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TABLES for PART 3 of my HOMEPAGE.

We present here various tables of lattices, explaining first data that
are common to all tables, then specific properties, one section per table.
Actually, lattices are supposed to lie in some Euclidean space E and
are represented by a Gram matrix in PARI-GP format. We denote by
S = S(L) the set of minimal vectors of a lattice L.

The following files from number 2 onward can be downloaded in a
GP-session in order to get the Gram matrices; however the other data
(lines beginning with \\) must be read using an editor (emacs,vi, ...).

The same lattice (up to similarity) may occur in various tables. Dif-
ferent Gram matrices for the same lattice have different names. Coin-
cidences with a previous table are indicated.

All lattices listed here are integral (scalar products take only integral
values on these lattices); they are also primitive (the scalar products
have gcd = 1), except lattices Ln with n ≤ 8 in the file Lambda.gp.

Content.

3.1. Data. Presentation of the tables.
3.2. Lambda.gp. Some Lattices Contained in the Leech Lattice.
3.3. AntilaminO222333.gp. Some Lattices Contained in O23.
3.4. Min3.gp. Some More Lattices of Minimum 3.
3.5. Min5.gp. Some Lattices of Minimum 5.
3.6. Min6.gp. Some Lattices of Minimum 6.
3.7. Minlarge.gp. Some Lattices of Minima 10,11,12.
3.8. Modular.gp. Some Modular Lattices.

3.1. Description of data relative to Gram matrices.

3.1a. Characteristic. This is a 4-component PARI-vector of the form

[d, [s,m], [s∗,m∗], [ak11 .a
k2
2 . . . .a

kp
p ]]

where d is the determinant, [s,m] the number of pairs of minimal vec-
tors and their norm, [s∗,m∗] the same data for the dual rescaled to
a primitive form, and the last component is the Smith invariant of a
lattice L represented by the given Gram matrix, i.e., the elementary
divisors of the pair (L∗, L) (we have L∗ ⊃ L since L is integral).

Note that
∑
ki = dimL and

∏
akii = det(L), that a1 is the annihi-

lator of :∗ /L, that minL∗ = m
a1

, and that ap = 1 if L is primitive.
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With these data we can calculate the Hermite invariant γ(L) of L:
γ(L) = m

d1/n
,

and its dual analogue (“Bergé-Martinet invariant”)

γ′(L) =
(
γ(l)γ(L∗)

)1/2
= mm∗

a1
.

We complete this information by the order of the automorphism
group of L and its prime decomposition, in the form “|Aut | = ”.

3.1b. Data relative to extremality. A lattice L is extreme if γ attains
a local maximum on L. If the Gram matrix we consider defines an
extreme lattice, the mention EXTREME is written, except in a few
cases when the stronger property of strong perfection to be defined
later in 1.c holds.

We now consider weaker properties. The perfection rank perf L of
L is the rank in Ends(E) of the orthogonal projections to the lines

containing the minimal vectors. We have 1 ≤ perf L ≤ n(n+1)
2

. A

lattice L with perf L = n(n+1)
2

is perfect .

A lattice is weakly eutactic if the identity of E belongs to the span
of the projections onto S(L), i.e., if there is a representation

Id =
∑

x∈S/± λx px
with real coefficients λx. (px is the orthogonal projection onto Rx.) It is
semi-eutactic (resp. eutactic) if there exists such a representation with
non-negative (resp. strictly positive) coefficients λx. By a theorem of
Voronoi,

extreme⇐⇒ perfect and eutactic .

The perfection rank of L is written “perf =” if L is not perfect.
Otherwise we write the mention PERFECT. However, unless otherwise
stated, PERFECT is to be understood as NOT EXTREME.

Weak eutaxy, semi-eutaxy, eutaxy are written WEUT, SMEUT,
EUT, respectively. It is to be understood that WEUT implies NOT
SMEUT nor PERFECT, that SMEUT implies NOT EUT, and EUT
implies NOT EXTREME.

3.1c. Spherical designs. Spherical t-designs are special finite configu-
rations on the sphere Sn. A (spherical) t-design is a t′-design for any
t′ ≤ t, a 1-design is simply a symmetric set with respect to the origin,
and a symmetric t-design with even t is a t+ 1-design.

Venkov has applied the theory of spherical designs to sets S(L). In
dimensions n ≥ 2, S(L) is t-design for a largest possible value of t, the
level of S (or of L), necessarily odd. In the known examples, the level
is one of 1, 3, 5, 7, 11; I conjecture that this is general.
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Lattices with level ≥ 3 are those which possess a eutaxy relation with
equal coefficients λx. They were called strongly eutactic by Venkov.
They are mentioned as STREUT; then, EUT implies NOT STREUT.

Lattices with level ≥ 5 were called strongly perfect by Venkov. They
are mentioned as STRONGLY PERFECT; they are in particular ex-
treme ans strongly eutactic. Thus we then do not mention EXTREME
nor STREUT.

Consider a semi-eutactic, non-eutactic lattice and suppose that there is a

partition S = S0 ∪ S1 so that eutaxy coefficients are 0 on S0 and equal on

S1. Then S1 is a spherical 3-design. Lattices having this property are called

strongly semi-eutactic. This property is also mentioned.

3.1d. Some more data. Less systematically than above we mention
some other properties: transitivity properties of Aut(L) on S and S∗,
even the rank in case of a transitive action, or also properties relative
to γ′ (DUAL-EXTREME, DUAL-EUT(actic). We scarcely mentioned
these latter properties: indeed, if L is extreme and L∗ is at least semi-
eutactic, L and L∗ are dual-extreme; in the other direction, if rkS < n
or rkS∗ < n, L and L∗ are not dual-extreme.

Also modular lattices are quoted. (m-modular means that there is a
similarity of module m which maps L∗ onto L; 1-modular is equivalent
to unimodular).

3.1e. Laminations Due to their importance in the constructions of the
tables, we briefly describe laminations, then antilaminations.

Start with a lattice L0, then consider representatives L1a, L2a, ... of
the set of isometry classes of lattices containing L0 as a hyperplane
section, with the same minimum as L0, and of determinant as small as
possible (i.e., Hermite invariant as large as possible); then perform the
same construction above L1a, L1b, etc. These are the weak laminations
over L0.

From the second step onward, it may happen that different deter-
minants occur. Keeping only lattices having the smallest determinant,
we obtain the (strong) laminations over L0.
Basic example: Conway-Sloane’s laminated lattices , where we start
with the lattice {0} to which we give minimum 4 (for convenience).
There is only one cul-de-sac (named Λmid

13 , L13mid in PARI), and the
Leech lattice is the unique laminated lattice in dimension 24.

A third type of laminations are Plesken-Pohst’s integral laminations .
This time we start with an integral lattice L0 and consider integral
lattices L1a, L2a, ... having the same minimum as L0 and of determinant
as small as possible; then go on above L1a, L1b, etc.
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If one obtains at some step a unimodular lattice U , then the series
continues with U ⊥ L1a,... It is easily seen that this is the case with
L0 = Z (U = Z) and L0 = A1 (U = E8). Plesken and Pohst have
shown that starting with scaled copies of Z to minimum 3 (resp. 4),
we meet the unique unimodular lattice of minimum 3 (resp. 4) and
dimension 23 (resp. 24, the Leech lattice). What happens with larger
minima is not known.

3.1f. Antilaminations. Whereas laminations are constructed using
ascending constructions, antilaminations are constructed using descen-
ding constructions.

Start with a lattice L0 and consider its hyperplane sections of min-
imal determinant. These are in one-to-one correspondence with the
minimal vectors of L∗0. In practice, we list representatives of orbits in
S(L∗0), determine their orthogonal in L0, finally remove redundancies
if need be, then go on, starting with the above list. This process in-
creases the minima. However we often find long chains of lattices with
the same minima as L0.

We compare below antilaminations and various laminations on two
examples.

The Leech lattice Λ24. In dimensions 14–24, (strong) laminations and

antilaminations produce the same, unique lattices. In dimensions n = 13,

12, 11, there are three, three, two laminated lattices, respectively. Anti-

laminations produce only two lattices if n = 13 (Λmid
13 is missing), next the

same three lattices for n = 12, and one more lattice if n = 11 (denoted by

Λmid
11 ; not a laminated lattice), a cul-de-sac if we restrict ourselves to strong

antilaminations.

The shorter Leech lattice O23. Antilaminations of O23, the unique
unimodular lattice of minimum 3 in dimension 23 produce a unique
lattice On for 23 ≥ n ≥ 14, among which the strongly perfect lattices
O22 and O16. Arithmetic laminations of Plesken and Pohst produce six
lattices with n = 15, including the extreme plp15f , all distinct from
O15, then six lattices with n = 16, again all distinct from O16. Thus
antilaminations (resp. arithmetic laminations) do not find the extreme
lattice plp15f (resp. O16).

3.2. Lambda.gp
The file contains 6 parts: (1) laminated lattices (and some “com-

panion” lattices); (2) Plesken-Pohst laminations for minimum 4 (when
not in part 1); (3) some antilaminations of “L11mid” (the orthogonal
of L13mid in L24, NOT a laminatef lattice); (4) the series Kn = Kn;
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(5) the series K ′n = Kpn; (6) varia (especially a few lattices with a
somewhat large invariant γ′ with respect to more “classical” lattices).

3.3. AntilaminO222333.gp

The shorter (resp. odd) Leech lattice is the unique unimodular lattice
of minimum 3 and dimension 23 (resp. 24), denoted by O23 =OO23
(resp. O24 =OO24. Part 4 lists a few antilaminations of OO24, whereas
Parts 1,2,3,5 concern sublattices of OO23.

The smallest three determinants of 2-dimensional sublattices of
O23

∗ ' O23, are 8, 9, 11. They constitute a unique orbit, represented
my matrices [3, 1; 1, 3], [3, 0; 0, 3], [3, 1; 1, 4], respectively, Orthogonal
lattices in O23 are characterized by their even sublattices, L21 and
Kp21 in Lambda.gp for the first two. [Then there are two orbits on

determinant-12 matrices, represented by [3, 0; 0, 4] and [4, 2; 2, 4], respec-

tively; their antilaminations have not been computed.]

(1) deals with the antilaminations of OO23 in dimensions 23 ≥ n ≥ 8,
denoted by OOn, with an extra subscript when they are not unique.
(The orthogonal to [3, 1; 1, 3] is OO21.)
(2) deals with the antilaminations of Op21, the orthogonal to a matrix
[3, 0; 0, 3] in OO23∗.
(3) deals with the antilaminations of Oq22, the orthogonal of a norm-4
vector in OO23∗; the next step Oq21 is the orthogonal in OO23 of the
matrix [3, 1; 1, 4].
(4) deals with the antilaminations of OO24 (denoted by Zn?) in di-
mensions 24 to 22.
(5) contains some more lattices of minimum 3.

3.4. Min3.gp

The file contains three parts.
(1) Plesken-Pohst arithmetic laminations.
(2) Lattices of Minimum 3 from Minimum 4. Integral lattices of

minimum 3 are constructed of the form L = L0 ∪ (L0 + e
2
) with L0 of

minimum 4 and e ∈ L0 of norm 12.
(3) Some More Sections of On for Large n.

3.5. Min5.gp

The first three part are devoted to integral lattices of minimum 5 gen-
erated by minimal vectors of pairwise scalar products ±1. Their min-
imal vectors support equiangular families of lines, and moreover, they
are sometimes useful to construct strongly regular graphs. These are
uniquely defined, antilaminations of three lattices Qa14, Qb15, Qc23.
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(Qa23 is strongly perfect; Qa14 is an extension of its section Qa13,
C2× PSL(2, 25) : C2 in Nebe-Sloane’s catalogue).

A fourth part in construction will be devoted to various other integral
lattices of minimum 5.

3.6. Min6.gp
.

Parts 1 to 4 are devoted to antilaminations of specific lattices of di-
mensions 10 (Kp10∗), 16 (a strongly perfect lattice of Hu and Nebe),
18 (Kp18∗), and 22 (a strongly perfect lattice related to Leech), re-
spectively.

Various other lattices are displayed in Parts 5 to 8.

3.7. Minlarge.gp
.

Part 1 contains one lattice (M1122) of minimum 11 derived from
Qc22, of minimum 5. Part 2 (resp. 3) contains lattices derived from
M1122 of minimum 10 (resp. 12). For lattices displayed in parts 1
and 3 the absolute value of scalar products of minimal vectors have
only two values.

3.8. Modular.gp.

A lattice L is m-modular (m ≥ 1 an integer) if there exists a a simi-
larity of modulus m which maps L∗ onto L. Rescaling to determinant 1,
we obtain a rational, isodual lattice, and conversely, a rational, isodual
lattice is proportional to a modular lattice.

We have reproduced only a few examples of 1-, 2- or 3-modular
lattices, for which many classification results are known. Similarly, we
have displayed only a few examples of lattices constructed using tensor
products or exterior powers: L1 ⊗ L2 for L1, L2 modular or L2 = L∗1;
∧kL0 for L0 modular or dimL0 = 2k.

The characteristics have been given a simplified form since data for
L and L∗ are the same.


