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WEB PAGES ON MINIMAL CLASSES

J. MARTINET (∗)

Abstract. We first recall the main properties of minimal classes,
then explain the data which can be downloaded (file Sdim2to4.gp,
then describe various complements (groups, domains, reduced do-
mains, dual-minimal classes) which can be read with an editor, but
not downloaded.

Introduction and Note on References

This text is a wide development of a former Sections 6 to 8 of that
was previously “Voronoi graphs and minimal classes”, now restricted
to “Voronoi graphs”. Enlargements concern Sections 3 to 6 below.

This files consists of the following sections:
1. Minimal Classes and (Weak) Eutaxy .
2. The file Sdim2to4.gp.
3. Minimal Classes: Classification and Index Theory .
4. The Domains .
5. Reduction.

In Construction:
6. Dual-Minimal Classes .
7. Dual-Minimal Classes: Experimental Results .

Note on references. I have kept the notation of the (enlarged)
reference list of [M], except that I have replaced “[Mar]” by “[M]” to avoid
a notational problem with the 1996 French edition of [M]. It is useful to
complement [M] by references to be downloaded from [Mweb], in particular
three references from Section I of [Mweb] (Recent journal publications and
preprints), relative to [M]:

(1) [Merr] Erratum;
(2) [Mcpl] Complements;
(3) [Mbib] Corrected and Extended Reference List (update on pages

1 to 15, new references from page 16 onward).

Warning. Only a few references, directly related with this file, may be
accessed to directly in the reference list at the end of this note; I refer
to [Mbib] for the others.

Key words and phrases. Euclidean Lattices, Minimal Classes, Duality.
Former Professor, Uni. Bordeaux ; e-mail : Jacques.Martinet@math.cnrs.fr.
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2 J. MARTINET

1. Minimal Classes and (Weak) Eutaxy

This text is a continuation of the text “Voronoi graphs” above, to
which we refer the reader for some definitions which have not been
reproduced below. We follow [M], Chapters 9 (for the theory) and 14
(for the numerical data, and [Bt] for the (not yet available here) data for
dimension 5. Lattices are assumed to be contained in a given Euclidean
space E, of dimension denoted by n. We denote by s(Λ) = s the
number of pairs ±x of minimal vectors of the lattice Λ.

1.1. Basic definitions. In terms of lattices, minimal classes are the
classes for the equivalence relation on the set of lattices in a given
n-dimensional Euclidean space:

Λ ∼ Λ′ ⇐⇒ ∃u ∈ GL(E), u(Λ) = Λ′ and u(S(Λ)) = S(Λ′) .

We then define on these classes an ordering relation by

C ′ ≺ C ⇐⇒ ∃Λ ∈ C, ∃Λ′ ∈ C ′, S(Λ′) ⊂ S(Λ) .

In terms of quadratic forms, we consider the finite subsets S ∈ Zn

which are such that the set Q(S) of positive definite quadratic forms q
such that S = S(q) is not empty. Then Q(S) is a convex open polyhe-
dron. We obtain this way a cell decomposition for the set of positive
definite quadratic forms. Minimal classes correspond to equivalence
classes of cells under the action of GLn(Z).

Recall that a lattice Λ (or a positive definite quadratic form) q is
well rounded if it contains n = dim Λ independent minimal vectors,
and that a class is well rounded if all its lattices are. In the sequel,
we restrict ourselves to well-rounded classes. This is no important
restriction: classes whose minimal vectors have rank n′ < n are in
one-to-one correspondence with n′-dimensional classes.

The perfection rank r (and the cardinality s) of S are invariants of
the class C defined by S. The dimension of a cell is its perfection co-

rank, namely n(n+1)
2
− r. The 0-cells are perfect forms and 1-cells are

Voronoi paths connecting two perfect forms. Thus minimal classes are
objects which generalize both perfect forms (or lattices) and Voronoi
paths. They are related to a construction we considered in Section 2
of Voronoi graphs : given S, S ′ ⊂ S defines a class C ′ (with necessarily
C ′ ≺ C) if and only if it is admissible in the sense of Definition 2.1
ofVoronoi graphs and satisfies moreover sign conditions with respect
to faces. The topological closure C of a class C is the union of the
classes D � C (we say that D lies above C).
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1.2. Characterization of Minimal Classes and automorphisms.
A minimal class C is well defined by the n×s matrix of the components
of the set S of the minimal vectors up to sign of some lattice Λ ∈ C
on a basis B of Λ over Z. The problem arises of comparing two classes
C1, C2 given by sets S1, S2, respectively. To this end we attach to every
S the n × n matrix MS := S tS. This is a matrix with entries in Z,
and since we restrict ourselves to well-rounded classes, MS is positive
definite.

Theorem 1.1. The class of MS modulo GLn(Z) (or the isometry class
of a lattice with Gram matrix MS) does not depend on the choice of S,
and the assignment C → cl(MS) is injective.

[We thus attach to every class C the various invariants of the isometry class of

lattices with Gram matrix MS . Except for a few of them (see Remark 1.3) I

do not know whether they have a sensible interpretation in terms of minimal

classes.]

The isomorphism of a class C onto itself is the automorphism group
Aut(C) of C, that we shall generally denote by G; the subgroup of
Aut(C) of those automorphisms which stabilize all lattices in C is the
strict automorphism group Aut(C)0 of C, generally denoted here by G0.

The group G will play a major rôle in the question of reduction
that we shall consider later, and the group G0 is useful in questions
related to duality. Note that if a group H acts on a lattice Λ, then
the corresponding action of u ∈ H on the dual lattice Λ∗ is given bu
u ∗ x = tu−1(x). Thus if Λ is acted on by G, then Λ∗ is acted on by the
transpose of G. Note that

the group G is canonically isomorphic to Aut(M−1
S )

(A.-M. Bergé; see [Bt], Prop. 2.9).
Also, for every A ∈ C, the corresponding barycenter matrix

M = 1
|Aut(S)|

∑
U∈Aut(S)

tUAU

has the full group Aut(C) as its automorphism group.

1.3. Eutaxy. For x ∈ Er{0}, denote by px ∈ Ends(E) the orthogonal
projection to Rx. Given a lattice Λ (resp. a positive definite quadratic
form q with matrix A), a eutaxy relation for Λ (resp. for q) is an
equality

Id =
∑

x∈S(Λ)

ρx px (resp. A−1 =
∑

X∈S(q)

ρ′X X
tX) .
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[These definitions are compatible with the dictionary lattices ←→ quadratic

forms: if B is a basis for Λ with Gram matrix A, then A = Mat(Id,B,B∗)
and XtX = Mat(px,B∗,B) — note the exchange B ←→ B∗.]

Definition 1.2. We say that a lattice or a form is weakly eutactic if
there exists a eutaxy relation between its minimal vectors. We say that
it is semi-eutactic (resp. eutactic) if moreover the eutaxy coefficients
can be chosen to be non-negative (resp. strictly positive). We say that
it is strongly eutactic if there exists a eutaxy relation with equal co-
efficients. (It is also useful to consider strongly semi-eutactic lattices and

forms, those for which there exists a eutaxy relation with equal non-zero

eutaxy coefficients.)

[Strongly eutactic lattices are the lattices whose set of minimal vectors is a

spherical 2-design (or 3-design, this amounts to the same by central symme-

try). Similarly, strongly semi-eutactic lattices are the lattices whose set of

minimal vectors having non-zero eutaxy coefficients is a spherical 3-design.]

On the closure of a given class C, the Hermite invariant γ (defined by

γ(Λ) =
min Λ

det(Λ)1/n
) attains a minimum. By a theorem of A.-M. Bergé

and J. Martinet, this minimum is attained on a unique lattice (up
to similarity), which is also the unique weakly eutactic lattice (up to
similarity) in its class. This class is some class C ′ ⊂ C (whence a
canonical map C 7→ C ′ � C).

Remark 1.3. A minimal class C contains a strongly eutactic lattice if and

only if the matrix M−1
S is strongly eutactic, and M−1

S is then the weakly

eutactic lattice of C.

2. The file Sdim2to4.gp

This file, devoted to minimal classes in dimensions n = 2, 3, 4, can
be downloaded in PARI-GP. It consists of four parts, the first three
of which contain data which can be downloaded; by editing this file
(under emacs, vi , etc) one can read complementary information.

Since we consider only dimensions n ≤ 4, the lattices of every well-
rounded minimal class have a basis of minimal vectors (and even, to
within the unique exception of the perfect class of the lattice D4, any
set of n independent minimal vectors is a basis. (In D4, such a set
generates a sublattice of index 1 or 2.)

Here is a more precise description.

Part 1: The Classes. This part contains a list of systems S of
components of minimal vectors (up to sign) on a basis of minimal
vectors, following the notation of [M], Chapter 9, chosen so that the
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first non-zero component be positive. The set of minimal vectors is
written in the form e1, . . . , en, en+1, . . . , es. Consequently the matrices
for S have the form S = (In | S1) where S1 is an n× (s− n) matrix.

The notation is Snxr, where n is the dimension, r ∈ [n, n(n+1
2

] is the
perfection rank, and x is one of the letters a, b, c, d.

Editing the file one can read the orders of the corresponding auto-
morphism groups.

Part 2: Gram Matrices. These matrices are n×n matrices scaled to
minimum 2, hence with diagonal entries 2, depending on k parameters
x1, . . . , xk where k is the perfection co-rank of the class. Thus we have

k =
n(n+ 1)

2
− r , hence 0 ≤ k ≤ n(n+ 1)

2
− n =

n(n− 1)

2
.

The entries of these matrices are affine functions of the xi. They define
a lattice of minimum 2 provided we restrict ourselves to a domain
defined by affine inequalities; see Section 4 below.

Part 3: Eutaxy. The 2+5+18 = 25 minimal classes in dimensions 2
to 4, except S4a6, contain a weakly eutactic lattice, and these lattices
are eutactic except that of S4b7, which is only semi-eutactic, and are
rational except those of S4a7 and S4a8, the fields of definition of which
are quadratic.

Part 3 contains Gram matrices for these lattices, denoted by Mnxr
(“M...” instead of “S...” used for the class); M4a7 and M4a8 are given
in the PARI-format for algebraic numbers.

Part 4: Strict Automorphisms. Editing the file one can read
the orders of automorphism groups given in part 1 together with the
minimal vectors of the class; in the short part 4, which can only be
read, we display the orders of the strict automorphism group of each
class , i.e., the subgroup G0 of G := Aut(C) which stabilizes all lattices
in C.

3. Minimal Classes: Classification and Index Theory

The classification of minimal classes is known up to dimension n = 7,
and can be read in [M], Chapter 9 for n ≤ 4, where this is established
inductively on the perfection rank (result due to Štogrin, completed by
Bergé and Martinet; see [St] and [B-M5] of [Mbib]).
[The results for n = 5 can be read in [Bt]; for n = 6, 7, one can contact the

authors of [E-G-S2]. ]

3.1. Index Theory. We now turn to index theory. Recall that the
lattices we consider are assumed to be well-rounded (otherwise we
must consider the notion of a Minkowskian sublattice; see [K-M-S]).
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Let x1, . . . , xn be n independent minimal vectors in a lattice Λ, and let
Λ′ be the sublattice of Λ they generate (thus, (x1, . . . , xn) is a basis
for Λ′). The index [Λ : Λ′] is bounded from above by γ(Λ)n/2. The
set of possible isomorphism classes of quotients Λ/Λ′ (and the set of
possible values for [Λ : Λ′]) are invariants of the class of Λ. If n ≤ 4,
we have γ(Λ)2 ≤ 2 with equality only on the class of D4. Thus this
index is equal to 1 except on cl(D4) where it is equal to 1 or 2, and in
all cases, lattices have a basis of minimal vectors.
[In particular they are generated by their minimal vectors. The converse is

true up to dimension 9, but not beyond dimension 9; cf. [Mar-Schr1].]

3.2. Characteristic Determinants. We restrict ourselves to lattices
having a basis B = (e1, . . . , en) of minimal vectors.

Let k ≤ n, and consider k minimal vectors xi = a1,ie1+· · ·+an,ien dis-
tinct from the basis vectors. Following Korkine and Zolotareff ([K-Z3];
see [M], Sections 6.1 and 6.4), the absolute value of the determinant of
a k × k matrix extracted from the components aj,i of the xi is called a
characteristic determinant . To each characteristic determinant equal
to some d 6= 0 corresponds a lattice contained to index d in Λ. Char-
acteristic determinants of order 1 are the |aj,i|.

If the aj,i are all 0 or ±1, then characteristic determinants of or-
der 2 are either 0, ±1 or come from pairs of components of the form
{(1, 1), (1,−1)} (up to permutation and change of signs of the xi). In
the same conditions, if characteristic determinants of order 1 or 2 are
equal to 0 or 1, then characteristic determinants of order 2 are either 0,
±1 or come from sets (1, 1, 0), (1, 0, 1), (0, 1, 1). For n ≤ 4, computing
directly characteristic determinants of order 4 (which do not reduce to
a single type), we obtain efficient restrictions on the possible sets of
minimal vectors.

4. The Domains

With a minimal class C defined by a set S of components of minimal
vectors on a basis we attached a matrix M depending affinely on k gen-
erators xi (k is the perfection co-rank), but these parameters are not
arbitrary. The domain D of C is the (open) subset of Rk to which the
xi must belong in order that M be a matrix of minimum 2 representing
lattices in C. The closure D of D is a closed convex polytope, which is
the convex hull of its extremal points that we shall rather describe as
an intersection of affine half-spaces, and D is the interior of D.

In what follows we shall discard the case of perfect minimal classes,
for which there are no parameters (they correspond to polytopes re-
duced to a single point).
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The domain can be characterized by the inequalities N(x)− ≥ 0 for
x running through all vectors a1e1 + · · ·+anen. This produces infinitely
many inequalities, but the facets of D correspond to the case when x
may be minimal, and using of characteristic determinants we reduce
ourselves to finitely many inequalities (a well known fact in the theory
of reduction of quadratic forms).

Even when this is done there may exist redundancies. For instance
using vectors x = e1±e2 implies inequalities of the form u(x1, . . . , xk) ≥
c for some linear form u and c ∈ R, which are empty if one of the
vectors e1±e2 is minimal. Other example: it happens that we find sets
of inequalities of the form −1 < x1, x2 < 1 and x1 + x2 < −1. Then
this implies −1 < x1, x2 < 0 and we may forget the upper bounds
x1, x2 < 1.

The domains for n ≤ 4 were obtained using these considerations. To
each class Snxr and each matrix Mnxr, the set of inequalities which
define the domain are referred to Dnxr. The results will be displayed
in the future text−file domains.txt in construction; I have tried
to limit redundancies. However the systems of inequalities displayed in
this file are not claimed to be all minimal.

This file will also contain reduced domains, denoted by Dnxr, that
we study in Section 5 below.

5. Reduction

As above we consider classes C defined by a set S and their corre-
sponding Gram matrices M , and discard perfect classes. The matrices
M depend on k ≥ 1 parameters x1, . . . , xk, and their entries are affine
functions of the xi. The group G := Aut(C) is represented by matrices
Ag, g ∈ G and acts on the set of matrices M by g ·M = tAgMAg.

Remark 5.1. Given a positive, definite matrix P with entries in Z, the

command qfauto(P) of PARI outputs a 2-component vector, the order of

G := GL(P ) and a vector with matrix components G[i]; as generators of

GL(P ) we may take the matrices Gi := tG[i].

The action of G on the set of matrices M preserves the constant
entries. We may thus consider the action of G on the set E of non-
constant entries. We denote by G1 the core of the action. This is a
subgroup of G of even order (because it contains {± Id}), and which
may be larger.

Example 5.2. Let C = S3a4. This is the class of A∗3, so that we may

identify G/{± Id} with S4 acting on {e1, e2, e3, e4 := −(e1 + e2 + e3)}. We
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have E = {x1, x2,−2− x1 − x2}, and G/{± Id} ' S4 acts on E through its

quotient S3.

The reduction procedure aims to write D as the union of translated
under G of a sub-domain R so that any matrix in D be of the form
g ·M = tAg ∗M ∗ Ag for some g ∈ G and M ∈ R, and that for any
g1, g2 ∈ G, the dimension of (g1 ·M) ∩ (g2 ·M) be smaller than the
dimension of D.

Our reduction has been done using the following method.
If G acts trivially on E , there is nothing to do. Otherwise pick y1 ∈ E

such that its orbit o1 under G is not reduced to {y1} and consider the
stabilizer G(1) of y1. If G(1) does not act trivially on E , pick y2 ∈ Esuch
that o2 := G(1) y2 is not reduced to y2, then consider the action of the
stabilizer G(2) of y1 and y2, etc. We finally obtain subsets o1, . . . , om
and a descending chain of subgroups G(1) ⊃ · · · ⊃ G(m) such that G(m)

acts trivially on E . We then have
∏

i |oi| = |G/G1|, and have found G1.
Now we may take as a reduced domain the subset R of D which

defined by the inequalities yi ≤ min oi for i = 1, . . . ,m. In other
words, we must add these inequalities to the strict defining inequalities
of D. This procedure introduces new redundancies, that we have more
or less suppressed, that the results displayed in the file domains.txt
are not claimed to be optimal in this respect.

6. Dual-Minimal Classes (Unfinished)

Recall that the transpose tu of u ∈ GL(E) is defined by the condition

∀x, y ∈ E, u(x) · y = x · tu(y) ,

so that for any lattice Λ ⊂ E, we have u(Λ)∗ = tu−1(Λ∗). The notion of
a dual-minimal class consists in adding to the definition of a minimal
class a condition involving duality.

Definition 6.1. We say that two pairs (Λ,Λ∗) and (Λ′,Λ′∗) are
dual-minimal-equivalent if there exists u ∈ GL(E) such that

u(Λ) = Λ′ u(S(Λ)) = S(Λ′) and tu−1(S(Λ∗)) = S(Λ′∗) .

We define this way a partition of minimal classes into finitely many
dual-minimal classes. We describe in this section what we know about
these partitions for n ≤ 4. Actually our knowledge is very poor: these
partitions are known only if n = 2, n = 3, and n = 4, s ≥ 7. For the
8 remaining classes, conjectures and a few partial results will be given
in Section 7.

Notation. The elements of the partition of a minimal class C are
denoted using superscripts (1), (2), etc.. the value of s∗, and if there
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are several dual classes with, say, s∗ = 1, we shall denote them using
superscript (1a), (1b), etc. Thus we write C(1), ..., or C(1a), C(1b), ....

A future file Partition.txt will (?) display the partitions into dual-
minimal classes (proved or conjectural) in dimensions n ≤ 4.

6.1. Isodual lattices and classes.

Definition 6.2. (1) We say that a lattice Λ is isodual if there exists
an isometry σ (an isoduality) which maps Λ onto Λ∗. We say
that Λ (or σ) is symplectic if σ2 = − Id.

(2) We say that a set of lattices E is (weakly) isodual if there exists
a similarity σ which maps every lattice in E onto the dual of
some lattice of E , and that C is strongly isodual if σ may be
chosen so as to map each lattice onto its dual.

[We shall often give (1) a weak sense, assuming only that σ is a similarity.

The strict definition then applies to the scaled copy of Λ of determinant 1;

under (2) we may restrict ourselves to isometries by fixing the minima.]

All lattices in dimension 2 (well-rounded or not) are isodual of sym-
plectic type. Thus the classification of isodual classes is non-trivial
only if n ≥ 3.

Proposition 6.3. (1) If n = 3 there does not exist any isodual
minimal class.

(2) If n = 4, the isodual minimal classes are S4a9 and S4a10, and
they are strongly isodual.

(3) The only strongly isodual class in dimensions n = 5, 6, 7 is the
class of the perfect, 7-modular lattice P 5

6 .

Proof. We first consider a perfect class C (so that there is no difference
between weak and strong isoduality). An inspection of perfect lattices
shows that the only examples are the classes of P 1

4 = D4 and and of
the 7-modular lattice P 5

6 .
Next if C is a strictly isodual class, then any class C ′ ≺ C also is

(σ extends to C, which contains C ′). In particular the vertices of the
domain of an isodual class must be isodual lattices. This proves (3) for
n = 5 and 7.

Let now C be a non-perfect, isodual class. Then the edges of its
domain are Voronoi paths connecting isodual lattices. Since P 5

6 is only
connected with P 1

6 = E6, this is impossible if n = 6, which completes
the proof of (3), and we are left with the Voronoi path D4—D4.

Finally, using explicit computations (see Section 7 below), we check
that if n = 3 and s(C) ≤ 5, or if n = 4 and either C = S4b9 or s(C) ≤ 8,
then there exists in C a lattice Λ with s(Λ∗) = 1 or 2, so that s(Λ∗) is
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strictly smaller than s(C) ≥ n (because C is well-rounded).
[Indeed this result holds without assuming that C is well-rounded.] �

Examples of weakly, non-strongly isodual classes are provided by the
Voronoi paths E6—E∗6 and E7—E∗7 (the extensions of the isoduality to
the closure exchanges end-points). Also isodual dual-minimal classes
exist in dimensions 3 and 4.

6.2. One-Part Classes. We now consider cases in which a minimal
class C is itself a dual-minimal class.

(a) This is trivial if C is perfect (these are of dimension 0). If n ≤ 4,
this applies to S2a3, S3a6, S4a10 and S4b10.

(b) This is also clear if C is isodual. If n ≤ 4, this applies again to
S2a3 and S4a10, and also to S2a2 and S4a9.

(c) If a lattice Λ in C contains a critical hyperplane section having
the same minimum, then the minimal vectors of Λ∗ are the primitive
vectors orthogonal to this section, and C does not split whenever Aut(C)
permutes transitively these sections. This is true if n ≤ 4, and then
applies to S2a (again), S3a5 and S4b9, with s∗ = 2, and to S3b4, S4b8
and S4d7, with s∗ = 1.

We are left with 2 classes for n = 3 and 12 for n = 4. It will
turn out that these remaining 14 minimal classes split into at least two
dual-classes (and even at least three except for S4a8).

6.3. The method. Given a minimal class C, we must first find a set
T ∗ of vectors of Zn, as small as possible, such that for any Λ ∈ C,
the components on a basis for Λ∗ on the vectors of the dual basis
of the chosen basis for Λ are contained in T ∗. The theorem below
([M], Lemma 6.3.3 and the comments which follow; see also [Mcpl],
Section 14.5.C for the bound γ′9 < 2) allows such a restriction on T ∗ :

Theorem 6.4. Let Λ be a lattice of dimension n ≤ 9, and let x ∈ S(Λ)
and y ∈ S(Λ∗). Then |x · y| = 0 or ± 1, except if n = 8, Λ is similar
to E8, and x, y are colinear.

Proof. (Sketch.) First observe that x · y is an integer, so that it suffices
to prove that |x · y| < 2. Consider the chain of inequalities

|x · y| ≤ γ′(Λ) ≤ γ′n ≤ gn .

For n ≤ 7 we have γn < 2, hence the result in this case. For n = 8, we
have γ′8 = γ8 = 2, but we may use the strict inequality |x · y| ≤ γ′(Λ)
whenever x, y are not colinear. Finally, for n = 9, we use the bound
γ′9 ≤ 2, relying on the determination by Poor and Yuan of γ′5 and of
the 5-dimensional dual-critical lattices combined with inequalities of
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Bergé-Martinet ([M], Section 2.8), and on the inspection of possible
cases of equality. �

When lattices in C have a basis B = (e1, . . . , en) of minimal vectors,
since ei ·

∑
j aje

∗
j = ai, Theorem 6.4 shows that ai = 0,±1. It seems

that (at least for low dimensions) more restrictions exist. For instance,
for the class S3a3, Theorem 6.4 allows 3n−1

2
= 13 pairs of minimal

vectors, whereas only the ±e∗i do occur (see Subsection 6.4): here,
only vectors orthogonal to a hyperplane section generated by minimal
vectors in C are allowed. This is not general (for instance, in S4a4,
there exists lattices with s∗ = 5, 6 or 8); however I have observed that
the existence of a rather large number of minimal vectors in C seems
necessary, especially if we limit ourselves to lattices with s∗ ≤ s, though
I am not able to give this remark a precise formulation.

By lack of better theoretical results, we must try to limit the number
of candidates for S∗ inside T ∗ by comparing the norms of various vectors
of T ∗. Not that inequalities N(x) ≤ N(y) for x, y ∈ T ∗ involve multi-
variate polynomial (k variables xi, k denoting the perfection co-rank),
for which no general method seems available. Even testing equalities
N(x) = N(y) involves the consideration of points (algebraic or rational)
on algebraic varieties. In the study of dual-classes with large values of
s∗, we met several times conic curves. We cannot exclude to have
to consider high genus curves. Note that it may happen that these
algebraic varieties are reducible, so that we can reduce ourselves to
calculations in lower degrees. This is not general, but occurs for n = 3
and n = 4, s ≥ 7, which makes easier the dual classification in these
cases.

Recall that G = Aut(C). On S∗ we must consider the action of the

transpose group G̃. This action preserves T ∗, that we may divide into

orbits under G̃. To compare the norms of various vectors x, y ∈ T ∗, it
suffices to choose one vector x in each orbit.

6.4. Dimension 3. The classification of dual-minimal classes was done
by A.-M. Bergé in [Ber1]; results for well-rounded classes can be read
in [M], Section 9.2. We are left with the two classes S3a4 and S3a3.
As an illustration of the techniques used, we give some details.

The minimal-class S3a4. The group G may be identified with
{± Id} × S4, S4 permuting e1, e2, e3, and e4 := −(e1, e2, e3). The

transposition (e3, e4) induces on G̃ the map (e∗1, e
∗
2, e
∗
3) 7→ (e∗1− e∗2, e∗2−

e∗3,−e∗3). As a consequence, T ∗ splits into the two orbits

o1 := ±{e∗1, e∗2, e∗3, e∗1 − e∗2, e∗2 − e∗3, e∗3 − e∗1} and o2 = ±{e∗1 ± (e∗2 − e∗3)} .
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It turns out that S∗ is contained in o1, and that the subgroup G0 of
isometries of G exchanges in pairs e∗i and e∗j −e∗k, so that s∗ = 2, 4 or 6.

The three equations N(e∗i ) = N(e∗j), restricted to the domain D of
S3a4, define the three intersection D ∩Di of D with the three lines

D1 : x1 = x2 ; D2 : 2x1 + x2 + 2 = 0 ; D3 : x1 + 2x2 + 2 = 0 .

These lines intersect at the point P := x1 = x2 = −2
3
, which defines

a dual-minimal class with s∗ = 6, the similarity class of A∗3. Off the
lines Di, we have s∗ = 2, with S∗ a permutation of {e∗1, e∗2 − e∗3}. On
any Di r {P}, we have s∗ = 4 and S∗ is a permutation of {e∗3, e∗1 −
e∗2, e

∗
2, e
∗
1 − e∗3}, obtained on D1. This splits D into three dual-minimal

classes indexed by s∗ and denoted by S3a4(k), k = 2, 4, 6.

Here are three remarks on this class.

(1) S3a4(6) disconnects S3a4(4), and similarly S3a4(4)∪S3a4(6) dis-
connects S3a4(2).

(2) The map t 7→ 2t+4
t−2

is an involution which maps M2a4(t, t) onto

a matrix proportional to its inverse. Hence S3a4(2) is weakly
isodual.

(3) The fix point of this involution inD is t = 2((1−
√

2). This value
defines the unique isodual lattice in S3a4, the lattice named ccc
(or mcc), discovered in [B-M1] and proved in [C-S9] to be the
densest isodual lattice in dimension 3, a result that we shall
recover below.

(4) The ccc lattice is dual-eutactic, but the projections onto S(ccc)
and S(ccc∗) span the same the same 4-dimensional subspace of
Ends(E), so that ccc is not dual-perfect.

(5) The unique eutactic lattice in S3a4 is A∗3, but this class contains
two dual-eutactic lattices, namely ccc and A∗3.

The minimal-class S3a3. This is the class of Z3, hence G = 23 ·S3.
There are three orbits of G on T ∗, namely

o1 = {±e∗i } , o2 = {±e∗i ± e∗j} , and o3 = {±e∗1 ± e∗2 ± e∗3} ,

but as often, only the o1 (the orthogonal of which has 2 minimal vec-
tors) can be S(Λ∗) for some Λ ∈ S3a3. The dual-minimal classes
are classified by the value of s∗ ∈ {1, 2, 3}. We denote them by
S3a3(i), i = 1, 2, 3.

Up to equivalence, representatives for the dual-class S3a3(3) are ob-
tained by setting x2 = x3 = x1. The involution x1 7→ −2∗x1

x1+2
shows that

S3a3(3) is weakly isodual (we must have −2/3 < x1 < 1). The only
fixed point is x1 = 0, defining Z3, the only isodual lattice of S3a3.
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As a consequence we see that there are exactly four dual-eutactic
lattices in dimension 3, namely A3, A∗3, ccc and Z3. We recover the
fact that the first two are the only dual-extreme lattices in dimension 3,

since this property requires s + s∗ ≥ n(n+1)
2

= 7 and ccc is not dual-
perfect.

6.5. Dimension 4. We briefly report on the known results in dimen-
sion 4. Discarding the minimal-classes which are at the same time
dual-minimal classes, we are left with S4a8, S4a7, S4ab, S4ac, and
the 4 + 3 + 1 = 8 classes with = 6, 5 or 4. The published results con-
cern only classes with s = 8, thus only S4a8 in the list above ([M],
Exercise 9.5.1).

The class S4a8 splits into two dual-minimal classes, S4a8(2) and
S4a8(4). This last dual-minimal class contains a unique dual-eutactic
lattice (“L8”), with field of definition the cubic field with discriminant
−244; it also contains the eutactic lattice of S4a8 (not dual-eutactic),
with field of definition Q(

√
3).

The only proved new result is that lattices with s = 7 all have s∗ ≤ 3.
The details will be given in the file Partition.txt in construction.

As a consequence, there exist exactly four dual-eutactic lattices with
s ≥ 7, namely D4 and A4, which are dual-extreme, and A2⊗A2 and L8,
which are not. Other known dual-eutactic lattices are A2 ⊥ A2 ∈ S4a6,
A∗4 ∈ S4a5, and Z3 ∈ S4a4, among which only A∗4 is dual-extreme.

The proof that D4, A4 and A∗4 are the only dual-extreme lattices
([B-M1]) relies on calculations of extrema. If we could prove that
A2 ⊥ A2 is the only dual-eutactic lattice with s = 6, we would have an
alternative proof of the classification of dual-extreme lattices.

7. Dual-Minimal Classes: Experimental Results

We first describe general experimental procedure, then concentrate
on dimension 4.

7.1. The method. We only consider non-perfect classes. Matrices MC
which describe a given minimal-class C then depend on k ≥ 1 parame-
ters x1, . . . , xk, such that (x1, . . . , xk) belongs to the chosen domain D
of C.

Choose an integer m ≥ 1 and consider the matrix M obtained by re-
placing x1, . . . , xk by i1

m
, . . . , ik

m
in MC. Letting (i`) run through system

of integers such that i`
m

) ∈ D, we obtain matrices which define lattices
in C. In practice, we rescale M to the integral matrix mM , and since
we only need to consider matrices up to equivalence, we make use of
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reduced domains as constructed in domains.txt; moreover, we may re-
strict ourselves to systems with gcd(i`,m) = 1 and gcd(i`) = 1 or 2,
and divide out mM by 2 in the latter case, so as to work with primitive,
integral matrices.

We now consider classes of dimension 4 with s = 6, 5, 4. In a first
step, we calculate s∗ for various values of m and put them in each case
in a vector of length 12 (n = 4 implies s ≤ 12). Note that:

(1) s∗ = 11 does no exist.
(2) Since we have excluded perfect classes, s∗ = 12 never occurs,

and s∗ = 10 occurs only for integral lattices in S4a5 of mini-
mum 3.

(3) The known results for s = 9, 8, 7 show that s∗ = 9 and s∗ = 7
will never occur, and that s∗ = 8 is possible only on S4a4.

[Similarly, investigations of cases where s∗ = 6, then s∗ = 5, will throw light

on large values of s∗ on classes with s = 5 or 4.]

Inspection of the list of values of s∗ for large values of m shows the
occurrence of a huge number of examples with s∗ = 1, 2, 3 (except
for restriction coming from non-trivial isometries or relations between
norms)), especially for s∗ = 1, and a very much smaller number of
examples with s∗ ≥ 4, if any. Some values of s∗ were found only with
sparse, large values of m, a phenomenon which could have been forecast
for s∗ = 8 on S4a4, thanks to our knowledge of the class S4a8; and I
cannot exclude that some dual-minimal classes only contain irrational
lattices, hence cannot be found experimentally as above.

The first experiments must be extended in order to be able to set
precise conjectures. However the picture for s = 6 seems to be reliable,
with the following possible values for s∗:

S4a6 : 1, 2, 3, 4, 5 ; S4b6 : 1, 2 ; S4c6 : 1, 2, 3 ; S4d6 : 1, 2, 3, 4, 6 .

The next task consists in looking more closely at the sets of minimal
vectors which show up, by listing their components on the basis B∗.
We first determine T ∗ and its decomposition into orbits under the ac-

tion of G̃, then determine the distribution of vectors in S∗ among the
different orbits. For instance, if there are two orbits o1 and o2 and if
s∗ = 1 the unique pair ±x ∈ S∗ may belong always, say, to o1, or to
o1 or o2, depending on Λ ∈ C, showing in this case the existence of two
dual-minimal classes in C ; and if s∗ = 2, we may find one, two or three
dual-minimal classes in C.

Let us return to S4d6. There are two orbits o1, o2, representing
6 + 18 = 24 pairs of vectors among the 40 pairs of vectors with com-
ponents 0,±1, characterized by the number of orthogonal pairs in S
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(4 for o1, 2 for o2). This suggests that o1 should play major rôle in the
distribution of vectors of S∗, and indeed, we have never found vectors
of S∗ in o2. Thus, experimentally , we have

S∗ ⊂ o1 := {±e∗1,±e∗2,±e∗3,±e∗4,±(e∗1 + e∗2),±(e∗3 + e∗4)} .

We then easily guess that S∗ = o1 holds when we set x3 = x2 and
x4 = −x1 − x2 in M4a6 (matrix that we shall denote by M6), and
uniquely in this case except for a few matrices corresponding to points
on the boundary of R4a6 in D4a6. We can now prove that the two-
parameters matrices M6 for (x1, x2, x2,−x1 − x2) ∈ D4a6 do represent
a dual-minimal class S4d6(6) ⊂ S4d6, which is thus very likely the only
dual-minimal class with s∗ = 6. Clearly o1 is a set of minimal vectors
for the class S4d6. We can prove more:

Proposition 7.1. The dual-minimal class S4d6(6) is strongly isodual
of symplectic type.

Proof . Consider the matrices M6 and P :

M6 =

(
2 −1 x1 x2
−1 2 x2 −x1−x2
x1 x2 2 −1
x2 −x1−x2 −1 2

)
and P =

(
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

)
,

and check the two equalities

P M6 P = (3− (x2
1 + x2x1 + x2

2))M−1
6 and P 2 = I4 . �

Similarly, experimentation with s∗4 on the reduced domain Rad6
output S∗ = {±(e∗1− e∗2),±e∗2,±(e∗3− e∗4),±e∗4}, obtained with x3 = x2,
x4 = −2x2. But since S∗ is no longer maximal, the result depends
on the choice of the reduced domain. A more convenient choice could
have been

S∗ = {±e∗1,±e∗2,±e∗3,±e∗4}, with x3 = x2 and x4 = x1} .

We can prove that these conditions imply that S∗ is equal to the set
above or to the whole orbit o1. With the restriction s∗ ≤ 4 we define
a dual-minimal class S4d6(4). This amounts to exclude the line x4 =
x3 = x2 = −2x1.

In a search for dual-eutactic lattices under the conditions x3 = x2

and either x4 = −x1 − x2 or x4 = −2x2 we found only A2 ⊥ A2

(reducible, hence not dual-extreme). This shows that this lattice is the
only dual-eutactic lattice in S4d6(6), and that S4d6(4) does not contain
any dual-eutactic lattice. The existence of other dual-eutactic lattices
in S4d6 is very unlikely.

Provisional end of file (except for references)
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mology of modular groups, Advances in Math. 245 (2013), 587–624;
arXiv:math/1001.0789v1. [Replaces Perfect Lattices, Homology of Modular

Groups and Algebraic K-theory, Oberwolfach Reports 1/2005 (2005), 36–39.]
[M] J. Martinet, Perfect Lattices in Euclidean Spaces, Grundlehren 327,

Springer-Verlag, Heidelberg (2003).
[Mweb] J. Martinet, http://jamartin.perso.math.cnrs.fr.


