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A2X — WEB PAGES on LATTICES and SPHERICAL DESIGNS
C. Batut, J. Martinet

1. GENERAL RESULTS ON SPHERICAL DESIGNS

The basic reference for the connections between the theory of lattices
and that of spherical designs is Venkov’s 2001 paper [V].

Definition 1.1. Let ¥ be the unit sphere in a Euclidean space E of
dimension n > 1, endowed with the natural measure d, in the scale
in which ¥ has volume 1. (Hence E could be identified with R™, as in
[V].) Let X be a non-empty, finite subset of the unit sphere S*~1 C R"
and let t be a positive integer. We say that X is a spherical t-design if
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for every polynomial f of degree at most t.

The definition immediately extends to a sphere having an arbitrary
radius. Since we shall never consider combinatorial designs, we shall
often omit the word “spherical”.

It is proved in [V] that it suffices to consider the condition above for
harmonic polynomaials, which then reads:

Theorem 1.2. The set X is a t-design if and only if one has
> fla)=0
zeX

for every non-constant, homogeneous harmonic polynomial f of degree
at most t.

Denote by e (resp. 2) the largest even (resp. odd) integer ¢’ < ¢.
Then:

Theorem 1.3. The set X s a t-design if and only if there exists a
constant ¢ such that

Z(x-oz)e:c(oz~oz)e/2(x-x)e/2 and Z(x-oz)’:O.

The value of ¢ then solely depends on n and ¢, and in practice, one
applies the theorem above to all even integers e < t, using the value
below ¢, of ¢:
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The following properties are easy consequences of the results above:

e A disjoint union of t-designs is a t-design.’

e A t-design is a t'-design for every t' < t.

e X is a l-design if and only if it is symmetric (w. r. to the origin).

e Any symmetric (2t)-design is a (2t + 1)-design.

e In dimension n = 1, the unique 1-design is S° and it is a t-design
for all t. Otherwise, there is a maximal value t,,,, for t, the level
of X, such that a given X is not a t-design for any ¢ > ..

The theory of invariants allows the construction of many interesting
designs. Let G be a finite subgroup of the orthogonal group O(F). The
polynomial functions (on E) which are invariant under G constitute an
algebra over R which is known to be finitely generated. (The degrees
of conveniently chosen generators are called the fundamental degrees.)
The polynomials (x-x)* are examples of degree 2k which are invariants
under all groups G C O(E). Given a finite set X invariant under a
group G, the polynomial )" _(v - 2)¥, if non-zero, is an invariant
polynomial of degree k.

The following theorem is an immediate consequence of theorem 1.3:

Theorem 1.4. Lett = 2p be an even integer and let G be a subgroup
of O(F) whose only invariants of degree d <t are polynomials in x - x.
Then the orbit under G of any non-zero vector of E is a spherical
t-design, and thus more generally, any finite, non-empty invariant sub-
set of a sphere is a t-design.

The case of 2-designs deserves some comments: the condition of the
theorem above is equivalent to the fact that the representation of G
afforded by FE is irreducible over R (“Brauer-Coxeter condition”; see
Section 2).

Moreover, the notion of a 2-design may be viewed as a special case
of the eutaxy property. Let us say that a finite, symmetric subset X of
a sphere is weakly eutactic if there exists an identity

S (@ a)? = (a-a) (x )

reX
with real coefficients p,, that it is eutactic if the can choose strictly
positive p,, and strongly eutactic if there exists such an identity with
equal p,. Then X is a 2-design if and only if it is strongly eutactic.
In practice, we shall write eutaxy relations as sums ) _ J{4} Over a
system of representatives for X modulo central symmetry.

I This may be a t'-design for some ¢’ > t. Examples provided by the set of
minimal vectors of a lattice and a scaled copy of its dual are proved in [Bec-V]



2. DESIGNS AND LATTICES

From now on, we apply the results of Section 1, taking for X the
set S = S(A) of minimal vectors of a lattice A C E, or more generally
other layers of A.

For x € E~{0}, denote by p, € End*(E) the orthogonal projection
to the line Rz. Recall (see [M], Chapter 3) that a lattice is perfect
if the p,, x € S(A) span End*(E), that a eutaxy relation for A is an
equality

Id = Pz P
zeS(A)
that A is weakly eutactic if it possesses a eutaxy relation, eutactic if it
possesses such a relation with strictly positive coefficients p,, and that
A is extreme if the Hermite invariant attains a local maximal at A. A
well known theorem of Voronoi (see [M], Theorem 3.4.6) reads

A extreme <= A perfect & A eutactic.

Definition 2.1. We say that A is strongly eutactic if S(A) is a
2-design (or 3-design, this amounts to the same) and that A is strongly
perfect if S(A) is a 4-design (or 5-design, this amounts to the same).

It is clear that A is strongly eutactic if and only if S(A) is strongly
eutactic in the sense of Section 1. The following theorem can be used
to prove that certain lattices are perfect, whereas direct proofs are
sometimes not available.

Theorem 2.2. (Venkov) A strongly perfect lattice is extreme and
strongly eutactic.

Proof. Two proofs, due to Boris Venkov and Thierry Vust, are given in
[V], Section 6. O

The fact that the set of minimal vectors of a given lattice A is or is not
a t-design for some given t can be tested using directly the definition, in
the form given in [V], Theorem 8.1. Results for ¢ = 5 have been checked
for all known strongly perfect lattices of dimension n < 26 mentioned in
[V], Section 19. The calculations become lengthy for large dimensions
(and would be much more time consuming if we were to consider larger
values of t). As an example, to prove that the integral 26-dimensional
lattice of minimum 4 and determinant 3 (found by Gabriele Nebe in her
classification of maximal finite subgroups of GLgg(Z)) took 41 hours,
41 minutes, 41 seconds® (and some milliseconds) on a Dell station.

2 Happily, we do not believe in numerology!
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Applying the theorem below, Christine Bachoc obtained the result in
a more general form and a much shorter time.

Theorem 2.3. Lett = 2p be an even integer and let A be a lattice such
that the only invariants of degree d <t of its automorphism group are
polynomials in x - x. Then all layers of A and of its dual lattice A* are
t-designs.

Proof. This is a direct consequence of Theorem 1.4, taking into account
that Aut(A) = Aut(A)*. O

Another important source to prove that some lattices are strongly
perfect is to use the theory of modular forms. This theory is of a
particular interest in the study of even modular lattices. Recall that
a lattice A is (-modular if there exists an isometry of A onto /¢ A*
and that it is modular if it is {-modular for some ¢. (The modular
lattices are the integral isodual lattices.) The (narrow) level of an even
lattice A is the smallest integer ¢ such that v/¢ A* is even. Even modular
lattices of narrow level a prime ¢ such that ¢+ 1 divides 24 (or ¢ = 1;
these are merely the even unimodular lattices) have been considered by
Quebbemann, who proved in [Q] that the theta series of such a lattice is
modular for the Fricke group, a group which contains I'y(¢), and using
this device, that we then have min A <2+ 2 L%J . Lattices which
meet this bound are called extremal. In [Be-V], Bachoc and Venkov
obtained theorems of strong eutaxy or perfection for £ = 1,2, 3,5. Here
is a summary of their results. 3

Theorem 2.4. (Bachoc—Venkov) The layers of an extremal {-modular
lattice are t-designs according to the data below:

(1) ¢=1&n=0 mod 24 = ¢ > 11.

(2)l=1&n=8 mod24 = t>7;
{=2&n=0 mod 16 = ¢t > 7.

3)¢=2&n=4 mod 16 =1t >5;
(=3&n=0,2 mod12=—=1¢>5;
=5&n=16 =t =5.

4 ¢=1&n=16 mod 24 =t >3;
=2&n= 8 mod 16 =1t >3;
(=3&n=4,6 mod 12 =t > 3.

[In all known examples, the lower bounds displayed above are sharp.
We conjecture this is a general fact.]

3 The assertion for £ = 1 is an older result of Boris Venkov



3. STRONGLY EuTACTIC LATTICES

As always in lattice theory, two problems arise:

(1) To construct strongly eutactic lattices.
(2) To classify strongly eutactic lattices.

In this section, we also consider a slightly less restrictive property.
Recall that a lattice is called semi-eutactic if it possesses a eutaxy
relation with non-negative coefficients.

Definition 3.1. We say that a lattice is strongly semi-eutactic if it
possesses a eutaxy relation with equal non-zero coefficients.

Such a relation is of the form Id = ¢ 3 g4, po where 5" C S(A) is
the set of minimal vectors of A whose eutaxy coefficients are non-zero
(and ¢ = & with s’ = % |S’]). Then S’ is a spherical 2-design.

To classify strongly eutactic lattices using Theorem 1.3 looks diffi-
cult, even in, say, dimension 4. Classification results in low-dimensions
have been obtained using a different concept.

We say that a lattice is well rounded (W.R. for short) if its mini-
mal vectors span E. It immediately follows from the definition that a
weakly eutactic lattice is well rounded. We consider on the space &£ of
W.R. lattices the relation

A~N<=3JueGLE), N=u(A) and S(A") =u(S(A))

(see [M], Chapter 9). We obtain this way a partition of £ into finitely
many minimal classes, related to an (infinite) cellular decomposition of
the space of positive definite quadratic forms having a given minimum:
minimal classes correspond to cells up to equivalence under GL,(Z),
and cells are convex polyhedrons in R*™+1/2 By a theorem of Bergé-
Martinet, each cell contains at most one weakly eutactic form. This
shows that in a given dimension n, the set of weakly eutactic lattices up
to similarity is finite, and in particular that there are up to similarity
only finitely many strongly eutactic lattices.

Classification up to dimension 4 (Stogrin, Bergé-Martinet) together
with the list of weakly eutactic lattices can be read in [M], Sections 9.3
and 14.3. Dimension 5 was completely dealt with by Batut in [Bt]. In
dimension 6, the minimal classes (but not the eutactic lattices) have
been classified by Elbaz-Vincent, Gangl and Soulé, who recently also
solved the case of dimension 7 ([E-G-S]; see also [E]).

Using this device one could complete the classification of 6-dimen-
sional strongly eutactic lattices. Indeed, given a class C and a lattice
A €C,let T € Mat,, (Z) be the matrix of components of S(A) on some
basis B for A, and define the Bacher matrixz of B and A (nowadays more
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usually named the barycentre matriz) by Bc = T T € GL,(Z). The
equivalence class of a Bacher matrix for C (called the barycentre matrix
in [E]) characterises the class C. Moreover, the definition of Bc shows
that

Bc! € C < Bclis a Gram matriz for a strongly eutactic lattice in C .

More generally, given a class Cy with set of minimal vectors Sy and
Bacher matrix Becy = %Sy, if S = S(Bcy') D Sp then S is the set
of minimal vectors of a class C’ with set of minimal vectors S and
Bc™! is a strongly semi-eutactic matrix belonging to C’, for which
Sp is the set of minimal vectors having non-zero eutaxy coefficients.
Strongly semi-eutactic, 6-dimensional lattices have been searched in a
list of Bacher matrices by simply checking the (rather scarce) inequality
s(Be™!) > s(C). This gives the list of strongly semi-eutactic for which
minimal vectors with non-zero coefficients define a minimal class. This
is certainly true if whenever the perfection rank is equal to the kissing
number, but I cannot assert that this property is general for strongly
semi-eutactic lattices.

As in dimension 6, the classification of strongly eutactic lattices in
dimension 7 could be extracted from the numerical data obtained by
Elbaz-Vincent, Gangl and Soulé in their paper [E-G-S].

Here are other methods (besides group theory, modular forms and
minimal classes) for constructing strongly eutactic lattices:

e Algebraic constructions (orthogonal sums, tensor products, exterior
powers).

e Classification for small values of s (Bergé-Martinet; see [Be-M2))

e The relation lattice ([M-V], Section 5).

e Convenient sections of strongly perfect lattices ([M-V], Section 6).

e Also, infinite series can be guessed (and the guess checked in not too

high dimensions) by extrapolation from very low dimensions.

For example, consider for n > 5 odd the n x n matrix M with entries n — 1

on the diagonal and —1 off the diagonal, except for entries 0 at (i,7+ 1) and

(i+1,i),5=1,3,...,n—2. Then, ezperimentally, M~" is the Gram matrix

for a strongly eutactic lattice A,. In the scale which makes A,, integral and

primitive, we should have min A, = 2(n — 1), s = (n? — 1)/2, perf = s,

Ann(L!/L,) = n? -1, and even Smith(A,) = (n?> —1)*=D/2.2(n+1)- ot

This accounts for lattices std12, stf24b and sth40 in the table. Note that M

lies in the minimal class of A*; a somewhat similar construction produces

ns

the lattices std9, stf16 and sth25.

o]



4. STRONGLY PERFECT LATTICES

The main two problems are the same as in section 3. But besides
them, it is useful to quote an important specific result, which concerns
the Bergé-Martinet invariant

s\ 1/2 . e\ 1/2
v'(A) = (y(A)y(A*))" = (min A min A*) ",

for which Venkov proved the lower bound 4 > ™2 ([V], Section 10).

Calculating this invariant over perfect lattices of dimensions n < 7 suf-

fices to classify strongly perfect lattices in these dimensions. (Probably,
n+2

perfect lattices A such that 7'(A) > "3= are still strongly perfect for a

few higher dimensions, but this is not general.)

For constructing strongly perfect lattices, besides methods relying
on group theory and modular forms that we mentioned in Section 2,
we may quote
e Explicit calculations with classical lattices.

e Equiangular families of lines (see classification below).
e Combinatorial properties of binary codes.

Explicit calculations were notably carried out for many sublattices of
the Leech lattice. The lattice K}, deserves a special comment: this is
the only known strongly perfect lattice A such that A* is not strongly
perfect. Probably, this is merely an illustration of the fact that we do
not know how to construct strongly perfect lattices without the help
of group theory or modular forms.

Combinatorial properties of binary codes were used by Venkov to
handle Barnes-Wall lattices BW,,, n = 2P (he proved that S(BW,,) is a
7-design from dimension 8 onwards). This result was recently improved
by Bachoc ([Bc]), who showed using group theory that indeed all layers
of these lattices are 7-designs. (Her work relies on [Ne-R-Sl].)

Classification results concern the dimension, the minimum of integral

scaled copies and lattices with s = @

Theorem 4.1. The strongly perfect lattices of dimension n < 12 (up
to scale) are Z, Ay, Dy, Bg, Ef, By, EX, g, K},, K1," and the Coxeter-
Todd lattice K.

Proof. See [V] for n = 1-9 and n = 11, [Ne-V1] for n = 10, and
[Ne-V2| for n = 12.

[Probably, no strongly perfect lattices exist in dimensions 13 and 15, and
Souvignier’s 3-modular lattice Q)14 is the only strongly perfect lattice in
dimension 14; see [Ne-No-V] and [Ne-V4].] U

For integral lattices of minimum m, it is proved in [V], Prop. 7.14
that dim A < 3(m? — 1). Lattices of minimum 2 are root lattices. The
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condition /(A) > ”T“ easily shows that the list is Ay, Ay, Dy, Eq, E,
Es. The problem of minimum 3 is much more difficult. It is proved
in [V], Section 7 that there are 5 such lattices, the unimodular lattice
O3, scaled copies of Z and E%, and their orthogonal O and Oi4 in
023 (O16epen is BWig).

Finally, strongly perfect lattices with minimal s are Z, A, and lattices
of dimension n = (2k + 1)®> — 1 whose minimal vectors constitute an
equiangular family of lines; examples are known only for n = 7 (E?)
and n = 23.
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5. HIGHER DESIGNS

Theorem 1.3, which gives only one equation for 3-designs, gives two
equations for 5-designs and three equations for 7-designs. In this res-
pect, high designs are easier to handle. The theorem below proved
in [M1]* is an example where a classification of 7-designs is obtained
whereas the corresponding result is not known for general strongly
perfect lattices (which are only 5-designs):

Theorem 5.1. The integral primitive lattices A of minimum m < 5
whose set S(A) of minimal vectors is a spherical T-design are Z, the
root lattice Eg, the shorter Leech lattice Oq3, the three laminated lattices
Mg (the Barnes-Wall lattice BWyg), Agg and Mgy (the Leech lattice,
an 11-design), and the even unimodular lattices of dimension 32 and
minimum 4 (which have not been classified). In particular, minimum 5
18 not possible.

More recently, Nebe and Venkov have (almost) obtained ([Ne-V3])
the classification of lattices whose set S(A) of minimal vectors is a
spherical 7-design for lattices of dimension n < 23 (with a modicum of
doubt in dimension 23).

4the lattice Og3 has been forgotten in the statement written in [M1]
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6. THE TABLES

We present two tables in PARI-GP format:

(1) strongeut.gp, in which we list known semi-strongly eutactic lattices
in dimensions up to 10;

(2) strongperf.gp, in which we list known strongly perfect lattices in
dimensions up to 26.

Strongly perfect lattices of dimension n < 10 occur in both tables. Lattices
are given by a Gram matrix. Since some of them occur several times in this
WEB page, often with different Gram matrices, they have been systemati-
cally given different names.

These two tables have the same structure as those which are displayed in
previous tables on perfect lattices:

name=|/...J;
followed by

\\ [det, [s, min], [s*, min], [a$' ... aS"]]
and may be some more data (name, number of automorphisms,...) and the
cardinality of the afforded design in case the lattice is semi-eutactic, non-
eutactic, written sgegign; as usual, PARI does not read the line above, which
is here for the reader’s convenience.

The first table deserves some more comments. Each name begins with
“st” followed by one of the letters a,b,...,i (a for dim. 2, b for dim. 3, ...,
i for dim. 10) and the s invariant. When necessary, a letter a,b,c, or d is
added to distinguish lattices. Finally, the name ends with “se” if the lattice
is semi-eutactic, non-eutactic.

Example with n = 6:
stellse=[8,-1,1,1,-2,-2;-1,8,-2,-2,1,1;1,-2,8,-4,-1,-1;1,-2,-4,8,-1,-1;-2,1,
-1,-1,8,-4;-2,1,-1,-1,-4,8];
\\ [62208, [11,8],[4,2],[12%.3.1]] |AUT| = 256 = 28 ;
\\ Sdesign = 9 Orb:(1+872)
Here, “orb=(1+48,2)” means that minimal vectors with non-zero eutaxy co-
efficients share out among two orbits with 1 and 8 elements, and that the
remaining two vectors constitute one more orbit.

In the table below, we display the number of known strongly eutactic
and semi-eutactic, non-eutactic lattices in dimensions 1 to 6. This is an
update® of the data published in [M-V] (which however did not mentioned
semi-eutaxy).

%in [M-V], Table 8.1, a lattice with n = 5, r = s = 12 and minimum 10 has been
forgotten
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Low-dimensional strongly eutactic lattices

dimension 1121314 5 6
well-rounded cells [1]2]5]18|136|5634
eutactic 112516118 77
strongly eutactic 11213/6] 9 | 21
semi-eutactic 0/0f{oj 1|5 | 77
strongly semi-eutactic|0|(0|0| 1| 1 | >6

The data for dimension 6 have been communicated to us by Elbaz-Vincent
and Gangl at the Oberwolfach meeting [ObW]. Beforehand, only 20 strongly
eutactic lattices out of 21 were known, 19 listed in [M-V] and 1 in [Be-M1];
and only 4 out of 6 semi-eutactic lattices.

The data for dimension 7 to 10 were obtained using various tricks, includ-
ing the recent results outlined in [Be-M2], and an exploration of the minimal
classes which lie below E7. Work in progress by Elbaz-Vincent, Gangl and
Soulé (who have yet considered 20 out of the 33 perfect, 7-dimensional lat-
tices) will produce important enlargements of the to-day available data.

Known low-dimensional strongly perfect lattices
dimension| 1 |2 3|4 |56 |7 |8]|9

number |1 ]1/0]1/0[2]2]11]0

dimension |10 |11 |12 13|14 15|16 |17 |18
number | 201010402

dimension | 19 (2021 (2223124 (25|26 |27
number |0 |3 |1/10/ 7210130

Up to dimension 24, the numbers displayed in the table above
correspond to lattices which are described in [V], Tables 19.1 and 19.2. In
dimension 26, they correspond to one 3-modular lattice, the integral lattice
(Nebe) of minimum 4 and determinant 3, and its dual. All together, there
are 44 lattices: 14 pairs (A, A*) of non-isometric lattices A, A*; 15 isodual
lattices; and the lattice K.

The results of [V], Section 17 together with King’s tables ([K]) imply that
there exist numerous strongly eutactic lattices in dimensions 28, 30, 31, 32.
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