

H_8

J. Martinet

Theorem 5.1. of [M1] shows that quaternion extensions play a crucial role in the study of conductors and root numbers of symplectic characters. Only a few results, mainly due to Fröhlich, are known.

The aim of this section is to describe one of them, which concerns normal extensions N of \mathbb{Q} with Galois group G isomorphic to the quaternion group H_8 of order 8. Such an extension will be called briefly a quaternion field, and we shall restrict ourselves to the case of a tamely ramified extension (i.e. 2 is not ramified in N/\mathbb{Q}).

Write $H_8 = \langle \sigma, \tau \rangle$ with relations $\sigma^4 = 1$, $\tau^2 = \sigma^2$, $\tau\sigma\tau^{-1} = \sigma^{-1}$, and imbed H_8 in the field of quaternions by $\sigma \mapsto i$ and $\tau \mapsto j$. Then the reduced trace defines a character χ , with values $\chi(1) = 2$, $\chi(\sigma^2) = -2$ and $\chi(s) = 0$ for $s \neq 1, \sigma^2$. This character is the unique irreducible character of degree 2 of H_8 . We write W_N or W

for the Artin root number $W(\chi)$.

Since N/\mathbb{Q} is tamely ramified, the ring O_N of integers of N is a projective module over $\mathbb{Z}[G]$. Now, the projective class group of $\mathbb{Z}[H_8]$ is of order 2 (see below). We define an invariant U_N (or simply U) of N by putting $U_N = +1$ or -1 according to whether O_N has a trivial image in this group or not.

Theorem 1 (Fröhlich) $-W_N = U_N$.

We shall define in a quite natural way a local invariant $U_{N,v}$ (or U_v) for every place v of \mathbb{Q} , with $U_v = 1$ almost everywhere and $U = \prod_v U_v$. Let $W_{N,v}$ (or W_v) be the local root number $W(\chi_v)$. Theorem 1. will be a consequence of the following local result we are going to prove.

Theorem 2 $-W_{N,v} = U_{N,v}$ for every place v of \mathbb{Q} .

For the details omitted in the proofs, the reader is referred to [M] and [F].

§1. $\mathbb{Z}[G]$ -modules

Let M be a projective $\mathbb{Z}[G]$ -module. Assume M is of

rank 1 (i.e. $\mathbb{Q} \otimes_{\mathbb{Z}} M$ is free with one generator over $\mathbb{Q}[G]$), and define $M' = \{x \in M \mid x = \sigma^2 x\}$ and $M'' = \{x \in M \mid x + \sigma^2 x = 0\}$. Then, M' (resp. M'') can be given a structure of projective module over $\mathbb{Z}' = \mathbb{Z}[G]/(1 - \sigma^2)$ (resp. $\mathbb{Z}'' = \mathbb{Z}[G]/(1 + \sigma^2)$). Let $g = G/\{1, \sigma^2\}$. Then g is isomorphic to Klein's four group, and \mathbb{Z}' is isomorphic to $\mathbb{Z}[g]$, whereas \mathbb{Z}'' is isomorphic to the ring $\mathbb{Z}[1, i, j, k]$ of integral quaternions. For both the rings \mathbb{Z}' and \mathbb{Z}'' , every projective module is free. Let now Φ (resp. ψ) be a basis for M' over \mathbb{Z}' (resp. for M'' over \mathbb{Z}''). It is easily verified that Φ and ψ are well defined up to the sign and the conjugacy by an element of G . The following proposition is easy.

Proposition 3 The bases Φ and ψ can be chosen in such a way that one of the following congruences holds:

$$a) \quad \Phi \equiv \psi \pmod{2M}$$

$$b) \quad \Phi \equiv \psi + \tau\psi + \sigma\tau\psi \pmod{2M}.$$

Moreover, for a given module M , only one of the congruences a) or b) is possible, and M is free if and only if a) holds.

Proposition 3 implies that there are exactly 2

isomorphism classes of rank 1 projective $\mathbb{Z}[G]$ -modules. But it can be proved for the particular group H_8 that given a free module F and a projective module P over $\mathbb{Z}[H_8]$, then $P \oplus F$ is free if and only if P is (cf. [M], §2). Hence, the projective class group of $\mathbb{Z}[G]$ is of order 2, and we identify this group with $\{-1, +1\}$.

§2. Quaternion fields

A quaternion field contains three quadratic subfields k_1, k_2, k_3 with respective discriminants d_1, d_2, d_3 , and a biquadratic subfield K with discriminant $d_1 d_2 d_3$, the compositum of the k_i 's. We define a positive integer D by $D^2 = d_1 d_2 d_3$. Write $N = K(\sqrt{M})$ for some $M \in K$ (one can take $M = \psi^2$ with the notation of §1 applied to the G -module O_N). Let m be a square free integer such that $\mathbb{Q}(\sqrt{m})$ is none of the k_i 's. By elementary considerations of group theory, one proves that $N(\sqrt{m})$ contains besides N a unique quaternion field, say N_m , and that any quaternion field containing K is of the form N_m for some m . Clearly, $N_m = K(\sqrt{Mm})$. Moreover, N_m is a tamely ramified extension of \mathbb{Q} if and only if $m \equiv 1 \pmod{4}$.

Now let p be an odd prime number. Since the extensions

N/k_1 are cyclic, if p is ramified in K/\mathbb{Q} , then every prime above p in K is ramified in N/K . Hence, for every prime factor p of m , either p is ramified in K/\mathbb{Q} and has ramification index equal to 4 for both the fields N and N_m , or p is not ramified in K and is ramified in one and only one of the fields N, N_m , with ramification index 2. Hence, every quaternion field is of the form N_m for some m , where N is a "pure" quaternion field in the sense of [F], namely: every prime number ramified in N/\mathbb{Q} is ramified in K/\mathbb{Q} .

We shall need in the sequel to know under what conditions a biquadratic field $K = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$ can be imbedded in a quaternion field (cf. [F]).

Proposition 4 A necessary and sufficient condition for K to be a subfield of a quaternion field is that the following condition holds for every place p of \mathbb{Q} :

$$(-1, d_1)_p \quad (-1, d_2)_p \quad (d_1, d_2)_p = +1.$$

Note that there is no condition for an unramified p . If p is the place at infinity, the above relation simply means that K must be totally real. If p splits in some quadratic subfield of K and is ramified in the others, it

simply means that p must be congruent to $1 \pmod{4}$.

The following proposition can be deduced from proposition 4.

Proposition 5 Let m be a square free integer. In order that $k = \mathbb{Q}(\sqrt{m})$ should be a quadratic subfield of a quaternion field, it is necessary and sufficient that m be positive and not congruent to $-1 \pmod{8}$.

§3. The invariant U_N

Recall that $U_N = +1$ if O_N is a free $\mathbb{Z}[G]$ -module and $U_N = -1$ otherwise. Put $\epsilon(N) = +1$ if N is totally real and $\epsilon(N) = -1$ if N is totally imaginary. Choose Φ and ψ as in §1 for the G -module O_N . Then,

$$\psi \equiv \Phi \pmod{2} \Rightarrow \Phi^2 \equiv \psi^2 \pmod{4} \Rightarrow \text{Tr}_{K/\mathbb{Q}}(\Phi^2) \equiv \text{Tr}_{K/\mathbb{Q}}(\psi^2) \pmod{4},$$

whereas

$$\Phi \equiv \sigma\psi + \tau\psi + \tau\sigma\psi \pmod{2} \Rightarrow \text{Tr}_{K/\mathbb{Q}}(\Phi^2) \equiv -\text{Tr}_{K/\mathbb{Q}}(\psi^2) \pmod{4}.$$

$$\text{Hence, } U_N = +1 \Leftrightarrow \text{Tr}_{K/\mathbb{Q}}(\Phi^2) \equiv \text{Tr}_{K/\mathbb{Q}}(\psi^2) \pmod{4}.$$

$$\text{Proposition 6} \quad \text{a)} \quad \text{Tr}_{K/\mathbb{Q}}(\Phi^2) \equiv \frac{1+d_1+d_2+d_3}{4} \pmod{4}.$$

$$\text{b) } \text{Tr}_{K/\mathbb{Q}}(\psi^2) \equiv \epsilon(N) \prod_{\substack{p \text{ mod } 4 \\ p \text{ ramified}}} p \text{ in } N/\mathbb{Q}$$

Proof a) We may choose for Φ any normal basis of K/\mathbb{Q} .

Taking $\Phi = \frac{1 + \sqrt{d_1} + \sqrt{d_2} + \sqrt{d_3}}{4}$ gives immediately a).

b) We first remark that ψ^2 is totally positive if N is real and totally negative otherwise. Hence $\text{Tr}_{K/\mathbb{Q}}(\psi^2)$ and $\epsilon(N)$ have the same sign. To find the ideal of \mathbb{Z} generated by $\text{Tr}_{K/\mathbb{Q}}(\psi^2)$, we compute the discriminant $D(N/\mathbb{Q})$ of N/\mathbb{Q} in two ways. On the one hand, write for the bilinear form

$T = \text{Tr}_{N/\mathbb{Q}}(xy)$ the direct sum decomposition $T = T' \oplus T''$, where $T' = \text{Tr}_{K/\mathbb{Q}}(xy)$ on $N' = K$ and $T'' = \text{Tr}_{K/\mathbb{Q}}(xy)$ on $N'' = \{x \in N \mid x + \sigma^2 x = 0\}$. This gives the formula $D(N/\mathbb{Q}) = D(K/\mathbb{Q})(\text{Tr}_{K/\mathbb{Q}}(\psi^2))^4$. On the other hand, we can use ramification groups to compute $D(N/\mathbb{Q})$. This gives the formula

$$D(N/\mathbb{Q}) = \prod_{\substack{p \text{ ramified} \\ \text{in } N/\mathbb{Q}}} p^4 \prod_{\substack{p \text{ ramified} \\ \text{in } K/\mathbb{Q}}} p^2, \text{ and b) is proved.}$$

We identify now $(\mathbb{Z}/4\mathbb{Z})^*$ with $\{-1, +1\}$, and write α_N or α for the image $\text{Tr}_{K/\mathbb{Q}}(\psi^2)$ and β_N or β for the image of $\text{Tr}_{K/\mathbb{Q}}(\psi^2)$ in $\{-1, +1\}$. Hence, $U_N = \alpha_N \beta_N$.

There is quite a natural decomposition of β as a product

of local terms $\beta_{N,v} = \beta_v$, namely:

$$\beta_\infty = \epsilon(N)$$

$\beta_p = 1$ if p is unramified

$\beta_p = \text{image of } p \bmod 4 = (-1)^{(p-1)/2}$ if p is ramified.

Then, $\beta_v = 1$ almost everywhere, and $\beta = \prod_v \beta_v$.

It is less obvious to find what to choose for the α_v 's.

We use a remark of Fröhlich (cf. [F], §7): $\frac{1+d_1+d_2+d_3}{4} \equiv \left(\frac{2}{D}\right)$

$\bmod 4$, where D^2 is the discriminant of K/\mathbb{Q} . We now define the α_v 's:

$\alpha_v = +1$ if v is not ramified in K/\mathbb{Q} (in particular,

$$\alpha_\infty = +1)$$

$\alpha_p = \left(\frac{2}{p}\right)$ for a finite prime p ramified in K/\mathbb{Q} .

Then, $\alpha_v = +1$ almost everywhere, and $\alpha = \prod_v \alpha_v$. More-

over, α_v depends only on the field K .

We now define local terms for U_N by $U_{N,v} = U_v = \alpha_v \beta_v$.

Then, $U_v = +1$ almost everywhere and $U = \prod_v U_v$.

§4. Some computations of the invariant U_N

Let p be a prime number. Write $p' = (-1)^{(p-1)/2} p$, and

assume that $\mathbb{Q}(\sqrt{p'})$ is not one of the fields k_i . Given a quaternion field N , we compare the local invariants of N and $N' = N_{p'}$. The proof of the following proposition is obvious

from the definition of the α_v 's and β_v 's.

Proposition 7

$$(i) \quad \beta_{N', \infty} = (-1)^{(p-1)/2} \beta_{N, \infty}$$

$$(ii) \quad \beta_{N', p} = (-1)^{(p-1)/2} \beta_{N, p} \text{ if } p \text{ is unramified in } K/\mathbb{Q}$$

$$(iii) \quad \beta_{N', q} = \beta_{N, q} \text{ otherwise}$$

$$(iv) \quad \alpha_{N', v} = \alpha_{N, v} \text{ for all } v.$$

Corollary 8

$$U_{N'} = U_N \text{ if } p \text{ is unramified in } K/\mathbb{Q}$$

$$U_{N'} = (-1)^{(p-1)/2} U_N \text{ otherwise.}$$

Corollary 9 Let Δ be the discriminant of a quaternion field containing a biquadratic field K such that at least one prime number $p \equiv 3 \pmod{4}$ is ramified in K . Then, exactly half of the quaternion fields with discriminant Δ have invariant $U_N = +1$.

Corollary 10 Let K be a biquadratic field such that every prime number ramified in K/\mathbb{Q} is congruent to $1 \pmod{4}$. Then

the quaternion fields N containing K , if any, have the same invariant U_N .

Remark Let us call this invariant U_K . Using Dirichlet's theorem on primes in arithmetic progressions together with propositions 4 and 5, it is easy to show that there exist infinitely many fields K with $U_K = +1$ and infinitely many fields K with $U_K = -1$.

§5. Proof of theorem 2.

We must verify for every place v of \mathbb{Q} the equality

$$U_{N,v} = W_{N,v}.$$

(i) $v = \infty$. If N is real, then $\alpha_v = \beta_v = w_v = +1$. If N is imaginary, then $\alpha_v = +1$, $\beta_v = -1$, hence, $U_v = -1$. Now, the only possible choice for a real Frobenius substitution is $\sigma_v = \sigma^2$. Hence,

$$n(\chi, v) = \frac{\chi(1) - \chi(\sigma^2)}{2} = 2 \text{ and } w_v = i^{-n(\chi, v)} = -1.$$

We now consider the case of a finite prime p . Let G_p be the local Galois group. If p splits in at least one quadratic subfield of N , then G_p is cyclic of order 1, 2 or 4. If p does not split in K , then p is ramified in K/\mathbb{Q} . Hence, p is odd, $G_p = G$ and the inertia group I_p is

cyclic of order 4. Let χ_p be the restriction of χ to G_p .

(ii) G_p is cyclic. Then, $\chi_p = \phi_p + \bar{\phi}_p$, where ϕ_p is a character of G_p of order equal to that of G_p . We thus have

$$w_p = w(\chi_p) = \phi_p(-1).$$

If $I_p = \{1\}$, then ϕ_p is unramified. Hence,

$$w_p = \phi_p(-1) = +1 = u_p.$$

If I_p is of order 2, then the restriction of ϕ_p to the group of p -adic units is the quadratic character $x \mapsto \left(\frac{x}{p}\right)$.

Hence, $w_p = \left(\frac{-1}{p}\right) = (-1)^{(p-1)/2} = u_p$ since $\alpha_p = 1$ and

$$\beta_p = (-1)^{(p-1)/2}.$$

If $I_p = G_p$, then the restriction of ϕ to the group of p -adic units is a biquadratic character. Hence, $p \equiv 1 \pmod{4}$ and $w_p = \phi_p(-1) = (-1)^{(p-1)/4}$. But $\alpha_p = 1$ and $\beta_p = \left(\frac{2}{p}\right)$. Since $p \equiv 1 \pmod{4}$, $\left(\frac{2}{p}\right) = (-1)^{(p-1)/4}$ and $w_p = u_p$.

(iii) $G_p = G$. Let k_p be a quadratic subfield of the completion N_p of N , let $H = \text{Gal}(N_p/k_p)$, and let ϕ_p be a character of H of order 4.

Then, $\chi_p^* = \phi_p^*$, the character of G induced by ϕ_p . Let ϵ_p be the character of G lifted from the non trivial character of G/H . Then, $l^* = l + \epsilon_p^*$. Hence, $w((\chi_p - l)^*) = w(\phi_p - l)$, and therefore

$W(\chi_p) = W(\phi_p) W(\varepsilon_p)$. Take for k_p the field

$\mathbb{Q}_p(\sqrt{(-1)^{(p-1)/2}}_p)$. Since $\mathbb{Q}(\sqrt{(-1)^{(p-1)/2}}_p)/\mathbb{Q}$ is ramified only at p , $W_p(\varepsilon_p) W_\infty(\varepsilon_p) = +1$. Hence, $W(\varepsilon_p) = +1$ for $p \equiv 1 \pmod{4}$ and $W(\varepsilon_p) = +i$ for $p \equiv 3 \pmod{4}$, a result known to Gauss! We thus have $W(\varepsilon_p)^2 = (-1)^{(p-1)/2} = \beta_p$. Now, an easy computation shows that the transfer Ver_G^H is not trivial.* This implies that the restriction of ϕ_p to \mathbb{Q}_p^* is equal to ε_p . Since $\alpha_p = \left(\frac{2}{p}\right) = \phi_p(2)$, theorem 2 is a consequence of the following lemma.

Lemma 11 (Fröhlich, Queyrut) - Let K be a finite extension of a p -adic field. Let ε be a character of K^* of order 2 corresponding to a quadratic extension E of K . Let ϕ be a character of E^* whose restriction to K^* is ε . Assume that both ϕ and ε are ramified and tamely ramified. Then $W(\phi) = \phi(2) W(\varepsilon)$.

Proof Let v_K, v_E be the valuations of K, E respectively. Since ϕ and ε are ramified and tamely ramified,

$$v_K(\delta(\varepsilon)) = v_E(\delta(\phi)) = 1.$$

With the notation of [M1] II, §2, we have the formulae

* Footnote: see Exercise 7.

$$W(\phi) = \frac{1}{\sqrt{N(\delta(\phi))}} \tau(\bar{\phi}) \text{ and } W(\epsilon) = \frac{1}{\sqrt{N(\delta(\epsilon))}} \tau(\bar{\epsilon}) ,$$

with :

$$\tau(\phi) = \sum_{x \in U_E/U_E^1} \phi\left(\frac{x}{c}\right) \psi_E\left(\frac{x}{c}\right) \text{ and } \tau(\epsilon) = \sum_{x \in U_K/U_K^1} \epsilon\left(\frac{x}{d}\right) \psi_K\left(\frac{x}{d}\right) ,$$

where c generates $\mathcal{D}_{E/\mathbb{Q}_p} \delta(\phi)$ and d generates $\mathcal{D}_{K/\mathbb{Q}_p} \delta(\epsilon)$.

Now, $v_E(\mathcal{D}_{E/K}) = 1$. Hence, $v_E(\mathcal{D}_{E/\mathbb{Q}_p}) = 1 + v_E(\mathcal{D}_{K/\mathbb{Q}_p}) = 1 + 2 v_K(\mathcal{D}_{K/\mathbb{Q}_p})$, and $v_E(c) = 2v_K(d)$. We can therefore choose $c = d \in K$. Since E/K is totally ramified, the inclusion $K \subset E^*$ induces an isomorphism $U_K/U_K^1 \rightarrow U_E/U_E^1$. We can therefore choose the x 's in U_K to compute $\tau(\phi)$. For such a choice for c and x , $\psi_E\left(\frac{x}{c}\right) = \psi_K\left(\frac{2x}{c}\right)$. Hence,

$$\tau(\phi) = \bar{\phi}(2) \sum_{x \in U_K/U_K^1} \phi\left(\frac{2x}{d}\right) \psi_K\left(\frac{2x}{d}\right) = \bar{\phi}(2) \tau(\epsilon) .$$

Since the conductors $\delta(\phi)$ and $\delta(\epsilon)$ have the same absolute norm, $W(\phi) = \phi(2) W(\epsilon)$,

Q.E.D.

REFERENCES

[F] A. Fröhlich - Artin Root Numbers and Normal Integral Bases for Quaternion Fields, Invent. Math., 17 (1972), 143-166.

[M] J. Martinet, Modules sur l'algèbre du groupe quaternionien, Ann. Sci. E.N.S., 4 (1971), 399-408.

[ML] J. Martinet, Character theory and Artin L-functions, Durham Symposium.