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1. General Results on Perfection and Low-Dimensional
Lattices.

The notion of an extreme lattice was introduced (in terms of qua-
dratic forms) by Korkine and Zolotareff ([K-Z2], 1873): these are the
lattices on which the Hermite invariant (see below) attains a local max-
imal. They proved in [K-Z3] that extreme lattices satisfy a certain
property, to be called later perfection by Voronöı ([Vor]). The basic
definitions concerning the notion of perfection can be read in Chapter 3
of [M]. Their aim was to determine the critical or absolutely extreme
lattices for dimension 5, a program previously carried out for n = 2
(Lagrange), n = 3 (Gauss) and n = 4 ([K-Z1]).

The classification of n-dimensional perfect lattices is known up to
dimension n = 8.

For n ≤ 5, the results were obtained by Korkine–Zolotareff in 1877
([K-Z3]), using combinatorial methods, and were recovered by Voronöı
in 1907, using the contiguity (or neighbouring) algorithm he invented,
which endows the set of perfect quadratic forms up to scale and equiv-
alence with a structure of a finite, connected graph (the Voronoi graph;
[Vor]). Up to dimension 5, perfect lattices are extreme.

The accepted known classification results in larger dimensions were
all obtained by constructing the Voronoi graph. Dimension 6 was ob-
tained by Barnes ([Barn]) in 1957. There are 7 perfect lattices, among
which 6 are extreme. The existence of a perfect, non-extreme form was
known to Voronoi; see the introduction of [Vor]. An alternative, com-
binatorial proof, based on a method introduced by Watson in his 1971
paper [Wa1], was found in 1985 by Baranovskii and Ryshkov ([Br-R]),
but they did not published the details. (In the spring of 2007, Anne-
Marie Bergé and myself tried to work out the details of a proof based on the
methods of [Wa1]; our estimation was that we needed about 25 pages proof,
and we decided to give up writing.)

The first classification proof for dimension 7 was published in 1975 by
Kaye Stacey ([St]). Her proof relied on Watson’s improvement [Wa2]
for dimension 7 of its methods. The work of Stacey was considered
as not completely satisfactory, in particular because the test for equiv-
alence between perfect forms was missing (and also because of some
slips, the corrections of which were however guessed by Conway and
Sloane in [C-S1]). The results of Stacey in the form they have in [C-S1]
were confirmed by Jaquet in his 1971 Neuchâtel thesis [Ja1], in which
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he constructed the Voronoi graph in dimension 7; see also the published
paper [Ja2].

A detailed account of the properties of perfect forms in dimensions
n ≤ 7 can be read in Conway and Sloane’s [C-S1]. Besides a list of
Gram matrices, this paper contains various data relative to perfect
forms (or lattices) up to dimension 7, including automorphism groups
and roots, and proofs for n ≤ 4.

We adopt the notation of [C-S1] for 1 ≤ n ≤ 7: there are 48 perfect
lattices (up to similarity), denoted by P i

n, where the index i takes values
between 1 and the number in of perfect n-dimensional lattices; more
precisely, the notation P i

n is used for an integral primitive representative
of the similarity class. The norm of the lattices P i

7 are thus well defined
integers.

Another source is [M], chapter VI, which contains other data as well
as proofs for dimensions n ≤ 5. (The proof given in the English edition,
relying on methods of Watson, is much shorter than that of the French
edition, which followed closely [K-Z3]).

Statistics on the 48 perfect lattices of dimension n ≤ 7.

Dimension 1 2 3 4 5 6 7

Perfect 1 1 1 2 3 7 33

Extreme 1 1 1 2 3 6 30

Norms 1 2 2 2 2, 4 2, 4 2, 3, 4, 6, 8, 10

1
2

Kiss. Nb. 1 3 6 10, 12 15, 20 21, 22, 27, 30, 36 8 values (∗)

(∗) 28, 29, 30, 32, 34, 36, 42, 63 .
The 4 perfect, non-extreme lattices are P 4

6 and P 26
7 , which are semi-

eutactic, and P 18
7 and P 29

7 , which are not.

The Voronoi graphs for dimension 2 to 7 can be downloaded from
this homepage.

We now turn to dimension 8. Work done in Bordeaux by M. Läıhem
([Lah]), C. Baril ([Bari]), H. Napias ([Nap]), completed by C. Batut
(unpublished) produced in 1996 a list of 10916 perfect lattices. Here
are some details:
• Läıhem classified those lattices having a perfect 7-dimensional cross-
section with the same minimum; he found 1175 such lattices. (He
however left aside the case of a section A7, D7, or E7; his proof was later
completed by Baril.)
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• Baril classified those lattices having a decomposition P6⊕A2 for some
perfect 6-dimensional lattice (scaled to minimum 2), obtaining 53 non-
Läıhem lattices.
(It can be shown that there are 54 lattices having a perfect 6-dimensional
cross-section with the same minimum, namely the 53 Baril lattices and
1 Napias lattice. It would be interesting to list the 8-dimensional perfect lat-
tices according to the largest possible dimension m of a perfect cross-section,
indeed for m = 2 to 7.)
The two results above are classification results. Those we now account
for are not.
• Napias ran the Voronoi algorithm, starting from the known perfect
lattices with kissing number s = 36, keeping the new lattices she found,
then ran again the Voronoi algorithm, ... She found 9542 new lattices.
• Finally, Batut determined the Voronoi neighbours of the known per-
fect lattices having s = 37 or s = 38, obtaining 146 new lattices.
• All together, there were at the date of July 1st, 1999,

1175 + 53 + 9542 + 146 = 10916

known 8-dimensional perfect lattices.

In [M], I wrote
The classification for any dimension n ≥ 8 seems out of scope of the
to-day possibilities.
Nevertheless, M. Dutour Sikirić, A. Schürmann and F. Val-
lentin were able to prove in 2005 that the list above of 10916 perfect,
8-dimensional lattices is actually complete ([D-S-V]; see also Schür-
mann’s homepage). Their result was obtained by constructing the
8-dimensional Voronoi graph. The main difficulty was caused by the
huge number of lattices contiguous to E8, the Voronoi cone of which
has 25 075 566 937 584#2.5 1013 facets, and still 83 092 orbits of facets.
(They also ran during a few months the Voronoi algorithm in dimension 9.
When they stopped the computations, they had found more than 500 000
lattices!)

Here are some more results deduced from the Dutour Sikirić-Schür-
mann-Vallentin classification.
• All perfect lattices up to dimension 8 have a basis of minimal vec-
tors. This is no longer true in higher dimensions, as shown by the
Coxeter lattices (see [M], Sections 5.2 and 5.5) A2

n (n ≥ 9 odd) and D+
n

(n ≥ 10 even), which are not generated by their minimal vectors. Note
however that bases of minimal vectors for perfect lattices which are
generated by their minimal vectors might well systematically exist in
many dimensions n ≥ 9.
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• All 8-dimensional perfect lattices have a hexagonal section having the
same minimum. In particular, they are even in any scale which makes
them integral. Note that the same result holds in dimensions 2 to 7 up
to one exception: E∗7 is integral when scaled to minimum 3.
(A.-M. Bergé and myself proved ([B-M]) that all perfect, integral lattices
having an odd minimum exist in all dimensions n ≥ 10. The case of dimen-
sion 9 is open: our conjecture is that all have a hexagonal section with the
same minimum.)
• All 8-dimensional perfect lattices are contiguous to E8 except two:
A8 (it was proved by Voronoi that Dn is the only neighbour of An for
all n ≥ 3) and one Napias lattice.
• The Coxeter conjecture, according to which An is the less dense of
the perfect lattices, is true in dimension 8.
• The Barnes lattice A2

8 = 〈E7, A8〉 is the densest perfect 8-dimensional
lattice after E8.
• The only inclusions L ⊂ L′ between perfect lattices having the same
minimum in dimension 8 are [E8 : A8] = 3; [A2

8 : A8] = 2 (an extension
of [E7 : A7] = 2, the only such inclusion in dimensions n ≤ 7); and
[D8 : A8] = 2.

We are going in various WEB pages to comment on the previous lists
and to explain how to get the corresponding data.

.../...
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2. Laminations and Antilaminations.

We shortly describe various procedures of lamination, as defined
in work by Conway and Sloane on the one hand, and by Plesken
and Pohst on the other hand, together with the inverse procedure of
“antilamination”.

1. Let Λ0 be a Euclidean lattice, of dimension n0 ≥ 0 and minimum
(= norm) min Λ = m. Let L0 = {Λ0} and define L1 = L1(Λ0) to be
the set of isometry classes of lattices of dimension n0 + 1 and norm m
containing a section isometric to Λ0 whose discriminant is as small as
possible. This amounts to saying that the density or that the Hermite
invariant of these lattices take the largest possible value among all
n0 + 1-dimensional lattices with the same norm m as Λ0 and which
moreover contain a hyperplane section isometric to Λ0. We can then
for each lattice L ∈ L1 consider the analogous set L2(L) and define
L2 = ∪L∈L1 L2(L), and finally sets L3, L4, . . . We obtain in this way
a collection of lattices in dimensions n0, n0 + 1, n0 + 2, . . . such that
each lattice of dimension n > n0 contains with codimension 1 at least
one lattice of Ln−n0−1.

Definition 1.1. Lattices which belong to one of the sets Ln, n ≥ n0

are called weakly laminated lattices above L0.

2. From dimension n ≥ n0 + 2 onwards, there may exist lattices in
Ln with different determinants. We define L′2 to be the subset of L2

whose elements are the lattices which have the smallest discriminant.
We define similarly L′3 as the set of lattices of dimension n0 + 3 which
are laminated above some lattice of L′2, and so on. We also set L′0 = L0

and L′1 = L1. We obtain this way a collection of lattices in dimensions
n0, n0 + 1, n0 + 2, . . . .

Definition 2.1. Lattices which belong to one of the sets L′n, n ≥ n0

are called strongly laminated lattices above L0.

Remark 2.2. The determinant and the Hermite invariant of a strongly
laminated lattice solely depends on its dimension. However, from di-
mension n = n0 + 3 onward, there may exist weakly laminated lattices
which are denser that the strongly laminated lattices having the same
dimension.

Definition 2.3. (Conway and Sloane, [C-S], chapter 6). Strongly
laminated lattices above the 0-dimensional lattice to which we give the
norm 4 are called laminated lattices.
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3. Weakly laminated lattices are important from the point of view of
perfection. Actually, given L0 as above,

(1) lattices of a given dimension n > n0 and norm m containing
a hyperplane section isometric to Λ0 on which the determinant
attains a local minimum, called relatively extreme lattices, can
be characterized à la Voronoi as lattices which are relatively
perfect and relatively eutactic;

(2) lattices which are perfect relatively to a perfect lattice are per-
fect in the ordinary sense;

(3) the relatively perfect lattices of dimension n = n0+1 are exactly
those lattices which possess n independent minimal vectors out-
side Λ0.

We refer to [M], chapter XII, section 4 for precise statements and
proofs. The fact that an n-dimensional lattice with a perfect hyper-
plane section of the same norm and n independent minimal vectors
outside this section is perfect was used by Barnes in [Barn].

4. In this section, we suppose that Λ0 is an integral lattice, we set

L(a)
0 = {Λ0} and we define L(a)

1 to be the set of integral lattices of
minimumm m = min Λ0 containing Λ0 as a hyperplane section whose

determinant is as small as possible. We can then construct L(a)
2 starting

with the various lattices of L(a)
1 and so on.

Definition 4.1. (Plesken and Pohst, [Pl-P1]). Laminations as above
are called weak arithmetic laminations above Λ0, and we define strong
arithmetic laminations above Λ0 by restricting from dimension n0 + 2
onward to the smallest possible determinants.
We simply say arithmetic laminations (weak or strong) when we start
with the 0-dimensional lattice endowed with the norm 4.

Remark 2.2 applies to arithmetic laminations.
Perfection has in principle nothing to do with arithmetic laminations.

However, in practice. it is an interesting source of perfect lattices.

5. We now return to the general notation. Let L−1 = L−1(Λ0) be
the set of hyperplane sections of Λ0 (if n0 > 0) with the least possible
determinant. We can then consider the analogous set for each lattice
L ∈ L−1, obtaining in this way a descending sequence L0 ⊃ L−1 ⊃
L−2 ⊃ . . . until we reach dimension 1.

Definition 5.1. The lattices of the above sequence are the weakly
antilaminated lattices under Λ0. Lattices of the sequence L′0 ⊃ L′−1 ⊃
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L′−2 ⊃ . . . where L′0 = L0, L′−1 = L−1 and the following L′k are ob-
tained by restricting at each step to lattices with the least possible
discriminant are the strongly antilaminated lattices under Λ0.

Remark 2.2 applies to antilaminations (with n0+3 replaced by n0−3).
Note that antilamination procedures increase the norm, sometimes
strictly. For this reason, we shall not consider “arithmetic” antilami-
nations.

6. We shall study closely some particularly interesting cases which arise
in connection with the lattices Λ24 (the Leech lattice) and O23. These
are the unique unimodular lattices in dimensions 24 and 23 whose
minimum (4 and 3 respectively) is the largest possible. The Leech
lattice is the unique 24-dimensional strongly laminated lattice, both
in the ordinary and arithmetic sense; the lattice O23 is the unique
23-dimensional lattice which arises in arithmetic laminations above the
0-lattice endowed with norm 3.
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3. Some Perfect Lattices of Odd Minimum.

As one knows since the time of Korkine and Zolotareff, a perfect
lattice is proportional to a primitive integral lattice, i.e., such that the
scalar products of its vectors are integral and generate Z. In this scale,
the lattice is unique up to isometry. In what follows, we systematically
rescale perfect lattices as above.

1. An inspection of the list of the 48 perfect lattices of dimension
n ≤ 7 shows up 46 even lattices and only 2 odd lattices, namely Z,
of minimum 1, and

√
2 E∗7, of minimum 3. The 2005 classification

of 8-dimensional perfect lattices by Dutour Sikirić, Schürmann and
Vallentin has shown that all these are even. It is proved in [B-M]
that odd perefect lattices exist in all dimensions n ≥ 10; the case of
dimension 9 is open.

Note that there exist perfect odd lattices with an even minimum.
If Λ is such a lattice, its sub-lattice Λ′ which is generated by the set
S(Λ) of its minimal vectors is even, and the initial lattice is of the
form 〈Λ′, v1, . . . , vk〉 where at least one of the vectors vi is of odd norm.
For instance, for every even n ≥ 10, the lattice

√
2 D+

n is perfect with
S(D+

n ) = S(Dn) and is odd (and integral) for n ≡ 4 mod 8. We will
more specially consider (odd) lattices having an odd minimum,

2. The root lattice An is such that A∗n/An is cyclic (of order det(An) =
n + 1); there thus exists for every divisor r of n + 1 a unique sub-
lattice of A∗n (The Coxeter lattice Ar

n) which contains An to index r.
It is perfect except if r = n + 1 or if n = 3, 5 and r = 2 (cf. in [M],
chapter V, section 2). The case when r = n+1

2
(n of course odd) is

particularly interesting: the rescaled lattice Ãr
n is of minimum n − 1

or
n− 1

2
according to whether n is congruent to 1 or to −1 modulo 4

(loc. cit.). Consequently, if n = 7, 11, 15, 19, 23, . . . , the above lattice
is perfect of minimum 3, 5, 7, 9, 11, . . . . When n = 7, this lattice is

isometric to
√

2 E∗7. It is well possible that Ã6
11 be the perfect lattice of

minimum 5 with the smallest possible dimension.

3. Among the known perfect lattices having an odd minimum, two
others are of a great interest: they are the two known strongly per-
fect lattices in dimension 23 whose sets of minimal vectors generate
an equiangular family of lines. They have isometric sets of minimal
vectors, which generate a lattice L1 of minimum 5. The second lattice
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contains the previous one with the index 3, and acquires the minimum
15 when rescaled so as to be integral and primitive. In Venkov’s theory
of strongly perfect lattices, equiangular families spanned by minimal

vectors correspond to strongly perfect lattices with s = n(n+1)
2

(the
smallest possible value of s for a perfect lattice). By a theorem of Sei-
del, such families may exist only in dimensions 1, 2 or m where m such
that m+2 is an odd square. For m > 2, the lattice spanned by the min-
imal vectors has then minimum m+2 when rescaled so as to be integral
and primitive. Examples are known only for n = 7 (

√
2 E∗7 ∼ A4

7) and
n = 23. Lattices in dimension 23 where constructed by Venkov and
Batut in connection with the Leech lattice ([Ven], sections 9 and 19;
they are the lattices named F23 and F ′23).

4. Another important strongly perfect lattice is the unimodular lat-
tice O23 of minimum 3, also a projection of a sub-lattice of the Leech
lattice. A theorem of Venkov asserts that there are only 5 strongly per-
fect integral lattices of minimum 3, namely O23,

√
3 Z,
√

2 E∗7 and the
lattices orthogonal to embeddings in O23 of the previous two lattices,
named O22 and O16.

By antilaminations, we find exactly one lattice in each of the di-
mensions from 23 to 16. These lattices, denoted On, are perfect. For
n = 23, 22, 16, they are the strongly perfect lattices quoted above. No
perfect lattice appears in this way in dimensions n ≤ 15. Amazingly,
we miss O7 by antilaminations!

There is no reason to restrict to the descending sequence of the dens-
est hyperplane sections. For n = 22, 21, 20, these sections are orthogo-
nal to the densest possible lattices in dimension 1, 2, 3 respectively, for
which a Gram matrix is

(3) , ( 3 1
1 3 ) ,

(
3 −1 −1
−1 3 −1
−1 −1 3

)
.

With the matrices (4), ( 3 0
0 3 ) and ( 3 0

0 4 ) , we obtain perfect lattices in
dimensions 22 and 21 of determinant 4 (instead of 3) and 9 and 12 in-
stead of 8. Several perfect lattices with minimum 3 can be constructed
by the above generalization of antilaminations.

By inspection of the list of “weak integral laminated lattices” above
O1 determined by Plesken and Pohst, we find several perfect lattices
of minimum 3 (including some of the previous ones) in dimensions 1, 7
(O1, O7) and 15 to 23. In particular, this list contains the lattices On

in the range n = 23− 17. Amazingly, O16 is missed by Plesken-Pohst’s
procedure and their perfect lattice of dimension 15 is missed by the
antilamination procedure! In dimensions 23, 22, 21, this yields 1, 2, 2



13

lattices, indeed 5 out of 6 of the lattices described above (the missing
one has dimension 21 and determinant 9).

5. Venkov ([Ven], theorem 7.13) has found upper bounds for the in-
variant s of an integral lattice of minimum 3 and dimension n ≤ 24,
which are sharp for n ≤ 7, but probably for no larger value of n except
n = 16 and n = 23. Integral lattices of minimum 3 have been consid-
ered in detail in Martinet–Venkov’s paper [M-V0]. Denote by smax(n)
the maximum value of s in dimension n. It is proved in [M-V0] that
smax(8) = 30 and smax(9) = 34, and we believe that smax(10) = 40,
smax(11) = 52, and smax(12) = 68. (These values are attained on weak
integral laminated of [Pl-P1] and on two other lattices in dimension 10).
This would imply that no integral perfect lattice of minimum 3 exist

for 2 ≤ n ≤ 12 except for n = 7. The inequality s ≥ n(n+1)
2

occurs for
n = 14, but no perfect lattice is known in this dimension.
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4. Structure of the Tables.

The tables consist of Gram matrices written in PARI format together
with comments. Each file can be read directly by gp using the usual
command \r name-of-file (the file must be in the directory in which gp
has been opened, unless special directories have been specified in the
file .gprc).
Thus, a given matrix in usual and gp forms appears as(

a1 b1 c1
a2 b2 c2
a3 b3 c3

)
and [a1, b1, c1; a2, b2, c2; a3, b3, c3] .

However, tables contain

foobar = [a1, b1, c1; a2, b2, c2; a3, b3, c3];

rather than

foobar = [a1, b1, c1; a2, b2, c2; a3, b3, c3] alone .

The semicolon after [. . . , c3] has been added in order that data should
not be displayed on the screen when reading the file. So, to use a
particular matrix within a non-gp program, one should remove the
semicolon.

A line beginning by \\ is ignored by gp. We have used this
possibility to include various comments in the files, which can be read
by editing the file (e.g., under emacs).

.../...
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4.0. General notation. All comments which appear in a given file
make use of some common notation.

Each Gram matrix has a name which allows gp to recognize it.

With each Gram matrix, we indicate either the perfection rank to-

gether with its maximal possible value, namely n(n+1)
2

, if the lattice is
not perfect, or the mention “(perfect)” otherwise. Warning : perfection
is not mentionned if the perfection results are stated globally for the
whole file.

We systematically give characteristic invariants in the form
[a, [b, c], [d, e], [f g1

1 , . . . , f gk

k ] ] , where:
a = det(Λ), the determinant of Λ ;
b = s(Λ), the number of pairs of minimal vectors of Λ ;
c = min Λ, the minimum of Λ ;
d = s(Λ∗), the number of pairs of minimal vectors of the dual of Λ ;
e = min Λ∗, the norm of the integral primitive scaled copy of Λ∗ ;
[f g1

1 , . . . , f gk

k ] ] is the Smith invariant of Λ, i.e. the sequence of the
elementary divisors for the pair (Λ∗, Λ) ; gi is omited when it is equal
to 1.
[We always assume that Λ is an integral lattice, so that the inclusion
Λ ⊂ Λ∗ always holds.]
The integers k, fi, gi satisfy the following properties:
f1 is the level of Λ, i.e. the annihilator of Λ∗/Λ (and also the smallest
of the integers m such that

√
m Λ∗ is integral);

f2 | f1, . . . , fk | fk−1 ;∏k
i=1 f gi

i = a ;∑k

i=1 gi = n ;
fk is the g.c.d. of the values of the scalar product x.y, x, y ∈ Λ.
Note : the formula for the minimum of Λ∗ is

min Λ∗ =
e

f1

=
min Λ∗

|Ann(Λ∗/Λ)|
.

We also give the order of the automorphism group of the lattice, and
maybe various remarks: modularity, property as a spherical design,
. . . , e.g.,, for K12, one will find the comment 3-mod., 5-design.

.../...
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4.1. Specific files devoted to perfect lattices.

4.1.1. File perf2to7.gp.
This file contains Gram matrices for all perfect lattices in dimensions
2 to 7. Opening gp in a directory containing the file, the command
\r perf2to7.gp will read the file. Gram matrices are obtained by a
command pn[i] where n = 2, 3, 4, 5, 6 or 7, and the index i runs
through 1 to maximal indices in, whose values are i2 = i3 = 1, i4 = 2,
i5 = 3, i6 = 7 and i7 = 33 ; this table contains 47 lattices.
[For technical reasons, 1 × 1 matrices are never displayed in our
gp-files; nevertheless, there are 48 similarity classes of perfect lattices
in dimensions 1 to 7. ]

4.1.2. Here is the fundamental modification performed
on April first, 2012: I have suppressed all the complicated gp-access
and the tables of LAIHEM, BARIL, NAPIAS (in ten tables), BATUT.

1. One can load the vector p8.gp with components the 10916
perfect, 8-dimensional lattices. Then using the command p8[i] one
gets the ith perfect lattice of the vector. Lattices are displayed by
decreasing Hermite invariant.

2. By loading p8d.gp one obtains SIX vectors p8d7,...,p8d2, where
p8di contains the perfect 8-dimensional lattices having a perfect sec-
tion of the same minimum of dimension i, but none of dimension i+1
(if i < 7).

Thus this section 2 is now reduced to three files, and the former next
section 3, provisionally empty, will contain some data for dimension 9.

4.2. Other families of lattices.

WARNING ! Each file 4.2.1, 4.2.2, . . . quoted below contains Gram
matrices in PARI-GP format. Editing these files (e.g., with emacs) will
show the principal invariants of the corresponding lattice as well as the
structure of the table if it is divided into several parts.

4.2.1. Lattices contained in the Leech lattice.
File : Lambda.gp .
The file contains Gram matrices for the lattices Λ?

n (laminated lattices),
Kn, and K ′n and for a few more related lattices (e.g., some arithmetic
laminations of Plesken-Pohst), which are all contained in the Leech
lattice Λ24.

4.2.2. Sections of the shorter Leech lattice O23.
File : AntiLaminO23.gp .
The file contains (1) Gram matrices for the lattices obtained by (weak)
antilaminations of O23 in dimensions 23 to 8; (2) antilaminations of the
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lattice of codimension 2 in O23 and determinant 9; (3) a few lattices
contained in O24.

4.2.3. Weakly arithmetic laminated lattices of minimum 3.
File : PlP3.gp .
The file contains Gram matrices for the lattices obtained by weak lam-
inations of

√
3 Z in dimensions 2 to 23. The data have been taken from

Plesken-Pohst’ s [Pl-P1] by Huguette Napias. Some of the lattices ap-
peared yet in the previous file.

4.2.4. Some integral lattices of minimum 6.
File : Min6Lat.gp .
This file contains lattices related to the duals scaled to minimum 6 of
K ′10 and K ′18, and lattices constructed as pull back of Dn of even binary
codes of weighjt 6.

4. Section 4 of the page contains the Voronoi grtaphs in dimensions
2 to 7 and the minimal classes in dimensions 2 to 4.

5. Section 5 of the page is devoted to lattices whose minimal vectors
carry the structure of a spherical design of level ≥ 3 (strongly eutactic
lattices) or ≥ 5 (strongly perfect lattices).

6. Section 6 of the page contains various other numerical data.
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euclidiens, Thèse, Bordeaux (1996).

[Barn] E.S. Barnes, The complete enumeration of extreme senary forms, Phil.
Trans. Roy. Soc. London (A), 249 (1957), 461–506.
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[Ja1] D-O. Jaquet, Énumération complète des classes de formes parfaites en
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parfaits des espaces euclidiens”, Masson (now Dunod), Paris, 1996.]

[M-V0] J. Martinet, B. Venkov, On integral lattices having an odd minimum,
Algebra and Analysis (Mathematical Journal), Saint-Petersburg 16, 3
(2004), 198–237.

[Nap] H. Napias, Étude expérimentale et algorithmique des réseaux euclidiens,
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