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Abstract. The note [8] of my homepage, as most of the Notes aux Comptes
Rendus de I’Académie des Sciences de Paris, contains almost no proof. I
give here detailed proofs for most of the results of [8]. In particular, we
shall see that case C in Proposition 1 does not exist, as announced in the
preceding Corrigendum.

Some of the proofs could have been found in Frohlich’s Inventiones paper
[Fr], but Frohlich’s proofs make use of specific techniques from papers he
wrote in the fifties, scarcely used by other mathematicians, so that it seems
reasonable to write self-contained proofs.

We shall consider as in [8] a quaternionic extension of N/Q of de-
gree 8. with quadratic subfields ki, k9, k3 and biquadratic subfield K;
the notation d;,m;,... is as in Corrigendum, and focus on ramifica-
tion properties of primes p of Q (or p = o0), with special emphasis
on p = 2. However we first consider more generally Galois extensions
of a field Ky of characteristic kK # 2, with Galois group a subgroup of
Hg =: (0,7 | 0* = 1,72 = 02, 70771 = 071), thus Hy itself or a cyclic
group of order 4, 2, or 1 (these subgroups naturally occur when we
replace K by its completion at some place).

1. Embedding problems for Hg: general results. By a theorem
of Witt ([Wi]), K embeds in a Hg-extension N of K if and only if the
quadratic form Q := m;X? + meY? + m3Z? is equivalent over K| to
Qo =X?>+Y24+ 272

To a quadratic forms Y, a;X? on K, one can attach (cohomolog-
ical) invariants w;, i > 0, of which we only need wy (the rank r € Z),
wy (the discriminant d = [[, a; € KO/KOXQ), and wo (the Hasse-Witt
invariant = [[,_;(ai, a;) € Bray(Ky)). [Br is the Brauer group, and the
symbol (a,b) is the image (of order 2) of the quaternion algebra over
Ky defined by % = a, j2 = b, ji = —ij.]

The forms @ and @)y both have rank 3 and discriminant 1 € K,/ K 2,
If Ky is a local field, a quadratic form is well-defined up to equivalence
by wp, wy, wo, and wy is the Hilbert symbol thanks to the identification
Bry(Ky) = {£1}; and if Ky is a number field, then the Hasse-Minkowski

theorem shows that equivalence can be read on the completions of K.
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The situation is somewhat similar for cyclic groups of order 4: it is
well known (and easy to prove) that a quadratic extension Koy(y/m)
embeds in a cyclic extension of degree 4 if and only if m is the sum of
two squares in K, i.e. if and only if mX? — Y2 — Z2 represents zero,
and in the local case, this is equivalent to (m, —1) = +1.

The following proposition makes easy the calculation of wsy for Hg-
extensions.
Proposition We have wq(Q) = (=1, —1)(—mq, —my).
Proof. Since mz =mymy mod K2, we have (my, m3) = (my, mymsy) and
(ma,m3) = (mg, mimy), hence (mi,ms)(ma,mz) = (mimz, mima),
and by the rule (a, —a) = 1, this is equal to

(myma, —1) = (my, —1)(ma, —1).

We then have wq(Q) = [(m1, m2)(—1,my)(—mq, —1)](—1,—1), and the
result follows by bilinearity. O

Over R, we have

(a,b) = —1if a and b are negative, (a,b) = +1 otherwise. ()

Over Q,, the symbol (a,b) can be the calculated using the formulae
below, taken from [Se2]. Write

a=p“u and b= pu

where u, v are p-units, and for u € Zs or Z, set

£(u) = 5= mod 2 and w(u) = % mod 2.

Then we have
podd: (a,b), = (=10 ()%(%)7; (x,)

p p
p=2: (a7 b)2 — (_1)a(u)a(v)+aw(v)+6w(u) ) (*2>

In particular, we have (—1, —1)=—1 over R and Qy, and (-1, —1)=+1
otherwise.

[More generally, over an extension L of @Q,, we have (—1,—1) = —1 if and
only if p =2 and [L : Q] is odd.]

2. Embedding problems for Hg: results over @ and Q,. As a
set of representatives for Q}/Qj3?, we may take

(1,43, +2, £61,
defining seven quadratic extensions: Qy(v/—3), unramified; Q,(v/3)
and Qq(+v/—1), with ramification jump 1; and Qz(v/£2) and Q2(v/£6),

with ramification jump 2.

[For m; = my = 1 mod 2 (resp. = 2 mod 4), Qa(v/m1) ~ Qao(y/m2) is
equivalent to m; = mg mod 8 (resp. m; = mg mod 16).]



The calculation of the symbols (m,—1)s shows that Qq(v/—3) =
Q2(v/5), Q2(v/2) and Qy(v/—6) = Q4(+/10) embed in cyclic extensions

of degree 4 and that the the remaining four do not.

From the list of quadratic extensions we deduce that there are also
seven biquadratic extensions of QQy, that we list below according to the
ramification index ey of 2, giving the corresponding sets {my, mg, ms} :
eo =2: {-3,-1,3}, {-3,2,-6}, {-3,—2,6};
eo =4: {3,2,6}, {3,—-2,—6}, {—1,2,—2}, {—1,6,—6}.

To list those of these fields which embed in a Hg-extension, we may
discard from the list above those for which () represents —1, since Qg
does not. We are then left with three biquadratic extensions of Q; out
of seven, those with

{m1,ma,m3} = {—3,-2,6} (e2 = 2), {3,2,6}or{3,—2, -6} (e2 =14),
and using (*2) we check that these extensions do embed in a Hg one.

It is a well-known fact (immediate from the very definition of ram-
ification groups) that in a cyclic extension of prime power degree, an
ideal which ramifies at some step then ramifies at all the further steps.
Putting together this remark and the calculations above, we obtain the
following statement, in which ns stands for the local degree and es (as
above) for the ramification index of 2 of the biquadratic subfield of an
Hg-extension of Q:

Theorem. Assume that 2 is ramified in K/Q. Then one of the fol-
lowing holds for the completion Ny of N/Q at a prime above 2 of N:

(1) (ng,e9) = (2,2). ﬁz/@Q is cyclic of degree 4 and contains
@2(\/5) or Q2(\/¥)-

(2) (n2,e2) = (4,2). Ny contains Qz(v/3,v/2).

(3) (n2,e2) = (4,4). N, contains one of the two fields Qa(v/3, v/2)
or QQ(\/§7 VE2).

For the sake of completeness, I give below the embedding conditions at an
odd prime p, using {1, u, p, pu} as a set of representatives for Q,/ QIQ,, where
u € Z, is a non-residue modulo p.

(a) We have (u,—1), = +1 and (p,—1), = (pu,—1), = (_?1), so that
embedding in a cyclic extension of degree 4 is possible for all quadratic
extensions if p = 1 mod 4, but uniquely for the unramified one if p = —1
mod 4.

(b) There is a unique biquadratic extension, associated with the set
{u,p,pu}. Since (u,p), = (%) = —1, this does not embed in a quaternionic
extension.



(c) Putting together (a) and (b), we see that an odd prime p which ramifies
in K/Q ramifies in two quadratic sub-extensions of K/Q and splits in the
third one.

3. Ramification and discriminants. From now on N stands for
an Hg-extension of Q with quadratic subfields k; = /m;, where the
m; are square-free integers, and biquadratic subfield K. Let d; be the
discriminant of k; (d; = m; or 4m;) and D = d;dods that of K (a
square). Finally let A be the discriminant of N, related to that of K
by the standard transitivity relation

A = D? Ngjo(0n/x) -

The behaviour in N/Q of the real prime of Q is clear: N is totally real
or totally imaginary, K is totally real in both cases (because o? = 72

is the only element of order 2 in Hg), and A is strictly positive.
From now on let p be a finite prime of Q, ramified in V.

We first consider the ramification index of p in N/Q. If this index
in K/Q is 1 (resp. 2, resp. 4), it is 1 or 2 (resp. 4, resp. 8) in N/Q,
and the latter cases may occur only if p = 2. We keep the following
convention of [§]:

(1) If p is not totally ramified in K/Q, then p is not ramified in k;.
(2) If p = 2 is totally ramified in K/Q, then m; = 3 mod 4 and
my = m3 = 2 mod 4.

Assume first that p is odd.

By the results proved at the end of the section above, if p is ramified
in K/Q, it splits in k;/Q and we have pZy = (PY')*, and since the
ramification is tame, 8 and B’ have exponent 3 in the different Dy /q.
Hence v,(A) = 6.

If p is ramified only in N/K, then pZy is the square of a product of
4 prime ideals of degree 1 or 2 prime ideals of degree 2, having exponent
1 in Dyyg. Hence v,(A) = 4.

To deal with p = 2 we shall use the following two results, valid in
great generality for any Galois extension M /L relatively to a Dedekind
domain A with fraction field L and its integral closure B in M (at least
when the residue extensions are separable). Let p be a prime ideal in
A and P a prime ideal in B lying above p, of ramification index e.

(1) We have Gy() = {1} if i > 22 ([Se1], Sec. IV.2, Exer. (3)).
(2) (The Hasse-Arf theorem.) If M/L is Abelian then the ramifi-

cation jumps in upper numbering are integral. (This is equivalent to
the existence of strong congruences among the jumps in lower numbering;
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such congruences are explicitly written in [Sel]|, Section IV.3; note that the
weaker result of Prop. 11 in Section IV.2 sometimes suffices.)

Assume finally that p = 2. Let ¢, or tq,ty or tq,ts,t3 be the ram-
ification jumps. Recall that the exponent of a prime ideal ¥ in the
different of a Galois extension is given by the formula

vp(D) = ZiZO (IGil = 1),
and note that we have t; > 1 since our Galois group is a 2-group.

If e =1 (i.e., if 2 is unramified in K/Q) we have a single jump ¢,
which satisfies 1 < ¢; < 2, hence t; = 1 or 2, vg(Dnyg) = 2 or 3, and
v9(A) = 8 or 12, cases (A) or (B) of [7].

If eo = 2, then IACI;/QQ is the extension by v/2 or v/—6 of an unram-
ified extension of Qq, so that t; = 2, hence ty = 4 (because ty = t;
mod 2 and ¢, < 4), whence vp(Dnjg) =3 x (4—1)+2x(2—-1) =11,
and ve(A) = 22, case (D) of [7] (and case (C) of [7] does not exist).

If ey = 4, then 2 is totally ramified in N/Q, we have G = G, = G,
and G5 corresponds to QQ(\/g) /Qo, which implies t; = 1 hence ¢, = 3,
then t3 = 5 or 7, and indeed t3 = 7 by Hasse-Arf applied to N/ky,
whence

v2(A) =vp(Dnjg) =2X T+2x3+4x1=14+6+4 =24,

case (E) of [7].

Remark. In all cases the upper ramification jumps are integral. This is
clear for primes which are not totally ramified (because the inertia groups
are cyclic), and the explicit calculation of Herbrand’s function ¢ ([Sel],
Section 1V.3) shows that in the totally ramified case, the upper ramifica-
tion jumps, namely 1,2,3, are integral. However this is not general for
non-Abelian extensions; see [Sel], Section IV.3, Exer. 3 for a quaternionic
example (over Q(7)); many examples can be found in [Fo].

4. The associated order. We keep the notation N, K, ... of the
previous sections, we set by G = Gal(N/Q) (G ~ Hg), and denote by
O¢ the order in Q[G] associated to N:

Oc¢={N€Q|G] | My C Zn}.
Let g = G/{1,7%}. Let H be the skew-field of “ordinary” quaternions
over Q, with basis (1,4, j, k) (1> = j> = —1, ij = —ji = k) we consider
the order O = Z[i, j, k|. Note that Oy is contained in a unique maxi-

mal order, namely the Hurwitz order 9 = Oy U +w, w = _HlTW
Consider in Q[G] the two central idempotents
— 1-0o? — l4o?
¢/ === and " = =7

They are orthogonal and add to 1, hence split Q[G] as



Q[G] = Q[G]e' x Q[Gle" ~Qlg] x H .
These idempotents split N into a direct sum N = K 1 K’ (orthogonal
for the bilinear form trace; K’, not a field, is the kernel of Try/g). We
now show that when 2 is ramified, these idempotent split Zy into the
direct sum of Zy and the set Zg of integral elements of K.

Let ¢t be the highest ramification jump of some ideal B | 2. Tt results
from Section 3 that G, is the center {1, 72} of G and that t+1 = eg, the
ramification index of 8. The definition of ramification groups shows
that we have on Zy the congruence 72x = x mod ¢ for every 3,
hence 72 = 2 mod 2, that is, ¢Zy C Zy N K = Zg, and finally
GIZN = % TrN/K<ZN) = ZK

Thanks to this splitting of Zy the projection on Zlg] of D¢ is the
order O, associated to Zg in Q[g]; see Corrigendum. The discriminant
calculation of the note then shows that O¢ = Oy x O.

The result above completes the proofs of the note except that of
Proposition 2. I leave it to the reader, and state instead its generaliza-
tion to an arbitrary rank

Proposition 2’. (Plesken, [Pl].) Let M be a finitely generated (left,
torsion free)) module over Oy.Then M is isomorphic to a direct sum
Of @M (where r := p + q is the rank of M ).

Results of this kind could be considered in the following setting: first
establish that projective modules (over a convenient order) are locally
free, then calculate the kernel in class groups of extension map to a
maximal order.
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