[ee]

J. Martinet

Theorem 5.1. of [M1] shows that quaternion extensions
play a crucial role in the study of conductors and root
numbers of symplectic characters. Only a few results,
mainly due to Frohlich, are known.

The aim of this section is to describe one of them,
which concerns normal extensions N of § with Galois group G
isomorphic to the quaternion group Hy of order 8. Such an
extension will be called briefly a quaternion field, and we
shall restrict ourselves to the case of a tamely ramified
extension (i.e. 2 is not ramified in N/Q).

Write H8 = <0,T> with relations ot = 1, 12 = 02,

=] -1 5 P . p
TOT =0 , and imbed H8 in the field of quaternions by
OF31and T F3j. Then the reduced trace defines a
character X, with values x(1) = 2, x(02) = -2 and

x(s) =0 for s # 1, 02.  This character is the unique

irreducible character of degree 2 of Hg. We write WN or W

525
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for the Artin root number W(x).

Since N/@ is tamely ramified, the ring ON of integers
of N is a projective module over 7% [G]. Now, the projective
class group of Zﬂ[H8] is of order 2 (see below). We define
an invariant UN (or simply U) of N by putting UN = 41 or -1

according to whether O_ has a trivial image in this group or

N

not.

Theorem 1 (Frohlich) - Wy = Uy
We shall define in a quite natural way a local invariant
UN,v (or Uv) for every place v of @, with U = 1 almost

everywhere and U = 11 U_. Let W (or W_) be the local root
- v N,v v
number W(Xv)' Theorem 1. will be a consequence of the

following local result we are going to prove.

- = £ f Q.
Theorem 2 wN,v UN,v or every place v of §
For the details omitted in the proofs, the reader is

referred to [M] and [F].

§1. % [G]-modules

Let M be a projective % [G]-module.  Assume M is of
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rank 1 (i.e. @ 8, M is free with one generator over @[G]),
and define M' = {x e M | x = 0®x} and M" = {x € N | x + 0°x =
0}. Then, M' (resp. M") can be given a structure of pro-
jective module over Z' = %Z [G]/(1 - 02) (resp. Z" =

7z [6]/(1 + 02)). Let g = G/{1,0%}. Then g is isomorphic to
Klein's four group, and Z' is isomorphic to %Z [g], whereas
%" is isomorphic to the ring %Z [1,i,j,k] of integral quat-
ernions.  For both the rings Z' and #Z'" , every projective
module is free. Let now © (resp. ) be a basis for M' over
7' (resp. for M" over Z" ). It is easily verified that @
and Y are well defined up to the sign and the conjugacy by an

element of G. The following proposition is easy.

Proposition 3 The bases ® and Y can be chosen in such a

way that one of the following congruences holds:

11

a) ® = Y mod 2M

1

b) o =@ + 1Y + 01 mod 2M.
Moreover, for a given module M, only one of the con-

gruences a) or b) is possible, and M is free if and only

if a) holds.

Proposition 3 implies that there are exactly 2
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isomorphism classes of rank 1 projective % [G]-modules. But
it can be proved for the particular group H8 that given a
free module F and a projective module P over ZS[HB], then
P @& F is free if and only if P is (cf. [M], §2). Hence,

the projective class group of 7Z [G] is of order 2, and we

identify this group with {-1, +1}.

§2. Quaternion fields

A quaternion field contains three quadratic subfields

d and a

k , kz’ k3 with respective discriminants dl’ d2, 3

1
biquadratic subfield K with discriminant dl d2 d3’ the
compositium of the kis. We define a positive integer D by
D% = d1 d2 ds. Write N = K(/M) for some M € K (one can take
M = 2 with the notation of §1 applied to the G-module ON).
Let m be a square free integer such that Q(VE) is none of
the kis. By elementary considerations of group theory,
one proves that N(Vm) contains besides N a unique quaternion
field, say Nm, and that any quaternion field containing K
is of the form N for some m. Clearly, N o= K(VMm) .
Moreover, Nm is a tamely ramified extension of @ if and only

if m = 1 mod k.

Now let p be an odd prime number. Since the extensions
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N/ki are cyclic, if p is ramified in K/®, then every prime
above p in K is ramified in N/K. Hence, for every prime
factor p of m, either p is ramified in K/@ and has ramifi-
cation index equal to L4 for both the fields N and Nm, or p
is not ramified in K and is ramified in one and only one of
the fields N, Nm, with ramification index 2. Hence,
every quaternion field is of the form Nm for some m, where
N is a "pure" quaternion field in the sense of [F], namely:
every prime number ramified in N/@ is ramified in XK/Q.

We shall need in the sequel to know under what condit-—
ions a biquadratic field K = Q(/E;, /E;) can be imbedded in

a quaternion field (cf. [F]).

Proposition 4 A necessary and sufficient condition for K

to be a subfield of a quaternion field is that the following
condition holds for every place p of @:
(-1, dl) (-1, 4,) (dl,dz) = +1,
b b b
Note that there is no condition for an unramified p.
If p is the place at infinity, the above relation simply
means that K must be totally real. If p splits in some

quadratic subfield of K and is ramified in the others, it
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simply means that p must be congruent to 1 mod L.

The following proposition can be deduced from proposition

Proposition 5 Let m be a square free integer. In order that
k = @ Vn_'x) should be a quadratic subfield of a quaternion
field, it is necessary and sufficient that m be positive and

not congruent to -1 mod 8.

§3. The invariant UN

Recall that UN = 41 if ON is a free % [G]-module and
U = =1 otherwise. Put &(N) = +1 if N is totally real and
£(N) = -1 if N is totally imaginary. Choose ® and ¥ as in
§1 for the G-module ON. Then,

= 2 = 42 2\ = 2!
Y= ®mod 2 P =Y modh#TrK/Q(tb)—TrK (V%) mod L,

/%

whereas

= 2 = 2 .
® = oY + ) + TOY mod 2 =)TrK/Q(<I> ) = TrK/Q(w ) mod k.

- 2y = 2
Hence, UN +1 eTrK/Q(d) ) = TrK/Q(lp ) mod L.
- l+d1+d2+d
Proposition 6  a) TrK/Q(<I> ) = — mod. L.
S
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(v?) = gn) i p mod L.
p ramified

in N/Q

Proof &) We may choose for ® any normal basis of K/Q.

Taking 1+JEI+/EZ+/E;
? = — gives immediately a).

b)  We first remark that V2 is totally positive if N

is real and totally negative otherwise. Hence TrK/ (v?) and

Q
¢(N) have the same sign. To find the ideal of Z generated

by Tr (wz), we compute the discriminant D(N/@) of N/@ in

K/®

two ways. On the one hand, write for the bilinear form
T = TrN/Q(xy) the direct sum decomposition T = T' & T",

where T' = TrK/Q(xy) on N' =K and T = TrK/Q(xy) on

N" = {xeN |x + 0%x = 0}. This gives the formuls D(N/Q) =

D(K/Q)(T (¥2))*. On the other hand, we can use ramifi-

T

K/Q
cation groups to compute D(N/Q). This gives the formula
D(N/@) = I Bt I p?, and b) is proved.

p ramified p ramified
in N/ in K/q

*
We identify now (Z /W% ) with {-1. +1}, and write

a_ or o for the image Tr

N K/q

TrK/Q(wz) in {-1, +1}. Hence, Uy = oy

(9?) and BN or B for the image of

BN.

There is quite a natural decomposition of B as a product
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B = :
of local terms N v BV, namely

2

B, = E(I)

Bp =1 if p is unramified

BP = image of p mod 4 = (~l)(p_l)/2 if p is ramified.
Then, Bv = 1 almost everywhere, and B = I Bv.

7
It is less obvious to find what to choose for the dv's.
l+d1+d2+d3 o

We use a remark of Frohlich (cf. [F], §7): — = (5)

mod 4, where D? is the discriminant of K/Q. We now define

the o's:
v
o = +1 if v is not ramified in K/® (in particular,
a, = +1)
2 = 3 . e e .
ap = (5) for a finite prime p ramified in K/Q.

Then, &v = +1 almost everywhere, and o = I av. More—
over, dv depends only on the field K.

We know define local terms for U_ by U =U =aB .
N N,v v v v

Then, Uv = +1 almost everywhere and U = I Uv'
v

§L4, Some com utations of the invariant UN

Let p be a prime number. Write p' = (—l)(p_l)/2p, and

assume that Q(Vp') is not one of the fields k.. Given a
quaternion field N, we compare the local invariants of N and

N' = Np" The proof of the following proposition is obvious
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from the definition of the uv's and B;S.

Proposition T

. _ (_(p-1)/2
(1) By = () By
(i1) BN' 5 = (—1)(p_l)/2 By if p is unramified
2 2
in K/@Q
(iidi) BN',q = BN,q otherwise
(iv) Opr y = %y, for all v.

Corollary 8

Uype = Uy if p is unramified in K/@

= (—IL)(p—l)/2 U_ otherwise.

N' N

Corollary 9 Let A be the discriminant of a quaternion field

containing a biquadratic field K such that at least one prime

number p = 3 mod 4 is ramified in K. Then, exactly half of

the quaternion fields with discriminant A have invariant
=+.

UN 1,

Corollary 10 Let K be a biquadratic field such that every

prime number ramified in K/Q is congruent to 1 mod 4. Then
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the quaternion fields N containing K, if any, have the

same invariant UN.

Remark Let us call this invariant UK' Using Dirichlet's

theorem on primes in arithmetic progressions together with
propositions 4 and 5, it is easy to show that there exist
infinitely many fields K with UK = +1 and infinitely many

fields K with UK = -1.

§5. Proof of theorem 2.

We must verify for every place v of § the equality

UN,v - wN,v' .
(i) v =, If N is real, then o, =B, =W _=+l. IfNis
imaginary, then o = +.y Bv = -1, hence, Uv = -1. Now,

the only possible choice for a real Frobenius substitution

is Ov = o2, Hence,

x(1) - x(o? .~n(X,v)

n(x,v) = =2and W =i = -1.

n

We now consider the case of a finite prime p. Let GP
be the local Galois group. If p splits in at least one
quadratic subfield of N, then GP is cyclic of order 1, 2
or 4. If p does not split in K, then p is ramified in

K/@. Hence, p is odd, GP = G and the inertia group Ip is
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cyclic of order L. Let Xp be the restriction of X to Gp.
Lt G is cyclic. Then, X = ¢ + ¢ , where ¢ is a
(ii) D N 9 D P p> D

character of Gp of order equal to that of Gp. We thus have
If IP = {1}, then ¢p is unramified. Hence,

If Ip is of order 2, then the restriction of ¢p to the
group of p-adic units is the quadratic character x> C%).

Hence, W = (:l) = (_1)(p-l)/2 = U since ¢ =1 and
P p p p
= (_(p-1)/2
Bp (-1) .

If Ip = Gp, then the restriction of ¢ to the group of

p-adic units is a biquadratic character. Hence, p = 1

mod 4 end W = ¢ (-1) = (-) PR/ o, =1 and
P (id. Since p = 1 mod b, (%) = (-0 P/E g

w =1U_.
b b

(iii) Gp =G. Let kp be a quadratic subfield of the com—

B

letion N of N let H = Gal(N_/k and let be a
P . 3 ( p/ p)’ ¢p
character of H of order L.

*
Then, Xp = ¢p, the character of G induced by ¢P. Let

Ep be the character of G lifted from the non trivial

*
character of G/H. Then, 1 =1 + :p.

%
Hence, W((xp - 1) ) =W¢_ - 1), and therefore
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W(x_ ) =Ww(¢ ) W€ ). Take for kp the field

Qp(*/(-l)(p—l)/gp)- Since @( (—l)(p_l)/gp)/Q is remified

only at W (& W = +1, Hence, W(E = +1 for
ly at p, p( p) Oo(t‘p) > W( p)

p £ 1 mod 4 and W(ip) =41 for p £ 3 mod 4, a result known
to Gauss! We thus have W(t‘,p)2 = (—1)(:9_1)/2 = Bp. Now,

an easy computation shows that the transfer VerH is not

G
% *
trivial. This implies that the restriction of ¢p to Qp is
i 2 A
equal to sp' Since ap = (5) = ¢p(2), theorem 2 is a con—

sequence of the following lemma.

Lemma 11 (Frghlich, Queyrut) - Let K be a finite extension

*
of a p-adic field. Let £ be a character of K of order 2

corresponding to a quadratic extension E of K. Let ¢ be a
* *

character of E whose restriction to K is €. Assume that

both ¢ and € are ramified and tamely ramified. Then

Proof Let Vs Vp be the valuations of K, E respectively.

Since ¢ and € are ramified and tamely ramified,

v (4(6)) = vy (6(4)) = 1.

With the notation of [M1] II, §2, we have the formulae

*
Footnote: see Exercise T.
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W($) = —= ©(9) ena  W(e) = —= (E)
w(4(9)) w(4(€))
with
o) = ] e(E ) eac(e) = ]« @),
erE/U% erK/Ué
where c generates DE/Q $(¢) and A generates DK/Q §(€).
1Y b
Now, v..(D_ ) =1. Hence, v_(D ) =1+ v (D ) =
E' B/K E E/Qp E K/Qp

1+ 2 vK(DK/QP)’ and vE(c) = EVK(d). We can therefore

choose ¢ = d € K., Since E/K is totally ramified, the

*

%
inclusion K €. E induces an isomorphism UK/Ué > UE/UE. We

can therefore choose the x's in UK to compute T(¢). For
. 2
such a choice for ¢ and x, V¥ (%) =y (=X,

i Hence,
2

)y (

Since the conductors §(¢) and $(€) have the same absolute
norm, W(¢) = ¢(2) wW(E),

Q.E.D.
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