 (ou 1*intérieur d'un ellipsoide, cela revient au méme par 1i-
néarité). La détermination de la constante de réseau de 1a boule unite
Bn d'un espace euclidien de dimension n, notée classiquement T, est
1'un des problemes majeurs de 1a géométrie des nombres. On peut traduire
la définition de T dans le langage des formes quadratiques : une forme
quadratique q sur 1'espace euclidien E posséde un discriminant D(q)
dans R (pas seulement dans ]R*Z\IR), 3 savoir le déterminant de la
forme bilinéaire (x,y) — % [q(x+y) - q(x) -q(y)] sur une base ortho-
normée de E. On définit la constante d'Hermite Y, comme la borne in-
férieure des réels positifs t vérifiant la propriété suivante : pour
toute forme quadratique q définie positive sur R” muni de sa struc-
ture euclidienne canonique, il existe un élément x non nul de Z" qui
satisfait a 1'inégalité q(x)gt:D(q)1/n. L'existence de vy, résulte
de celle de Fn : pour des raisons d'homogénéité, on a Y™ F;Z/n. On
utilisera Y, Sous la forme suivante : c'est la borne inférieure des
réels positifs t tels que tout réseau R de E posséde un point
x#0 de norme g_t:A(R)z/n. Les constantes y, sont connues pour
n<8 (cf. [B1], ou [Cal, p. 332, ou [M-H], p. 29); la table suivante en

donne les valeurs :

n |1 > | 31 4 | 5| 6| 7|8
oo g > | 4 | 8 %‘”‘64 256

Les résultats sont dis a Lagrange pour n=2, a Gauss pour n= 3
A Korkine et Zolotareff pour n=4 et 5, et a Blichfeldt pour n=6, 7
et 8 (les 4 pages de [B1] sont quelque peu insuffisantes, mais les résul-
tats ont été vérifiés, par G.L. Watson en particulier). En revanche, 1?5

* ctf. 1!31'] .
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valeurs données par Chaundy ([Ch]) pour n= 9 et 10 n'ont pas été accep-
tées par 1a communauteé mathématique, plusieurs témoignages concordants
affirmant qu'il existe des “trous" dans 1'é6tude de cas faite par Chaundy.
Pour n>9, on trouvera dans [Ca] et [M-H] diverses majorations de v,
Signalons simplement 1e résultat suivant, di 3 Mordell (cf. [Cal, P. 269):
on a, pour tout n, 1'inégalité Y?‘ <y r_1-1)n/(n-2). On trouve en par-
ticulier Yg_<_272/7 et y}8529°/7, majorations un peu moins bonnes

que les valeurs conjecturales de Yg et de 711% qui sont danc [Ch], a
savoir 2° et 2—3—- respectivement.

Notons pour terminer ce paragraphe qu'il est souvent commode de
considérer des réseaux relatifs, c'est-a-dire des réseaux d'un sous-es-
pace de E. Dans ce cas, leurs discriminants sont définis a 1'aide de

la structure euclidienne induite.

§ 2 - Application aux corps de nombres.

Soit K un corps de nombres, ou plus généralement une Q-algebre
étale, c'est-a-dire un produit fini d'extensions (séparab\es) de Q,
dont on note n le degré. Par extension des scalaires a R, on obtient
la R-algebre étale R ° K, notée iZ, qui est isomorphe a un produit
R"x €% ; 1le couple (r,s) s'appelle la signature de K (ou de K);
ona r+2s=n. Ilyamn @Q-homemorphismes de K dans €, dont 1
ont une image réelle et 2s ont une image non réelle; autrement dit, K
posséde r places réelles et s places complexes, donc (r+s) places
3 1'infini, dont 1'ensemble est noté S.

~

L'identification de K a Rrxms n'est pas canonique : elle
n‘est définie qu'a composition prées avec 1'un des r!s!ZS R- automor-
phismes de K. Ce qui est canonique, c'est 1'identification de K a

n Rev . (ev)ves désignant 1'ensemble des idempotents irréductibles

VES . A

de K. Néanmoins, on identifiera le plus souvent K & 1'algebre

Ar g™ Rrxcs . les images dans € d'un élément pe K seront alors no-
9

tées 61”"’en’ en convenant que 6y est réel pour 1<k<r, et que

1'ona 8,.= B POUr r+1<k<s.
11 faut maintenant munir 1la R-algebre Ay s d'une structure eu-

clidienne, c'est-a-dire d'une forme quadratique définie positive Qg.
Dans la suite, sauf mention expresse du contraire, Qg Sera la forme qui

prend sur X= (x.‘,...,xr, 21,...,23)€A‘r 5 la valeur
+2|z1|2+ +2|le2. On constatera que c'est ce choix qui

x%+..’+x$
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conduit aux formules les plus simples. C'est le choix fait par Hunter
dans [Hul, et i1 est logique du point de vue des formes quadratiques :
la forme naturelle x |—> TrK/Q(XZ) a pour signature (r+s,s), et
1'on obtient qg en "rendant positiye" la forme x |—> TrK/m(XZ); i;
choix apparait également chez Lenstra ([Ln]), qui identifie € a R
par a+bil— (a+b,a-b).

~

La forme q; sur A, ¢ définie ci-dessus induit sur K une for-
me quadratique qui ne dépend pas de 1'identification de K a Ar g
- et que 1'on note encore dq-

Soit M un réseau de Z dans K, c'est-a-dire un sous-Z-module
de K de rang n; M posséde un discriminant, a savoir
dK(M)= det TrK/Q(eiej)’ ol {e1,...,en} est une base arbitraire de M
sur Q. Pour la topologie usuelle de K identifié a Qn, M est dis-
cret, et s'identifie donc aprés complétion & un réseau de ﬁ, que 1'on
note encore M. A ce réseau et a une structure euclidienne q sur E
est associé un discriminant noté AK,q(M)’ et simplement AK(M) si

Q=qgp-

Proposition 2.1. AK(M)2= (-1)SdK(M).

En effet, AK(M)2 et dK(M) sont les discriminants de Mc K pour
les formes quadratiques x |—> qo(x) et q:xl—- Trﬁ/lz(xz); la décom-

position de Ar,s en somme directe R" o C° de (r+s) corps est or-
thogonale pour q et pour qp> qui coincident sur les facteurs réels,
et dont les matrices dans les bases (1,i) des facteurs complexes sont
respectivement (g g) et (g f;); le quotient des discriminants est

donc (-1)%, c.q.f.d.

Remarque 2.2. Le calcul de By q(M) pour une structure euclidienne ar-
bitraire q se déduit tout de suite de la Proposition 2.1 : on trouve

la formule

By,q(M) = D(a)/idy (M)

Par exemple, pour q(x) = x?+ ,,,+-XE+-[z1|2+ R |zq|2, on a

A q(M)= 273 /ld (M)[. Le facteur inutile et usuel 2-S réapparait.
9

Nous allons méintenant examiner le cas ou la Q-algébre K est mu-
nie d'une structure d'algébre sur un corps de nombres K' de signature
(r',s') et de degré n'= r'+2s', Comme K' est un corps, le degré
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m= [K:K'] est défini. Pour chaque place a 1'infini veS(kK'), notons

oy (resp. °v) le nombre de places réelles (resp. complexes) de K au-

dessus de v, et soit m, = Py * Oy 1e nombre de placei de K au-dessus

de v; on écrit ps, Oy my lorsque 1'on identifie K @ Ar,s~ On a

pk+20k=m si k<r! et pk=0,mk=ok=m si k>r', d'ou les rela-
r' r'+s!

tions r= I Py et s= L Ops et bien sir n=mn'. Etant donnés

~ ~

une structure euclidienne g Sur K et un réseau relatif M de K,

on note AK, (M) 1le discriminanE de M pour la restriction de q au
sous-espace vectoriel RM de K engendré par M, et 1'on écrit sim-
plement AK(M) si q=qg- 11 faut prendre garde au fait que les calculs
faits pour une forme q définie en fonction de 1a signature de K peu-
vent conduire 3 des résultats différents dans K' pour la restriction

de q et pour 1a forme analogue q'. la situation est particu]iérement
simple pour 1a forme Qgs la signature n'intervenant pas explicitement :

Proposition 2.3. Pour un réseau M de K', ona 1'égalité

B (M) = m"'/?ldK.(M)'l”Z.

En effet, 1a restriction de Qg a K' est le produit par m de
1a forme analogue attachée a K', @ cause des égalités pk+-20k=rn

pour k<r' et o =m pour k>r'; 1le déterminant qui définit AK.(M)2 |

est donc multiplié par m"  lorsque 1'on passe de K a K.

r S
Remarque 2.4. La forme ¢ : X|l—> = xi4~ T \zkl2 a pour restriction

‘ k=1 k=1
r S
3 K' la forme x|—> T M x§-+m X \zklz, et 1'on trouve la for-
k=1 k=1
mule peu commode
r.l_“‘sl
_ 1/2 ,-s' 1/2
AK’q(M)— ( 1r=11 m) "2 |dK.(M)\ .

Nous allons maintenant voir comment, étant donnés K, K' et une -
forme quadratique définie positive q sur K, on peut donner une majo-
ration de la valeur que prend q en un é1ément bien choisi de K qui
n‘est pas dans K'.

Lemme 2.5. Soient E un espace euclidien, F un sous-espace de E, Fl-
son supplémentaire orthogonal, (e1,...,e ) une base orthogonale de F
et pr 1la projection de E sur F'L para]lélement a F. Alors, ona
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1'identité qopr(x)= q(x)- X q(ek)- b(x,ek)z, b désignant le produit
k=1

scalaire associé a q.

En effet, la forme quadratique q'=qepr de E est caractérisée
par les égalités q'(x)= q(x) si xeF et q'(x)=0 si xeF.

Théoreme 2.6. Pour tout corps de nombres L, notons ZL 1'anneau des
entiers de L. Soit q -une forme quadratique définie positive sur K,

soit a la forTe qopr, pr désignant la projection orthogonale (pour
"q) de K sur K', etsoit g' |la restriction de q a K'. Il existe

un élément GEZK, o¢ K', vérifiant 1'inégalité

93 (8) < vpope (AK,q(ZK)/AK- ’q'(ZKI))Z/(n-n')

(y. est la constante d'Hermite pour la dimension p).

En effet, K'Y est un sous- espace de R de dimension n-n';

comme ZZK' = K nZK , toute projection parallélement a K' sur un sup-
plémentaire de K'  transforme ZK en un réseau de ce supplémentaire
et applique ZK. sur {0}. Lorsque 1'on projette sur le supplémentaire
orthogonal pour q, on voit tout de suite que le discriminant de ZK
pour q est le produit des discriminants des projections pour les res-
tricitons de q, c.q.f.d.

Nous allons maintenant pousser les calculs dans le cas de la forme '
qg- L'évaluation du nombre de droite est immédiate par la Proposition
2.3. Pour évaluer q1( 8), nous appliquons le Lemme 2.5, en utilisant les
idempotents irréductibles de K'. Auparavant, nous devons introduire les
n' “fonctions trace" associées a la structure de K'-algébre de K .

Soit J(K') 1'ensemble des Q-isomorphismes de K' dans (€. Pour
c€J(K'), soit JO(K) 1'ensemble des Q-homomorphismes de K dans (€

qui ont o pour restriction a K'.

Définition 2.7. Avec les notations ci-dessus, pour tout o€J(K'), on

appelle o-trace d'un élément 6€K Ta somme T te.
ted (K)

Notation : Tro,K/K'(e)’ ou Tro(e), ou Trk(e) si 1'on indexe J(K')
par {1,...,r', r'+l,...,r'+s’, r'+s'+1,...,n'}.

Les o-traces sont des éléments de K', de somme la trace TrK/Q.

Soient (e )ves (ou Ch 1<k<r'+s' si 1'on identifie K' a
Ar',s') les idempotents irréductibles de K'. 1Ils sont deux-a-deux or-
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thogonaux pour Iahforme qp définie sur R', donc aussi pour la forme
ag définie sur K; pour cette derniére forme, on a qo(e&)=|n si
k<r', et qgley) =2m si r'+1<k<s'. On complete cette famille en
une base orthogonale de K', en posant ey = ie&_s.(i =-1) pour
rles'+1<k¢n'; on a encore qqley) =2m pour k>r'+s'.

pour 1<k<r', blx,e y= Tr (x). Pour ' ¢k<r'+s', ona
1 2 17 o 2 Ky KT 2~
3 b(x,e, )" +3 b(x,ek+s.) = 5 lTrk(x)l +5 lTrk(x)l . En reportant dans
la formule du Théoreme 2.6, on arrive a 1'énoncé suivant :

Théoreme 2.8. Soit K un cof‘ps de nombres de degré n, extension de
degré m d'un sous-corps K' de degré n'. Il existe un élément entier
o de K, qui n'appartient pas a K', et qui vérifie 1'inégalité sui-
vante (cf. 2.7 pour 1a définition de Tro,K/K‘) :

1/ (nen’
E lTl"cJ,K/K'(e)lz*wn-n' ‘dK/"‘néii(.| - )'

o€J(K")

En outre, cette inégalité est vérifiée par tout &lément de K différent

n
2 1
z ‘9‘ 5

<
=1 v

de 0 par un élément de K'.

Corollaire 2.9 (Hunter). Tout corps de nombres K de degré n contient
un entier © irrationnel vérifiant 1'inégalité

n
2 .1 2 1/(n-1)
i'z=:1|e1.| <5 (TrK/Q(G)) + Y- |dy/nl :
On peut écrire sous une forme un peu différente 1'inégalité du
Théoreéme 2.8, en utilisant 1'_1;dentité suivante qui s'applique A touvees-
pace affine quadratique (E, E, q) : ¢€tant donnés (m+1) points

0, M1,...,Mm de E, ona 1'identité :

e > >
% q(MiMj) = m 51: q(OM.i) 'Q(; OM‘i)’

i< i
. > ->
qui se démontre en développant I q(OMj-OMi). En appliquant cette
~ 4]
jdentité a la forme Qg de K et aux (m+1) points 0, 0 seeesBy
1 m

les m indices décrivant les -homomorphismes de K dans C prolon-
geant un méme Q-isomorphisme de K' dans C, et en sommant sur JLKY ),

on obtient 1'énoncé suivant :

Corollaire 2.10. Sous les hypothéses du Théoreme 2.8, i1 existe un 61é-
ment eeZK. pgK', vérifiant 1'inégalité :




- 0 =
$

£ oz e, -0,0% <my, . ld/n" dy, |

i=1 k<®
les indices k et & de la somme intérieure désignant des conjugués de
6 relatifs aux Q-homomorphismes de K dans € prolongeant successi-
vement chacun des n' Q@Q-isomorphismes de K' dans €. Dans le cas par-
ticulier o K'=0Q, cette inégalité s'écrit simplement

1/(n-n.')

| 2.10 bis. 3 lez-eklz <y IdK/nIU(n'”.
' 1<k<e<n

Montrons rapidement comment les inégalités des énoncés 2.8, 2.9 et
2.10 permettent de chercher les corps K de signature (r,s) donnée et
de discriminant dK majoré en valeur absolue par une borne M donnée.
Tout d'abord, on regarde pour les différents diviseurs n'>1 de n la
possibilité qu'un élément 6 du Théoreme 2.8 soit dans un sous-corps de

K de degré n'. L'inégalité 2.10bis montre que 1'on doit avoir

1/(n-
2.11. £ 10,017 < (n'/m) vy_q lde/ml /(n=1) " (mnt = ).
1<k<a<n’
Par 1"inégalité entre moyennes arithmétique et géométrique, on ma-
jore le discriminant dK.(e) de 6 dans K' (i.e. de son polyndme ca-
ractéristique dans K'), et donc aussi [dK.I. On a alors 1'inégaiité :

1 - ] LI
2.12. ldgo | < 12 v, _qldy/n] /0=1) oyt (=172

Cette inégalité limite considérablement le nombre de sous-corps de
K qu'il est indispensable de considérer. On se raméne & 1'aide de plu-
sieurs applications de ce procédé a étudier les éléments 6€K qui en-
gendrent K sur un sous-corps donné K'.

On utilise alors le Théoréme 2.8. Tout d'abord, par translation
par un élément de K', on raméne Tro(e) 3 parccurir un systéme <‘je re-
présentants de ZZK. modulo mZK.; on peut donc se limiter a m" va-
leurs pour Tro(e), et 1'on peut du reste diminuer ce nombre en multi-
pliant 6 par une racine de 1'unité de K' (si K'=@Q, on peut suppo-
ser que 1'on a OST"K/Q(O)S"/Z)- Ensuite, on utilise la majoration de
la somme ; leil2 :

i=1
O(MVZ(n_".)) de chacune des racines. Si 1'on note
f(x)= X"- a1Xm"1 + a?_xm"2 +aeat (-1)mam le polyndme caractéristique de

pour K' donné, on a une majoration en



- 10 =

g dans K/K's on voit que 1'on 2 une majoration de la borne supérieure
des valeurs absolues des 2y (k>2) en O(MK/Z("'n )) (utiliser les

fonctions symétriques des racines).

Bien entendu, on a perdu beaucoup d'information en majorant
Sup|ei|2 par z\ei\z. i 1'on est amené d calculer une approximation
des racines (par exemple, pour tester des isomorphismes entre corps),
alors on peut éliminer les polyndmes pour lesquels la somme 2‘91\ est
trop grande. Mais, quel que soit 1a méthode que 1'on emploie, il est
. yraisemblable que 1a majoration en 0(M 2(n-1)) pour le coefficient
ay du polyndme caractéristique d'un é1ément irrationnel de K est ce
que les méthodes géométriques peuvent donner de mieux. Toutefois, 1a
question suivante est sans doute intéressante : peut-on améliorer la ma-
joration du coefficient ay lorsque 1'on s'est donné les coefficients
a1,...,ak_1? 11 en est ainsi lorsque K'=q, et que 1'on utilise la si-
gnature des COrps que 1'on cherche (en écrivant que 1'on a f(a) >0 pour
tout a si r= 0, ou que les dérivées de £ ont le nombre maximum de

racines si g=0,000)

Remarque 2.13. Les autres formes quadratiques (par exemple, la forme

q(x)= T x%+— b2 121\2) sont d'un maniement moins commode que 13 forme
i=1 i=1
Q> et, en particu1ier, ne permettent pas de majorer efficacement les

discriminants des S0US-COYPpS aventuels que 1'on doit considérer. Pour
étre complet, nous donnons 1e résultat analogue a celui du Corollaire
2.9 pour 1a forme q (cf. [Goll; on pose ek= ¢k+-iwk pour
1§k§r+s):
Tout corps de nombre contient un entier irrationnel © vérifiant
1'inégalité
s

- = = - 1 =
£ (o0 4(rss) T R (e 2)/n1g2s/ oy 2k
1<k<aLr+s k=1
Remarque 2.14. L'inégalité du Corollaire 2.10 donne une majoration de
1a norme du discriminant relatif dK/K‘(e) par 1'utilisation de 1'iné-
galité entre moyennes arithmétique et géométrique 3 en effet, avec les
notations du Corollaire 2.10, on a =

n

S(zi%'ek\z >n'm(m-1)/2

‘2

n‘mlm-1$/2
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Cette inégalité, tres utile pour les petits degrés, est d'un inté-
rét moindre pour les degrés assez grands, mais permet néanmoins d'élimi-
ner des polyndmes lorsque 1'on construit des tables. Dans le cas ol
K'=@Q, on obtient 1'inégalité

271 dy|\n/2
ldg(8)] < (—7ﬂ7;77-—) qui majore le facteur inessentiel

de dg(0) en 0(|d ™).

‘Bien entendu, si 1'on calcule les racines, la comparaison de la
somme Zleklz aux discriminants a priori possibles est une source bien
plus importante d'élimination de polyndmes; du reste, un calcul partiel
des racines (par exemple, le calcul des racines réelles lorsque r n'est
pas trop petit) permet des estimations utiles de la somme Z|91|2; cette
idée apparait dans [Po3]. Enfin, on trouvera dans les articles de Hunter,
Godwin et Pohst cités dans la bibliographie diverses propriétés des coef-
ficients des polynomes de R [X] ayant une signature donnée qui sont

d'une trés grande utilité.

Terminons ce paragraphe par une derniére remarque : le choix de la
forme dp> s'il semble conduire aux formules les plus simples, n'est
peut-étre pas le meilleur pour toutes les signatures; Godwin ([Go2]; voir
aussi [An 1] ) suggére de remplacer qp par des formes quadratiques du

.or s
type £ |xi|24-o pX |z.|2 ol o estunréel >0 a choisir en fonc-

i=1 §=1
tion de la signature.

§ 3 - Exemples.
Nous allons examiner d'abord quelques exemples d'extensions cubi-

ques. Auparavant, il est bon de revenir sur la discussion qui suit le co-
rollaire 2.10; lorsque 1'on majore le discriminant des sous-corps a con-
sidérer, il est sous-entendu qu'un corps imprimitif contenant un sous-
corps de méme degré mais de discriminant plus grand contient de toute fa-
con un élément 6 vérifiant le Théoréme 2.8 et n'appartenant pas a ce
sous-corps. Si 1'on désire cependant classer les extensions contenant un
sous-corps de degré n' et de discriminant <M, on doit considérer
tous les sous-corps K' vérifiant 1'inégalité IdKJ_§M1/m, inégalité

a priori moins bonne que 1'inégalité 2.12.

Voyons ce qui se passe pour le degré 6. Donnons-nous M>0. En
combinant les inégalités qui figurent dans 2.9 et 2.14, on obtient le ré-
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syltat suivant @ soit K un corps de degré 6, de discriminant dy, vé-
rifiant 1'inégalité ldKngd; i1 existe alors dans K un élément ©
vérifiant 1'une des conditions suivantes :

(i) K= Qo) et % \91.|2 5_% TrK/m(e)2 + (4M/3)1/5

(i1) © appartient 3 un corps cubique K3 dont le discriminant vérifie
1'inégalité |dy | < (M/24)3/
3

(iii) © appartient a un corps quadratique Ko dont le discriminant vé-
rifie 1'inégalité |dy | < (128M/729)1/5.
2

Si 1'on désire construire la liste des corps K imprimitifs avec
|dy| <M, on doit se contenter des inégalités |dy |§M1/2 et

1
ldy |53M1/3 (on peut montrer que 1'on a €n fait |dg | < (M/3) /2y,
3

D'apres [B-R], il y a deux discriminants de corps primitifs jusqu'a
-22 000 dans le cas n=6, r=0 (-14731 et 20627, premiers). Si 1'on
désire pour n=6 et r= 0 Tles corps imprimitifs jusqu'a -22000, il
suffit d'examiner les corps Ky avec |dK3|5;59 (5 corps; dK3= -23,
-31, -44, -59 ou +49) et les corps K, avec ‘dKz\f:s (3 corps, avec

dK = -3, -4 ou +5, mais 1'hypothese r=0 élimine +5), cela si 1'on
2
admet que les corps imprimitifs sont effectivement signalés par [B-R].
Sinon, on doit utiliser les inégalités |dy | <85 et 0<-d, <28. En
3 2

utilisant 1a théorie du corps de classes, 0On traite facilement les exten-
sinns d'un corps cubique; les discriminants qui apparaissent sont
g3, 4927, _aa2.11, -312.11, 2319, o323, -23%.27, -232.35

(1es normes des discriminants relatifs sont congrues a 0 ou -1 mod 4).
On traite de méme assez facilement les extensions d'un corps quadratique
K2 avec qK assez grand. En fait, si 1'on écrit le discriminant rela-

tif sous la forme 6¢2, s correspondant a une extension quadratique de
KZ’ la norme N de & est congrue @ 0 ou 1 mod 4. Pour le cas
N=1, on trouve des extensions cycliques, dont les discriminants sont
233, -113.2%, 7277 et _33.36,  déja rencontrés, et 43.13% et
-33.192, nouveaux. On arrive 3 se débarasser par des arguments algébri-
ques des possibilités N= 4, 5, 8,9, 12, 13 et 16, et on est ramené
au cas ol dK - -3 ou -4, Faute de tables assez stendues en degré 4, on

doit utiliser les résultats du paragraphe 2. Tenant compte des racines
+bX=~C,

de 1'unité, on est amené a considérer les polynomes f(X) = X3-aX2
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3

avec a,b,c€Z, (X1, a€{0,1,1+1',j-J'2} (1'2=-1,J' =1, §#1),
2

f ¢Z[X] et f sans racine dans K2. Posons d= -d|<2 (d=+3 ou +4).

Le Théoreme 2.8 donne alors 1'inégalité suivante pour les racines Xq
Xps X5 de f: 2(|x1|2+ |x2|2+ |x3]2) < (4M/9d)1/4+:g3 |a|2. On peut
ensuite majorer |c|2 par 1'inégalité entre moyennes et |b| par 1'éga-
1ite -2b= ¥ xZ-a’, d'ou 2[b| < la|%+ [xy [P [xy) %+ [xgl%, et

[b] 5_.‘11 (am/9d) V4 4 % |a|2. Voici ce que 1'on trouve pour |b|2 et

|c|2 en fonction de (d,lalz) :

(d, a2) | (4,00 | (1) | 4,2 | 3,00 | (3,1) | (3,3)

Ic]? < 1,61 2,12 2,71 2,00 2,58 4,04

Ib|? < 3,09 5,88 9,56 3,57 6,54 | 15,13

(on a lcl2 < [% (4M/9d)1/4 + %|ai2]3).

Les inégalités que 1'on obtient pour la norme de b ne sont pas
excellentes, et recenser les polynémes est une tdche un peu ardue pour
une machine de poche, mais facile pour un micro-ordinateur. On peut néan-
moins raccourcir la liste des polyndémes en utilisant les "corrections lo-
cales" (cf. paragraphe 5) : on montre en effet qu'il n'y a pas d'idéal
de norme 2 dans K pour IdK| < 24050; on peut donc supposer que 1'on
a f(0)=f(1)=1mod (1+i) si d=4, d'ou |c|=1, et
a+b=1 mod (1+i). On peut de méme montrer que 1'on ne peut avoir en mé-
me temps un idéal premier de norme 3 et un idéal premier de norme 4 pour
IdKI < 28534. On arrive alors a vérifier qu'il y a 15 corps de discrimi-
nants > -22000, et que ces corps sont caractérisés par leur discrimi-
nant (on utilise les méthodes du paragraphe 5 pour les corps imprimitifs,
et on vérifie directement (cf. paragraphe 4) que les deux corps de discri-
minant  -20627 donnés dans [B-R] définissent le méme corps). Voici
les 15 discriminants : -9747, -10051, -10571, -10816, - 11691,
-12167, - 14283, -14731, -16551, -16807, - 18515, - 19683, -20627,
-21168 et -21296; douze de ces corps sont définis par un polynome dans
[Ln], table 5; les trois autres corps sont les corps cyclotomiques de
discriminants -75= - 16 807 et -39=- 19683, et le corps primitif de
discriminant - 20687, défini par le polyndme X6 £ X0+ Xt e 23+ 2x% 4 x4 1s

On vérifie du reste que les majorations de |b| et de |c|, comme les
corrections locales utilisées, s'appliquent jusqu'au discriminant 24 050;
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on en déduit que les corps imprimitifs K vérifiant 1'inégalité

- 24 050<d <-22000 sont les quatre extensions de corps quadratiques
de diserimmants - 22592 = - 25,363, - 22707 = -33.29%, - 23031 =-3°.843
et -24003 = -33.7.127, définies respectivement par les polyndmes

W3 X2 (14X -1, X3 - (G322 s X - 32, ¥ -X-§ et X -xP-X-j, et
1'extension de corps cubique, de discriminant -22747 = -232.43.

Les calculs ci-dessus montrent que tous les corps que 1'on trouve
comme -extension d'un corps quadratique peuvent &tre obtenus avec un coef-
ficient b tel que |b|2-0 1,2 ou 3. Cela indique que les majorations
utilisées sont loin d'étre opt1ma1es, et souléve la quest1on suivante :

étant donné un polynéme X —a1Xn 1+a2Xn 2 (- 1) n’ de racines
CITRE en, peut-on majorer les coeff1c1ents ak pour 2<l<<r1 en fonc-
tion de ay,...,aq et M= I R | de facon a obtenir des résultats

meilleurs que ceux donnés par une maJorat1on brutale utilisant les fonc-
tions symétriques des racines, a savoir Iakl < k) k/2 ? On parvient
effectivement a démontrer de telles majorations en utilisant les places
réelles de K' Tlorsqu'il y en a; le cas ot K' est totalement imagi-

naire est, de ce point de vue, le plus difficile a étudier.

I1 serait intéressant d'étudier certaines extensions relatives sur

le modele des extensions cubiques des corps quadratiques imaginaires, et
notamment les extensions de degré 4 des corps quadratiques, dont 1'étude

est indispensable pour la recherche des petits discriminants en degré 8.

En outre, de telles études permettent de résoudre des problémes de

nombres de classes.

Considérons par exemple les corps K de degré 4, de nombre de
classes multiple de 3, et contenant un corps quadratique imaginaire K2'
Si K2 lui-méme a un nombre de classes divisible par 3, on vérifie que

le corps K de discriminant minimum est Q(/ ——=— 3+ de discriminant
23.232= 4232, Sinon, K/K2 posséde une classe re]at1ve d'ordre 3, ce

qui entraine 1'existence d'une extension cubique de K2 ayant méme dis-
criminant relatif que K/Kz. L'étude qui préceéde montre que, Si

dy <4232, alors : ou bien K,= 0(/-3), K est isomorphe a

Q(/ 35+13/-3 1'extension cubique correspondante étant définie par le
polyndéme X -X2-+X +j, ou bien dKZSg-7. Une étude un peu plus pré-

cise montrerait sans doute que les discriminants 3897 ,etf 4232 - sont
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les deux plus petits parmi les extensions quadratiques de corps quadra-
tiques imaginaires de nombre de classes divisibles par 3.

I1 n'y a pas de raison de se limiter aux cas totalement imaginaires:
aux extensions quadratiques d'un corps quadratique réel correspondent,
selon que r vaut 0, 2 ou 4, des corps de degré 6 avec 2, 4 ou 6
places réelles. Compte-tenu des tables de [Ln], [L-M] et [B-R], i1 est
probable que les discriminants minimaux respectifs pour le nombre de
classes divisible par 3 sont 30125= 53.241, - 104-875:=~53.839, et
485125=-+53.3881, correspondant respectivement aux corps Q(v/-31+12/5),
0(/21416/5) et 0(/109+40/5), Tles extensions cubiques respectives étant
définies par les polyndmes X3-6X2-+X-+(1-e), X3-X2-X-e et
X3-+X2-+(9-3)X-+(6-2), avec 6= (1+/5)/2

I1 serait de méme intéressant de savoir si le discriminant minimum
d'une extension quadratique d'un corps cubique de discriminant <0,
dont le nombre de classes est divisible par 3, est atteint par le corps
Q(/¥18-a+6a2) avec oS -a- 1 =0, dont le discriminant est
- 1400 263 = -232.2647, le corps de degré 9 correspondant étant défi-
ni par le polyndme X3-a3X2+-a2X- 1 (trouvé par Leutbecher, qui montre
que le corps est euclidien), ou encore si le plus petit discriminant
d'un corps de degré 4, de nombre de classes divisible par 5, et contenant
un corps quadratique imaginaire, est bien 12176 = 26.761, correspondant

au corps Q(/19+207), trouvé par les méthodes de Mestre ([Me], appendice,
N=11).

§ 4 - Utilisation des méthodes analytiques.

Les travaux de Stark, O0dlyzko, Poitou et Serre, faisant appel a
des méthodes analytiques, ont conduit a des progrés décisifs dans les mi-
norations des discriminants pour une signature donnée, mais n'ont pas
fait progresser de fagon comparable la construction de tables des corps
ayant une signature donnée. Toutefois, si 1'on se contente de rechercher
les discriminants proches du minimum escompté, on peut utiliser les mé-
thodes analytiques pour raccourcir la recherche des corps.

En effet, les "formules explicites" (cf. [Poi]) tiennent compte de
la décomposition de toutes les places de @, contrairement aux inégali-
tés de la géométrie des nombres dans lesquelles seul le comportement de
la place a 1'infini de Q@ est pris en compte. De facon précise, pour un
corps K de degré n, de signature (r,s) et de discriminant de valeur
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absolue d, on obtient des inégalités de la forme :

'logd>An+Br+C+Dn'1+2 z oG by, F (mlogNpP),
- P,m (np)™ 2

ot F est une fonction réelle positive convenable, P parcourt 1'en-
semble des idéaux premiers de K, m parcourt 1'ensemble des entiers
>0, N désigne la norme, et A, B, C, D sont des réels dépendant de
F. La somme sur P et m (dite : "correction locale") joue un rdle
important lorsque K posséde des idéaux premiers de petites normes (la
correction locale n'est intéressante que pour les petites normes, les
fonctions F devant étre rapidement décroissantes a 1'infini).

En conséquence, si 1'on recherche des discriminants assez petits
3 1'aide des méthodes du paragraphe 2, on empéche la présence d'idéaux
de petites normes, et 1'on empéche ainsi certaines décompositions dans
F_ des polyndmes que 1'on trouve pour les petites valeurs de p. Le
nombre de polynémes a considérer est de ce fait réduit, souvent dans des
proportions considérables (et en outre, 1'étude de 1'irréductibilité est
elle aussi simplifiée). Cette remarque a été utilisée au paragraphe 3,
les corrections locales ayant été calculées a 1'aide des tablesd'Oklyzko
([0d1], table IV; on obtiendrait des inégalités un tout petit peu meil-
leures a 1'aide des fonctions utilisées par Poitou et Diaz y Diaz).

Le fait qu'il n'y ait pas d'idéal premier de norme <pm au-dessus
d'un nombre premier p donné entraine, si m>1, que les valeurs pri-
ses en un entier k par un polyndme f définissant un entier 0 de K
sont premiéres a p, ou bien que, en posant

wy_yh n-1 ; n-i
f(X¢h)=X"ra X' +o va g Xea o ait pnoap g

remarque, combinée avec une majoration de la somme X Ieil
’ i=1
des paragraphes 2 et 3) et avec 1'inégalité entre moyennes, suffit a

prouver dans certains cas que le terme constant de f est égal a +1
oua -1: c'est ce qui se passe pour n=7 dans [DyD 3] et [DyD 4],

pour 0<i<n. Cette
2 (notations

pour les intervallesdans lesquels les discriminants prennent leurs valeurs.

On peut améliorer la remarque par une étude locale, et, en particulier,
mettre en jeu les résultantsde f et des polyndmes irréductibles g de
degré i<m, la valeur de f en h étant le cas particulier ot i=1
et g(X)=X=-h,.
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§ 5 - Tests d'isomorphisme et d'irréductibilité, et détection des sous-

corps.

On considere dans ce paragraphe des corps de signature (r,s) don-

née et de degré n-=r+2s.

Lorsque 1'on recherche les corps ayant un discriminant de valeur
absolue d majorée par un réel M donné au moyen des méthodes du para-
graphe 2, on se trouve en présence d'une longue liste de polyndmes. On
calcule leur discriminant, et 1'on dispose pour cela de divers procédés.
Le plus rapide est sans doute le calcul du résultant du polyndme et de
sa dérivée, mais on rencontre parfois des phénomenes d'instabilité. On
peut calculer les discriminants en entiers par un déterminant, ou encore,
si 1'on a en définitive besoin d'une approximation des racines 91""’9n
des polyndmes, on peut utiliser la formule df= rlf'(ei) qui donne Tle
discriminant du polynéme f. Si 1'on effectue un calcul de racines dans
€, on peut en profiter pour éliminer les polyndmes pouk lesquels zleil2
est trop grand. Quel que soit le procédé employé pour calculer le discri-
minant, on peut éliminer les polyndmes de discriminant trop grand en uti-
lisant la remarque 2.14. I1 faut ensuite, pour chaque polyndme f, cal-
culer le discriminant d, de 1'algébre K= QI[X1/(f), 1i.e. chercher
1'entier a>0 tel que dK==a2df. Cela se fait classiquement en cher-
chant une base d'entiers de K/Q, et en essayant les diviseurs carrés
possibles de df (noter que dK est de la forme a2 dKZ, K2 désignant

le corps quadratique associé a K par la signature d'une permutation;
éventuellement, K, =Q). On élimine les cas od |dy| est inférieur aux
minorations connues des discriminants, K ne pouvant pas alors étre un
corps. I1 reste alors & tester 1'irréductibilité des polyndmes conservés,
et 2 voir si deux discriminants égaux correspondent au méme corps a iso-

morphisme pres.

a) Isomorphismes. On se donne deux polyndmes f et g de discri-
minants non nuls, et 1'on cherche si les algebres K= Q[X]/(f) et
L= Q[X]/(g) sont isomorphes. Nous allons donner deux algorithmes, dont
le point de départ est le méme. On commence par choisir un complété QV
de @, et 1'on suppose que les algébres complétées Kv et Lv sont
isomorphes. On va chercher si, parmi les Qv-isomorphismes de Kv sur
Lv (en nombre égal a 1'ordre du groupe d'automorphismes de KV/QV), il
y en a un qui est rationnel sur Q@ (i.e. provient d'un )-isomorphisme

de K sur L par extension des scalaires). Pour cela, on calcule dans
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une extension finie QQ convenable de QV des approximations des raci-
nes 91,...,9n et 6',...,96 de f et de g vrespectivement, avec une
précision a déterminer, dépendant de 1'algorithme (si Q, =R, on prend
QQ==E; si v est p-adique, i1 est conmode de prendre p non ramifié
dans K[X1/(f) : p est une uniformisante, et on calcule pratiquement
dans un corps fini). S'il existe un Q-isomorphisme o de K sur L,
alors, pour une permutation de ei,...,e' respectant la structure de
Qv-algébre de Lv’ 1ﬁ somme S = 121 6, 8' est un entier de 1"“intervalle
[-S',+S'] ou S'= _Z |e | se majore par Cauchy-Schwartz :

st < (z]ey], ) 12 (z]e | ) /2. Si la permutation choisie convient, alors
S est entier aux erreurs de calculs prés, et 1'on remarque en outre,
pour v finie, que cet entier est dans [-S',+S']. L'expérience prouve
qu'il restepeu de choix possibles pour une permutation fn général, 0 ou

1 si L n'a pas d'automorphismes non triviaux). Maintenant, i1 faut
donner un test de rationalité pour une permutation qui n'est pas rejetée.
Le principe consiste & trouver un entier ¢ de QLX1/(f) dont les fonc-
tions symétriques sont trés voisines de celles de o' (1'image de X
dans Q[X1/(g)). Alors, comme ces fonctions symétriques sont des entiers,
elles coincident, et les algébres sont isomorphes. .

a1) On cherche ¢ sous la forme x0-+x1e-+...-+xn_1en'1, X;€Q, ©
désignant 1'image de X dans K. Si ¢ est entier les X;- sont dans
12, a désignant 1'entier >0 tel que df=a2 dK‘ On calcule une

a
valeur approchée de la solution (xo,...,x _1) du systeme linéaire

n-1 .
z xJei 0: (1<i<n). Ecrivons Ta solutions sous la forme x;=m, {+E;
j=0
1 = :
avec m€2Z et 8161-2—5,51, et posons p= MmO+ ... +mo
Alors ¢ et  ont des fonctionssymétriques a valeurs dans 5]1, qui

sont proches, do?c coincident si les €5 sont assez petits. On a alors

g~ 1

les 6galitées = 'm; GJ g, et o est un isomorphisme.
j=0 Jjoi i
Ce procédé, qui ne nécessite qu'une approximation médiocre des ra-
cines de f et de g, fournit une transformation de Tschirnhausen de
o a o' explicitement, mais nécessite la résolution d'un systeme Tiné-

aire (que 1'on peut du reste prendre a coefficients entiers : considérer

n-1
le systéme 20 X Tr (6 ) =S, pour k= 0,1,...,n-1, dans lequel on
J..
a posé 5y, = 21 eke'- les Sy doivent étre entiers aux erreurs d'ar-
i
rondis prés, et on ttilise 1'entier le plus proche pour déterminer les xQ,
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az) On cherche & montrer 1'existence d'un ¢ €K commenc1 ~-dessus, mais
sans le déterminer. Posons, pour 0<k,2<n-1, s = I eke' , et
sl - k,Ra i=1 11

. 11 .
écrivons SkLe” Mok, g avec mk’lﬁl et Ek,ze[ 55 2[. On doit
supposer que le calcul numérique fournit des Sk g entiers aux erreurs
de calcul pres, et dans un intervalle acceptable si 1'on travaille en
p-adique; sinon, la permutation choisie ne correspond pa? ? un 1sc(>m<;rph1‘s-

% '3
(037 5oty )

me sur Q. Maintenant, pour %= 0,1,...,n-1, soit
la solution du systéme linéaire

1 e'i‘ xg= Mg (k=0,1,...n-1).

nM3

i
On définitainsi pour 0<2<n-1 un élément ¢(£) de K (et 1'on écrit
simplement ¢ et ¢; au lieu de ¢() et ¢$1)); mieux, 4)(2) appar-
tient a la codifférente De de 1'ordre Z [0] (module dual pour la for-
me bilinéaire (x,y) —> TrK/Q(xy) de Z1[61). En particulier, d ¢ b
est entier, d désignant la valeur absolue du discriminant de f.

Le calcul numérique des k ) donne des majorations des €k, 2 a
partir desquelles on peut majorer n= Sup |¢ -0} | (on majore n en
étudiant le systéme linéaire ci-dessus lorsque 2- 1). 11 est clair que
1'on a ‘rK/(D(‘b( )) = Trg /0)( ') puisqu'il s ag(;it); d'entiirs dans Tles
deux cas. Nous allons montrer maintenant que ¢ et ¢~ coincident
pour 0<%<n-1 pourvu que les €k, 0 soient assez petits (et alors, ils
seront tous nuls). Tout d'abord, on a les inégalités
|6%2-¢%| <8 A2'1|6%-¢1| dans lesquelles A désigne un majorant commun
aux e; et aux q’i’ d'ot 1'on déduit les inégalités
|>r:‘ akyd - z qu B ¢e, o +nant gk

PP A B ksl
B désignant le maximum des [65]. Si donc Tes 'Ek,zl et par suite n
sont assez petits, on obtiendra pour tout & 1'inégalité

n quels que soient k,2€ [0,n-1],

n
k %
lzs-iq)-i‘

k  (2) 1
;] <
i=1 i <7

111'

M3
D

I1 est clair que 1'on a ¢£=¢(2) pour 2=0 ou 1. Pour 2=2,

on remarque que q)z est un élément de (11 De(d¢2= d¢.¢€Z [e]DecDe);
donc, les sommes ? e']ﬁp? sont dans él; comme les sommes

g ek¢(2) sont e;;i}éres, on a en fait 1'égalité des deux sommes pour
I1<==10,1,...,n-1, dorc 1'égalité ¢(2) =¢2 dans K; en particulier,
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¢2€DO' donc ¢»3€é De, et le méme argument prouve que 1‘'on a

¢3==¢(3); on montre ainsi de proche en proghe que ¢J et ¢(J)
cident pour 0<j<n-1. On a donc TrK/Q(¢J) = Tr /m(e'J) pour
0<j<n-1, ce qui prouve que ¢ et o' ont méme polynbme caractéris-

coin-

tique, c.q.f.d.

En résumé, on a un procédé permettant de vérifier si un isomorphis-
me donné entre complétés est rationnel, en vérifiant que (n-1)“'1 nom-
bres réels (a savoir les I 6'; 61'.2 pour 1<k,2<n-1) sont trés proches
d'entiers. On a évité la résolution du systéme linéaire de ays mais les
majorations d'erreurs & faire sont plus précises, la borne finale 1/2
devant étre remplacée par 1/2d, et une estimation des solutions d'un

systéme linéaire devant étre faite.

Le plus pénible dans ces méthodes est la recherche des bonnes per-
mutations. Pour n=6, le nombre maximum d'essais nécessaire avec
Qv= R est 48, 16, 48 et 720 selon que r vaut 0, 2, 4 ou 65 si v
est p-adique pour un p de degrés résiduels (1,2,3), 12 essais suffi-

sent.

b) Irréductibilité. Indiquons trés briévement quelques procédés
pour un polyndéme fé€Z [X] unitaire. Une méthode effective, mais peu
efficace, consiste a vérifier 1'absence de décomposition f=gh pour des
polyndmes g,h & coefficients dans Z jusqu'a une certaine borne :
comme on connait une majoration de X Ieilz (845...,8, désignant tou-
jours les racines de f), on majore les fonctions symétriques d'un nom-
bre quelconque d'entre elles, donc les coefficients de g et de h pour
les différents degrés possibles de g. On peut s'aider des décomposi-
tions de f modulo divers nombres premiers : éventuellement, 1'irréducti-
bilité s'impose; sinon, on obtient des congruences sur les coefficients
des couples (g,h) possibles qui limitent les choix. Si 1'on connait les
racines, on peut rechercher des combinaisons de racines donnant des fonc-
tions symétriques entieéres; on trouve alors rapidement un décomposition

de f s'il en existe.

c) Recherche de sous-corps. On a un corps K, dont on connait He
discriminant, défini par un polyndme irréductible f, de degré n.
On cherche si K contient un sous-corps K' de degré n' divisant n;
on pose m=n/n'. Comme d?. divise dK, les choix pour K' sont 1i-
mités. Comme les algorithmes décrits en a) et b) s'adaptent a des polynd-
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mes a coefficients dans K', et que K contient K si et seulement
si f a un facteur de degré m dans K', on peut en principe adapter
1'un des procédés de b). On peut s'inspirer de a1) ou de az) pour simpli-
fier les calculs, en cherchant a exprimer les éléments d'une base d'en-
tiers 91,...,en. de K' a 1'aide de m racines bien choisies de f.
L'exemple suivant indique succinctement un procédé généralisable : on
cherche si K, supposé totalement imaginaire, contient le corps quadra-
tique imaginaire de discriminant -d.
Soient 61’61""’em’§h les racines de f. On cherch% une suite
€s.--s€, d'61éments de {#1} telle que [(61-61)+ki2 sk(ek-ek)]/i/a
soit entier. En ?ermgtgant les couples (ei,ég) convenables, on suppose
6, -6
: 'f/ak est dans Z aux erreurs de calculs pres. Si
i

; L =L 1 L =L ,

le calcul des expressions i (6k-+ek) et d i (Gk-ek) donne un ré-

que la somme E

sultat trés proche d'un entier, alors f est certainement réductible
dans K' (et 1'on peut, si on le souhaite, calculer un facteur de f

dans K').

Nous arréterons 1a 1'étude des algorithmes, laissant au lecteur le
soin d'écrire les algorithmes de c) en toute généralité, et d'écrire les
majorations précises qui interviennent dans a), b) et ¢). On remarquera
quand méme que les procédés décrits en a) permettent de traiter d'autres
questions; en particulier, on peut en tirer un moyen de reconnaitre si
une extension L/K de corps de nombres est galoisienne et de déterminer
le cas échéant le groupe deGalois, et, plus généralement, de voir a quel
type de permutation 1'on a affaire.

§ 6 - Coincidences de discriminants (étude a priori).

Les coincidences de discriminants entre corps isomorphes de méme
signature sont vraisemblablement rares. En outre, dans tous les cas con-
nus, il n'y en a pas qui mettent en jeu des discriminants petits. Ainsi,
en degré 3, la premiére coincidence a lieu pour d=-972 = -22.35 si
r=1 et pour d=+3969=34.72 si r=3; il y a 120 corps avec
-972<d<0 et 133 corps avec 0<d<3969. En degré 4, les tables de
Godwin montrent que pour r=0, 2 et 4, il y a respectivement 18,30 et
au moins 64 corps avant la premiére coincidence. Les quelques résultats
connus pour les degrés plus grands confirment la tendance observée en de-
gré <4.
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On ne connait pas d'explication a ce phénoméne. On peut toutefois
prouver a priori, a 1'aide des minorations des discriminants, que certai-
nes coincidences sont impossibles. Le principe consiste a calculer, pour
un hypothétique corps K' ayant méme discriminant d qu'un corps K
donné, le discriminant D de 1'algebre K'@Ql. pour un sous-corps con-
venable L de K, par exemple K Tlui-méme. Si |D| est assez petit,
K's.L n'est pas un corps (i.e. K' et L ne sont pas linéairement
disjoints sur Q), ce qui peut suffire a prouver que K et K' sont

isomorphes.
Nous allons étudier quelques exemples pour des degrés >5. Pour
les calculs qui vont suivre, il est commode d'introduire la définition

suivante :

Définition 6.1. On dit qu'une algébre étale sur un corps local a le type
de ramification (ef,e%.,...) si dans sa décomposition en produits d'ex-
tensions, les sommes des degrés résiduels correspondant aux indices de
ramification e,e',... sont égales respectivement a f,f',... (on peut

supposer que 1'on a e>e'> .

Le type de ramification est clairement défini par la donnée de

1'algebre étendue a 1'extension maximale non ramifiée du corps de base.

Au produit direct correspond 1'addition des indices correspondant a un
méme indice de ramification. La régle suivante détermine le type de ra-
mification des produits tensoriels dans un certain nombre de cas, in-
cluant les cas ou la ramification est modérée : on pose (ef)(e%.)= (e?u),
avec, m désignant le P.G.C.D. de e et de e', e"=ee'/m et f"=mff,
et 1'on ajoute les indices correspondant a un méme indice de ramification.

Exemple 6.2. Si d est produit de facteurs premiers distincts, le type
de ramification sur Qp des algeébres complétées Kp et Ké de K et

de K' est (21’1n-2) pour tout diviseur p de d. Celui de Kpomp Ké

est alors (2, 5 1n2-4n+4)’ d'ol D=+d?"2 (noter que p est im-

pair).

6.3. Corps de degré 5. Le calcul ci-dessus, joint aux minorations de
(Dy D 1] pour les corps de degré 25 avec 1,9 ou 25 places réelles, donne,
pour un corps de degré 5, les inégalités d>1905,-d>4263 et
d>22679 selon que r vaut 1, 3 ou5. Les seules applications con-
cernent le cas ou r=1: on voit qu'il existe (a isomorphisme prés) un
unique corps de degré 5 pour chacun des discriminants 1609 (premier),
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1649 (=17.97) et 1777 (premier), résultat qui apparait pour la pre-
miere fois dans [C-R] en 1974. On montre en fait un résultat plus précis :
chacun des entiers 1609, 1649 et 1777 n'est le discriminant que de
deux corps : un corps de degré 5 et un corps quadratique. Le discriminant
suivant pour n=5et r=1 est 2209==472. Le calcul fait en 6.2 ne
montre pas directement qu'il s'agit d'un sous-corps du corps de classes
de Hilbert de Q(/=47). On s'en sort par 1'argument suivant : pour
p=47, les types de ramification sur Qp ne peuvent étre que (31,12)

et (22,11). Le premier cas impose que 1'on ait un corps de type A5, et
alors sa cloture galoisienne a un discriminant trop petit pour le degré
60. On en déduit que le type de ramification est (22,11), et le calcul
du discriminant du produit tensoriel de deux corps ayant ce type de ra-
mification permet de conclure. On montre également 1'unicité des discri-
minants 114, 31% et 41 si r=5 (corps cycliques); en fait,

114== 14641 et 472= 2209 sont chacun discriminant d'un unique corps.

6.4. Corps de degré 6. A partir du degré 6, le procédé ne permet plus
d'exclure les coincidences de discriminants sans facteur carré. En par-
ticulier, on ne peutpas traiter a 1'aide de 1'exemple 6.2 le cas du dis-
criminant minimum pour r=4 (mais 1'unicité a été prouvée par Pohst
dans [Po 3]).

a) Soit K de degré 6, de discriminant D= d3f ou d est le discrimi-
nant d'un corps quadratique k et f est premier @ d. On cherche a
prouver que K contient k. On montre que, si p divise d, 1'expo-
sant de p dans le discriminant de Ksml< est majoré par 8 pour p>3,
par 10 pour p=3, par 18 pour p=2 et d#0 mod. 8 et par 30 pour
p=2 et d=0 mod.8. On en déduit, en utilisant les minorations de

[Dy D11 pour le degré 12 avec 0,4,8 ou 12 places réelles, que les discri-
minants D suivants sont ceux d'un corps contenant un corps quadratique
(et 1'unicité en résulte pour les valeurs pas trop grandes de D en uti-
lisant la théorie du corps de classes) :

r=0, d=-3 : [D| < 18436 (D=-9747,-11691,- 14 283,- 16 551)
. |D| < 20741 (D=-10816=-25.13%)

r=2,d=5 : |D| < 129763 (D= 30125, 35 125,...,66 125 = 55.23%, ...,
91125 = 3°.53,...)

-
n
o
-
a
]
[]
>
A

r=4,d=5 : |[D|] < 440905 ( = -104 875,-144 875,-149 875,...)

r=6,d=5 : |D| < 2391345 (D= 300125, 485125,...,2 235 125)
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En utilisant les clétures galoisiennes des corps cubiques de dis-
criminants -23, -44, -31 et +148, on prouve 1'unicité pour les dis-
criminants 12 167 =233, 21296 = -2%.113, -29791=-31% et
+810 448 = 24.373. On montre également 1'unicité pour les discriminants
-16807=-7° et +371293=13° (corps cycliques), ainsi que pour di-
vers autres discriminants de la forme 741" en montrant qu'ils contien-
nent le corps Q (2cos2mn/7) (31 213=74.13, 69629=74.29,... pour
re2; 103243=-7%.43, -218491=-75.13,... pour r=4; 300125=7%.5

434581 =7%.181, ... pour r=6).

3

La situation est moins favorable pour les discriminants de la for-
me dzf, ot d est un discriminant de corps cubique non abélien. Le
calcul du discriminant de K@Qk ot k est un corps cubique de discri-
minant -23 ou -31, ou la cldture galoisienne d'un tel corps, ne permet
pas de prouver 1'unicité pour les discriminants - 10051 =-19.23" et
-10571 = - 11.312 , qui occupent probablement les deuxiemes et troisiemes
positions pour r=0; on prouve néanmoins 1'unicité si 1'on sait que le
type de ramification de 23 ou 31 est (23) et non (31,13), un ren-
seignement facile a obtenir lorsque 1'on construit des tables en déter-
minant des polyndmes; la situation est analogue pour r=2 (on a toute-
fois 1'unicité du discriminant minimal, a savoir 28 037=232.53, par

[P0 3]).

6.5. Corps de degré 8. Les deux discriminants minimaux pour r=0 sont
conjecturalement 1257728= 28.173 et 1265625= 34.56, correspondant
respectivement a une extension cyclique .K1 de k= Q (/-T) ramifiée
en un idéal au-dessus de 17 et au corps des racines 15-iémes de 1'unité.
Soit K un corps de degré 8 dont le discriminant est 28.173. En con-
sidérant KeQ k, on montre que K contient k; en considérant Key K1,
on montre que K est isomorphe a K1; pour le discriminant 34.56, on
montre d'abord que K contient les corps k=@ (/-3), ce qui assure que
5 est la puissance quatrieéme d'un idéal premier de degré 2. De nombreux
autres résultats d'unicité peuvent étre démontrés concernant entre autres
les discriminants 1327833=3%.13%.97, 1492 101 = 3%.132. 109,
1513728=28.3%.73, 1763584= 28.832 pour r=0, -4461875=5%112.59
pour r=2, 15243 125=54.293 pour r=4; ces corps sont définis dans

{(Ln] ou [L-M].

6.6. Divers. Si 1'en connait des renseignements sur la décomposition
des nombres premiers ramifiés, ou si 1'on connait a priori un sous-corps,
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alors 1'identification est facilitée. Par exemple, un corps de degré 10
| et de discriminant —75.114, s'il contient k= Q (/-7), est certaine-
( ment le corps de classes sur k de rayon un idéal premier au-dessus de
1.

§ 7 - Tables numériques (bibliographie commentée).

Pour un degré n donné et une signature (r,s) donnée (n=r+2s),

on cherche a dresser la liste des corps K vérifiant 1'inégalité

- |dg| <M, ot M est une constante que 1'on se donne, aussi grande que
possible. 11 est utile de connaitre divers renseignements sur les corps,
en particulier groupe des classes d'idéaux (avec structure et générateurs)
et groupes des unités; cela permet en particulier d'étudier les exten-
sions abéliennes des corps K par la théorie du corps de classes. Mal-
heureusement, on ne ppsséde des tables étendues que jusqu'au degré 4.

Dans ce qui suit, on laisse de coté les corps quadratiques : la
liste des corps est triviale, et de nombreuses tables circulent J du res-
te, on peut obtenir les renseignements que 1'on désire en s'aidant d'une
machine de poche tant que les discriminants ne sont pas gigantesques.

a) Discriminants minimaux. Les minima de ]dK[ connus sont les
suivants : n=3, r=1et 3 (Furtwdngler, 1896, cf. [Mal) n=4, r=0,2
et 4 (Mayer, 1929, [Mal); n=5, r=1, 3 et 5 (Hunter, 1957, [Hul);
n=r=6 (Kaur, 1970, [Ka]); n=6, r=0, 2 et 4 (Pohst, 1982, [Po 3]);
n=7, r=1 (Diaz y Diaz, 1982, [DyD 3]; n=7, r=3 (Diaz y Diaz, 1983,
[DyD 4]); n=r=7 (Pohst, 1977, [Po 21). Signalons que [Kal contient
une lacune, comblée dans [Po 3], et que 1'étude du cas n=6, r=0 par
Liang et Zassenhaus ([L-Z2]) ne peut étre acceptée telle qu'elle est, a
cause d'une erreur dans une inégalité (cf. [Po 3], p. 100).

On sait en outre qu'il y a un corps (a isomorphisme prés) par dis-

criminant (cf. [C-R] pour n=5).
La référence de [Mr 31, p. 170, & Gauss pour n=3 est une erreur.

b) Corps abéliens. Des techniques particuliéres se sont développées
3 la suite des travaux de Hasse et de Leopoldt; nous renvoyons le lecteur
A 1'ouvrage classique de Hasse ([Hal), et a [Mr 4] pour une bibliographie
récente. Notons simplement ici les tables de nombres de classes et d'uni-
tés calculées pour les corps cycliques de degré 3 et 4 (Marie-Nicole
Gras, [Gr 1]et [Gr 2] et de degré 6 (Mdki, [Mk]), et signalons que les
unités qui ne figurent pas dans [Gr 1] ont été par la suite déterminées

% ct., complement Cl.,
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par Mdki et Godwin ([Go 4]). Les résultats pour les corps abéliens non
cycliques de degré 4 se déduisent facilement de 1'étude des corps quadra-

tiques.

c) Corps cubiques. L'ouvrage classique de Delone et Fadeev ([D-F])
contient des tables de nombre de classes et d'unités pour les discrimi-
nants jusqu'a 1000 (r=1 et r=3). Les premidres tables trés étendues
sont celles de Angell ([An 1] pour -20000<d<0 et [An 2] pour
0<d<100000) . Angell signale que deux discriminants sont absents de
la table antérieure de Godwin et Samet couvrant 1'intervalle
0<d<20000. L'étude des corps cubiques réels a été reprise a Turku par
Ennola et Turunen ([E-T])f qui ont étudié les corps totalement réels de
discriminant <200000. I1y a au moins dix discriminants oubliés par
Angell (25717, 32404, 35996, 37 108, 37 133, 38905, 39992, 43 165,
43173, 43176) dans 1'intervalle 0<d<90000. En outre, on ne peut
exclure 1'existence d'autres erreurs : par exemple, les unités données
pour le corps de discriminant 39601 =1992 ne sont pas fondamentales
(cf. [Gr 11).

d) Corps quartiques. A ma connaissance, les seules tables un peu
étendues sont celles de Godwin ([Go 1], [Go 21, [Go 31), correspondant a

r=0, 2 et 4, et donnant les corps K pour lesquels on a respectivement

dK< 1458,**dK>-3280 et dK<11 664 . 11 serait intéressant de prolonger
ces tables, ainsi que de calculer les groupes de classes et d'unités. Si-
gnalons a ce sujet 1'étude faite par Pohst ([Po 1]) des extensions qua-
dratiques de @ (/5) et Q (/2).

Les discriminants minimaux pour 4 des 5 types de permutations pos-
sibles se déduisent des tables de Godwin : 125,-,1 125 pour le cas cy-
clique, 144,-,1600 pour le cas bicyclique, 117,-275,725 pour le cas
diédral et 229,-283,1957 pour le cas symétrique. Les extensions alter-
nées n'apparaissent pas, mais c'est un simple exercice de corps de clas
ses que de constater que les discriminants minimaux sont 3136 = 26.72
pour r=0 et 26569-= 1632 pour r=4, les extensions de degré 6 as-
sociées (définies a conjugaison prés) étant respectivement Q0 (),
n3-+n2-2r)-1 =0, et une extension quadratique non ramifiée du corps cu-

bique de discriminant 1632.

e) Corps quintiques. A partir du degré 5, les résultats sont sou-
vent tres partiels, et il est méme parfois difficile de savoir ce que
1'on peut tenir pour certain. Une étude numérique a été effectuée des
1955 par Cohn ([Col). Le travail de Matzat ([Mz]) contient des tables

¥ cf. Complément Ch.
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plus étendues et des exemples avec des nombres de classes > 1; ajoutons
A ces tables celles de Buhler ([Bul) concernant les corps de type alter-
né, et une étude récente de Rish que je ne connais que par le
Zentralblatt (Zbl 504, 25.10.83). I1 est certain que les premiers discri-
minants sont 1609, 1649, 1777 et 2409 pour r=1, -4511, -4903
et -5519 pour r=3, 14641 et 24217 pour r=5,

Plus précisément, on connait les minima pour certains des 5 types

de permutation (et les signatures permises) : ce sont les cas cycliques
(r=5, d=14641=11%), diedral (r=1, d=2209=47° et r=5,

d= 160 801 = 4012) et symétrique (r=1, d=1609, r=3, d=-4511 et
r=5, d=24217) . L'étude de Buhler des corps de type A5 avec une place
réelle montre, compte-tenu des inégalités de Hunter, que le discriminant
minimum pour le cas alterné et r=1 est 18 496 = (23.17)2. Buhler don-
ne le polyndme X5 +7x*+22x3 +34X2 4+ 17X - 17, de discriminant (29.17)%
le polyndme X5+2X3+4X2- 3X+4, trouvé par Matzat, a pour discriminant
(26.17)2, et définit le méme corps : on passe du second polyndme au pre-
mier par la transformation 6 b— 1- (e4+63+62+56)/2. Le minimum
n‘est pas connu pour le type alterné lorsque r=5; Tle plus petit dis-
criminant de [Bu] est 7017207 = (3.883)2. Les minima ne sont pas non
plus connus pour le groupe métacyclique d'ordre 20. L'exemple classique
pour r=1 du corps K= Q (92), avec dK=-50 000, peut étre amélio-
ré : en utilisant [Hal, conducteur 51, p. 162, on construit un corps de
discriminant 44217 = ‘32.173; pour r=5, en utilisant [Gr 2], conduc-
teur 212, p. 123, on construit un exemple de discriminant

2382 032 = 2%.533.

f) Corps sextiques. I1 s'agit du plus grand degré pour lequel des
recherches systématiques ont été entreprises (en 1'occurence, pour r=20
et 3, par Biedermann et Richter, [B-R]). I1 résulte de ces travaux que
les corps primitifs sont connus pour d>-22000 si r=0 et d<600000
si r=6; on trouve deux corps pour r=0, de discriminants -14731
et -20627 (les deux polyndmes donnés dans [B-R] pour ce dernier dis-
criminant définissent le méme corps,fait vérifié par 1'algorithme a,
du paragraphe 5), et un corps pour r=6, de discriminant +592661.

Le plus petit discriminant pour un corps primitif dans le cas n=6,

r=2 n'est pas connu; c'est probablement le corps de discriminant 29077
de [Ln], table 6. Quant aux corps imprimitifs, les minima pour r crois-
sant de 0 a3 6 sont =-9747, +28037, -103243 et +300125. Voici quel-
ques remarques sur la table 6, p. 29 de [B-R] : il faut ajouter en numé-
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ro 4 le discriminant ~-10816+= 26.132, et ajouter aussi les deux corps
de discriminant - 33856 = -26.232, 3 savoir Q (/~a) et Q (a,i) avec
a3-a-1= 0; il n'existe pas de corps imprimitif de discriminant
-—27848='-23.592; i1 existe un unique corps imprimitif pour chacun des
discriminants -40203= -33.1489 et -44496 = - 24.33.103. Cela se vé-
rifie par la théorie du corps de classes.

g) Utilisation de la constante de Lenstra. Les travaux de Lenstra
({Ln]), poursuivis par Leutbecher et moi-méme ([L-M]) ont mis en évidence
1'intérét de cette constante, liée a la théorie des corps euclidiens,
dans la recherche des petits discriminants. Ce fait a été confirmé par
1'étude récente qu'a faite Diaz y Diaz des corps de degré 7 avec r=1
ou 3. On trouve dans [Ln] et [L-M] des tables concernant les degrés 6
(r=0,2,4,6), 7 (r=1,3,5), 8 (r=0,2), 9 (r=1) et 10 (r=0), et quel-
ques exemples d'autres signatures. On trouvera dans [L-M] (paragraphe 8,
p. 117 et "Added in proof", p. 118) des conjectures concernant les dis-
criminants minimaux. D'autrescorps ont été trouvés récemment par
Leutbecher ([Lt]); en particulier, pour n= 10 et r=0 est apparu le
corps de discriminant - 209 352 647 =-23.(7.431)2, défini par le poly-
nome ge - (1-62-64)X-e avec 85-62-+1 =0, :

h) Autres problemes diophantiens. A coté de la constante de Lens-
tra, diverses question peuvent jouer un r6le dans la recherche des petits

discriminants, par exemple :

hi - L'étude des nombres de Pisot et de Salem (sans nécessairement faire
jouer un rdle spécial a une place réelle).

h2 - Le probleme de Favard ([Fal), qui m'a été signalé par Langevin (étu-
de de Sup lei-ejl pour un entier algébrique 0).

h3 - Le probléme de Lehmer, consistant essentiellement a évaluer

2 Max (1,|ei|) pour un entier algébrique 6 (cf. [Schl, paragraphe 19).

i=1
h4 - Le probleme suivant de Siegel, enfin, qui m'a été signalé indépen-

damment par M. Langevin et J.-P. Serre, est trés directement 1ié aux pré-
occupations de cet exposé : i1 s'agit de déterminer pour un entier k
donné tous les entiers totalement positifs et totalement réels 6 tels
que Tr (8)-dg (8)=k. Siegel ([{Si]) montre que 1'on a

Tr (8)/deg (8) >3/2 sauf si e=1 ou (3+/5)/2. Ce résultat a été gé-
néralisé par Smyth ([Sm]), qui a montré que 1'on avait 1'inégalité

deg (8)<1,2955 k, sauf si 6 est racine de 1'un des polyndmes - X-1,
oyt X3-5x246%-1, W13 ou XP-13e1axt-gren.
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Le probleme de Siegel est voisin de ce que 1'on a examiné au para-
graphe 2, ot c'est Tr (02) qui est en cause. I1 serait intéressant de
trouver des analogues pour toutes les signatures, avec des formes posi-
tives a valeurs entiéres.

i) Grands degrés. On trouve dans [Mr 2] des exemples de corps to-

talement imaginaires jusqu'au degré 80; pour les trés grands degrés, on
peut avoir recours aux tours de corps de classes, cf. [Mr 1].

_C - Compléments (octobre 1984).
C1) Le probleme du discriminant minimal pour n=8 et r=0 a
été résolu par Diaz y Diaz, qui montre en particulier que les deux pre-

miers discriminants sont ceux qui sont décrits en 6.5.

C2) Une table concernant les corps cubiques réels de discriminant
<100000 a été dressée par P. Llorente et A.V. Oneto (Math. Comp. 39
(1982), 689-692). En tenant compte des 51 corps abéliens qui ne sont pas
dans la liste, on arrive a 4804 corps, résultat identique a celui obtenu
par Ennola et Turunen. Ces derniers ont prolongé leur table, et également
fait une table donnant 1'indice des unités totalement positives. Signa-
lons également les articles (seuls ou en collaboration) de H.C. Williams
parus depuis 1977 dans Mathematics of Computation, consacrés aux corps
cubiques purs, qui contiennent des résultats sur les nombres de classes
pour certains discriminants dépassant 109 (en particulier, 35 (1980),
1423-1434).

€3) Godwin a repris 1'étude des corps de degré 4 et de signature
mixte (Math. Comp. 42 (1984), 707-711), complétant la table de [Go 2]
par les discriminants compris entre -3281 et -7776. Il faut toute-

fois prendre garde 2 1'impression défectueuse.

*p. 2 : Divers compléments ont été ajoutés en octobre 1984 a la suite
du paragraphe 7.

*p. L5 cf. complément C1.
*p. 26 : cf. complément C2.
*p, 2( : cf. complément C3.
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