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Abstract. The note [8] of my homepage, as most of the Notes aux Comptes

Rendus de l’Académie des Sciences de Paris, contains almost no proof. I

give here detailed proofs for most of the results of [8]. In particular, we

shall see that case C in Proposition 1 does not exist, as announced in the

preceding Corrigendum.

Some of the proofs could have been found in Fröhlich’s Inventiones paper

[Fr], but Fröhlich’s proofs make use of specific techniques from papers he

wrote in the fifties, scarcely used by other mathematicians, so that it seems

reasonable to write self-contained proofs.

We shall consider as in [8] a quaternionic extension of N/Q of de-
gree 8. with quadratic subfields k1, k2, k3 and biquadratic subfield K;
the notation di,mi, . . . is as in Corrigendum, and focus on ramifica-
tion properties of primes p of Q (or p = ∞), with special emphasis
on p = 2. However we first consider more generally Galois extensions
of a field K0 of characteristic κ 6= 2, with Galois group a subgroup of
H8 =: 〈σ, τ | σ4 = 1, τ 2 = σ2, τστ−1 = σ−1〉, thus H8 itself or a cyclic
group of order 4, 2, or 1 (these subgroups naturally occur when we
replace K0 by its completion at some place).

1. Embedding problems for HHH888: general results. By a theorem
of Witt ([Wi]), K embeds in a H8-extension N of K0 if and only if the
quadratic form Q := m1X

2 + m2Y
2 + m3Z

2 is equivalent over K0 to
Q0 := X2 + Y 2 + Z2.

To a quadratic forms
∑r

i=1 aiX
2
i on K0 one can attach (cohomolog-

ical) invariants wi, i ≥ 0, of which we only need w0 (the rank r ∈ Z),

w1 (the discriminant d =
∏

i ai ∈ K0/K
×
0

2
), and w2 (the Hasse-Witt

invariant =
∏

i<j(ai, aj) ∈ Br2(K0)). [Br is the Brauer group, and the

symbol (a, b) is the image (of order 2) of the quaternion algebra over
K0 defined by i2 = a, j2 = b, ji = −ij.]

The forms Q and Q0 both have rank 3 and discriminant 1 ∈ K0/K
×
0

2
.

If K0 is a local field, a quadratic form is well-defined up to equivalence
by w0, w1, w2, and w2 is the Hilbert symbol thanks to the identification
Br2(K0) = {±1}; and ifK0 is a number field, then the Hasse-Minkowski
theorem shows that equivalence can be read on the completions of K0.
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The situation is somewhat similar for cyclic groups of order 4: it is
well known (and easy to prove) that a quadratic extension K0(

√
m)

embeds in a cyclic extension of degree 4 if and only if m is the sum of
two squares in K0, i.e. if and only if mX2 − Y 2 − Z2 represents zero,
and in the local case, this is equivalent to (m,−1) = +1.

The following proposition makes easy the calculation of w2 for H8-
extensions.

Proposition We have w2(Q) = (−1,−1)(−m1,−m2).
Proof. Since m3 ≡m1m2 modK2

0 , we have (m1,m3) = (m1,m1m2) and
(m2,m3) = (m2,m1m2), hence (m1,m3)(m2,m3) = (m1m2,m1m2),
and by the rule (a,−a) = 1, this is equal to

(m1m2,−1) = (m1,−1)(m2,−1) .
We then have w2(Q) = [(m1,m2)(−1,m2)(−m1,−1)](−1,−1), and the
result follows by bilinearity. �

Over R, we have

(a, b) = −1 if a and b are negative, (a, b) = +1 otherwise. (∗∞)

Over Qp, the symbol (a, b) can be the calculated using the formulae
below, taken from [Se2]. Write

a = pαu and b = pβv

where u, v are p-units, and for u ∈ Z2 or Z, set

ε(u) = u−1
2

mod 2 and ω(u) = u2−1
8

mod 2 .

Then we have

p odd : (a, b)p = (−1)αβε(p)
(
v
p

)α(u
p

)β
; (∗p)

p = 2 : (a, b)2 = (−1)ε(u)ε(v)+αω(v)+βω(u) . (∗2)

In particular, we have (−1,−1)=−1 over R and Q2, and (−1,−1)=+1
otherwise.
[More generally, over an extension L of Qp, we have (−1,−1) = −1 if and

only if p = 2 and [L : Qp] is odd.]

2. Embedding problems for HHH888: results over QQQ and QQQppp. As a
set of representatives for Q∗2/Q∗2

2, we may take

{±1,±3,±2,±6} ,

defining seven quadratic extensions: Q2(
√
−3), unramified; Q2(

√
3)

and Q2(
√
−1), with ramification jump 1; and Q2(

√
±2) and Q2(

√
±6),

with ramification jump 2.
[For m1 ≡ m2 ≡ 1 mod 2 (resp. ≡ 2 mod 4), Q2(

√
m1) ' Q2(

√
m2) is

equivalent to m1 ≡ m2 mod 8 (resp. m1 ≡ m2 mod 16).]
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The calculation of the symbols (m,−1)2 shows that Q2(
√
−3) =

Q2(
√

5), Q2(
√

2) and Q2(
√
−6) = Q2(

√
10) embed in cyclic extensions

of degree 4 and that the the remaining four do not.

From the list of quadratic extensions we deduce that there are also
seven biquadratic extensions of Q2, that we list below according to the
ramification index e2 of 2, giving the corresponding sets {m1,m2,m3} :
e2 = 2 : {−3,−1, 3}, {−3, 2,−6}, {−3,−2, 6} ;
e2 = 4 : {3, 2, 6}, {3,−2,−6}, {−1, 2,−2}, {−1, 6,−6} .

To list those of these fields which embed in a H8-extension, we may
discard from the list above those for which Q represents −1, since Q0

does not. We are then left with three biquadratic extensions of Q2 out
of seven, those with

{m1,m2,m3} = {−3,−2, 6} (e2 = 2), {3, 2, 6} or {3,−2,−6} (e2 = 4) ,

and using (∗2) we check that these extensions do embed in a H8 one.

It is a well-known fact (immediate from the very definition of ram-
ification groups) that in a cyclic extension of prime power degree, an
ideal which ramifies at some step then ramifies at all the further steps.
Putting together this remark and the calculations above, we obtain the
following statement, in which n2 stands for the local degree and e2 (as
above) for the ramification index of 2 of the biquadratic subfield of an
H8-extension of Q :

Theorem. Assume that 2 is ramified in K/Q. Then one of the fol-

lowing holds for the completion N̂2 of N/Q at a prime above 2 of N :

(1) (n2, e2) = (2, 2). N̂2/Q2 is cyclic of degree 4 and contains
Q2(
√

2) or Q2(
√
−6).

(2) (n2, e2) = (4, 2). N̂2 contains Q2(
√

3,
√

2).

(3) (n2, e2) = (4, 4). N̂2 contains one of the two fields Q2(
√

3,
√

2)
or Q2(

√
3,
√
±2).

For the sake of completeness, I give below the embedding conditions at an
odd prime p, using {1, u, p, pu} as a set of representatives for Qp/Q2

p, where

u ∈ Z×p is a non-residue modulo p.

(a) We have (u,−1)p = +1 and (p,−1)p = (pu,−1)p =
(−1
p

)
, so that

embedding in a cyclic extension of degree 4 is possible for all quadratic
extensions if p ≡ 1 mod 4, but uniquely for the unramified one if p ≡ −1
mod 4.

(b) There is a unique biquadratic extension, associated with the set
{u, p, pu}. Since (u, p)p =

(
u
p

)
= −1, this does not embed in a quaternionic

extension.
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(c) Putting together (a) and (b), we see that an odd prime p which ramifies

in K/Q ramifies in two quadratic sub-extensions of K/Q and splits in the

third one.

3. Ramification and discriminants. From now on N stands for
an H8-extension of Q with quadratic subfields ki =

√
mi, where the

mi are square-free integers, and biquadratic subfield K. Let di be the
discriminant of ki (di = mi or 4mi) and D = d1d2d3 that of K (a
square). Finally let ∆ be the discriminant of N , related to that of K
by the standard transitivity relation

∆ = D2 NK/Q(δN/K) .

The behaviour in N/Q of the real prime of Q is clear: N is totally real
or totally imaginary, K is totally real in both cases (because σ2 = τ 2

is the only element of order 2 in H8), and ∆ is strictly positive.

From now on let p be a finite prime of Q, ramified in N .

We first consider the ramification index of p in N/Q. If this index
in K/Q is 1 (resp. 2, resp. 4), it is 1 or 2 (resp. 4, resp. 8) in N/Q,
and the latter cases may occur only if p = 2. We keep the following
convention of [8]:

(1) If p is not totally ramified in K/Q, then p is not ramified in k1.
(2) If p = 2 is totally ramified in K/Q, then m1 ≡ 3 mod 4 and

m2 ≡ m3 ≡ 2 mod 4.

Assume first that p is odd.
By the results proved at the end of the section above, if p is ramified

in K/Q, it splits in k1/Q and we have pZN = (PP′)4, and since the
ramification is tame, P and P′ have exponent 3 in the different DN/Q.
Hence vp(∆) = 6.

If p is ramified only in N/K, then pZN is the square of a product of
4 prime ideals of degree 1 or 2 prime ideals of degree 2, having exponent
1 in DN/Q. Hence vp(∆) = 4.

To deal with p = 2 we shall use the following two results, valid in
great generality for any Galois extension M/L relatively to a Dedekind
domain A with fraction field L and its integral closure B in M (at least
when the residue extensions are separable). Let p be a prime ideal in
A and P a prime ideal in B lying above p, of ramification index e.

(1) We have Gi(P) = {1} if i >
vP(p)

p−1
([Se1], Sec. IV.2, Exer. (3)).

(2) (The Hasse-Arf theorem.) If M/L is Abelian then the ramifi-
cation jumps in upper numbering are integral. (This is equivalent to

the existence of strong congruences among the jumps in lower numbering;
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such congruences are explicitly written in [Se1], Section IV.3; note that the

weaker result of Prop. 11 in Section IV.2 sometimes suffices.)

Assume finally that p = 2. Let t1 or t1, t2 or t1, t2, t3 be the ram-
ification jumps. Recall that the exponent of a prime ideal P in the
different of a Galois extension is given by the formula

vP(D) =
∑

i≥0 (|Gi| − 1) ,

and note that we have t1 ≥ 1 since our Galois group is a 2-group.

If e2 = 1 (i.e., if 2 is unramified in K/Q) we have a single jump t1
which satisfies 1 ≤ t1 ≤ 2, hence t1 = 1 or 2, vP(DN/Q) = 2 or 3, and
v2(∆) = 8 or 12, cases (A) or (B) of [7].

If e2 = 2, then K̂P/Q2 is the extension by
√

2 or
√
−6 of an unram-

ified extension of Q2, so that t1 = 2, hence t2 = 4 (because t2 ≡ t1
mod 2 and t2 ≤ 4), whence vP(DN/Q) = 3× (4− 1) + 2× (2− 1) = 11,
and v2(∆) = 22, case (D) of [7] (and case (C) of [7] does not exist).

If e2 = 4, then 2 is totally ramified in N/Q, we have G1 = G1 = G,
and G2 corresponds to Q2(

√
3)/Q2, which implies t1 = 1 hence t2 = 3,

then t3 = 5 or 7, and indeed t3 = 7 by Hasse-Arf applied to N/k1,
whence

v2(∆) = vP(DN/Q) = 2× 7 + 2× 3 + 4× 1 = 14 + 6 + 4 = 24 ,

case (E) of [7].

Remark. In all cases the upper ramification jumps are integral. This is

clear for primes which are not totally ramified (because the inertia groups

are cyclic), and the explicit calculation of Herbrand’s function ϕ ([Se1],

Section IV.3) shows that in the totally ramified case, the upper ramifica-

tion jumps, namely 1, 2, 3, are integral. However this is not general for

non-Abelian extensions; see [Se1], Section IV.3, Exer. 3 for a quaternionic

example (over Q(i)); many examples can be found in [Fo].

4. The associated order. We keep the notation N,K, . . . of the
previous sections, we set by G = Gal(N/Q) (G ' H8), and denote by
OG the order in Q[G] associated to N :

OG = {λ ∈ Q[G] | λZN ⊂ ZN} .

Let g = G/{1, τ 2}. Let H be the skew-field of “ordinary” quaternions
over Q, with basis (1, i, j, k) (i2 = j2 = −1, ij = −ji = k) we consider
the order O0 = Z[i, j, k]. Note that O0 is contained in a unique maxi-
mal order, namely the Hurwitz order M = O0∪O0 +ω, ω = −1+i+j+k

2
.

Consider in Q[G] the two central idempotents

e′ = 1−σ2

2
and e′′ = 1+σ2

2
.

They are orthogonal and add to 1, hence split Q[G] as
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Q[G] = Q[G]e′ ×Q[G]e′′ ' Q[g]×H .

These idempotents split N into a direct sum N = K ⊥ K ′ (orthogonal
for the bilinear form trace; K ′, not a field, is the kernel of TrN/Q). We
now show that when 2 is ramified, these idempotent split ZN into the
direct sum of ZK and the set ZK′ of integral elements of K ′.

Let t be the highest ramification jump of some ideal P | 2. It results
from Section 3 that Gt is the center {1, τ 2} of G and that t+1 = eP, the
ramification index of P. The definition of ramification groups shows
that we have on ZN the congruence τ 2x ≡ x mod Pe for every P,
hence τ 2 ≡ x mod 2, that is, e′ZN ⊂ ZN ∩ K = ZK , and finally
e′ZN = 1

2
TrN/K(ZN) = ZK .

Thanks to this splitting of ZN the projection on Z[g] of OG is the
order Og associated to ZK in Q[g]; see Corrigendum. The discriminant
calculation of the note then shows that OG = Og ×O0.

The result above completes the proofs of the note except that of
Proposition 2. I leave it to the reader, and state instead its generaliza-
tion to an arbitrary rank

Proposition 2’. (Plesken, [Pl].) Let M be a finitely generated (left,
torsion free)) module over O0.Then M is isomorphic to a direct sum
Op

0 ⊕Mq (where r := p+ q is the rank of M).

Results of this kind could be considered in the following setting: first
establish that projective modules (over a convenient order) are locally
free, then calculate the kernel in class groups of extension map to a
maximal order.
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