DOMAINS and REDUCED DOMAINS of WELL-ROUNDED MINIMAL CLASSES in DIMENSIONS 2,3 and 4 The notation of classes and corresponding matrices is that of my home page IV A "catalogue of perfect lattices", 4, file "Minimal classes in dimensions 2 to 4" above. The notation is S{n}x{r} for the classes (via their minimal vectors) and M{n}x{r} for the corresponding Gram matrices, where -- n is the dimension (n=2,3,or 4); -- r is the parfection rank (n<=r<=n(n+1)/2); -- the letter x (a,b,c,or d) is used to distinguish classes with same n,r. -- the matrices depend on k=n(n+1)/2-r parameters (the perfection co-rank), denoted by x1,\dots,xk (for x_1,\dots,x_k); we have 0<=k<=6. We disregard perfect classes (those with k=0). Thus among the 2+5+18 well-rounded classes, we are left with 1+4+16 non-perfect classes. Domains are denoted by D{n}x{r} and reduced domains by R{n}x{r} Various properties can be read in XXXXXX ************ DIMENSION 2 ************ D2a2 : -1-1, x1+x2<-1 ; (===> -1 x1<-1/2,x2<0) D3b4 : -1-2,-x1+x2+x3<2 and permutations ; R3a3 : -1-2-x1-x2 . ************ DIMENSION 4 ************ D4a9 : 01 ; (===> x1,x2>0) R4a8 : x1<=x2<1,x1+x2>1 . D4b8 : 01,x1+x2+x3>1 ; (===> x10 ; R4c7 : 0-1 ; (===> x1,x2,x3<0<1+x1-1,-1-1,x3,x4<1,x1+x2<-1,x1+x3,x2+x4>-1,x3+x4>0,x1+x2+x3+x4<0 ; (===> x1,x2<0,x3,x4>-1,x3 or x4>0) R4b6 : -1 x1<=-2/3,x2<-1/2, -1-1/2) D4c6 : -1-2,x2+-(x1+x3+x4)>-1; R4c6 : -1-1,x1+x2+x4,x1+x3+x5>-2, x1+x2+x3,x1+x4+x5<-1, x1+x2+x3+x4+x5<-2 ; R4a5 : -1=-1-i2,x5>=x2,x5>-2-x1-x3, x5<-1-i1-i4,x5<-2-2*i1-i4,x5<-3-2*x1-x2-x3-x4. D4b5 : x1,x2>-1,x1+x2<-1,-1-2,x2+-(x3+x5)>-2, x3+x4+x5>-1,-(x1+x2)+-(x3+x4)>0 (===> x1,x2<0); R4b5 : -1-2-x1-x3, x5>-2-x2-x3, x5<-x1-x2-x4. D4c5 : (a) -1-2 (even nb of - signs), (c) +-x1+-...+-x5>-2 (+ signs at {1,3},{2,4},{5} or everywhere), (d) +-x1+-...+-x5>-4 (+ signs at {1,4},{2,3},{1,2,5},{3,4,5} ; R4c5 : -1-1-x1,x1<=x4<=-x2/2,-1-2-x3-x4,x5>-2+y4,-2+z4-3 with sets of + signs one of {1,6},{2,5},{3,4},{1,2,4},{1,3,5},{2,3,6},{4,5,6},{1,2,3,4,5,6} ; R4a4 : -1