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1. Introduction

This user’s guide is devoted to using PARI-GP tables of odd
unimodular lattices without roots (i.e., of minimum m ≥ 3) in di-
mensions n ≤ 28. These lattices are discrete subgroups of rank n in
an n-dimensional Euclidean space E, which may be identified to Rn

once we have chosen an orthonormal basis for E. The tables rely on
Bacher-Venkov’s work [B-V], where lattices in dimensions n = 27 and
n = 28 are described as Kneser-neighbours of Zn ⊂ Rn relative to a
pair (v, p) of a vector v ∈ Zn and a prime p.

Recall that given a lattice L, a vector v ∈ L and an integer p ≥ 2,
the neighbour of L for (v, p) is

Lv
p = 〈Lp,v,

v
p
〉

where
Lp,v = {x ∈ L | x · v} ≡ 0 mod p} .

It was known before Bacher-Venkov’s paper ([C-S], Chapters 16
and 17; [Bo]) that lattices of dimension n and minimum m ≥ 3 do
not exist for n ≤ 22 and that there exists exactly one such odd lat-
tice for n = 23 (O23, the shorter Leech lattice), for n = 24 (O24, the
odd Leech lattice), and n = 26 (let’s call it O26 — Borcherds’s lattice,
named T26 in [Ne-Sl]), but none for n = 25. In [B-V], Bacher and
Venkov have classified these lattices for n = 27 (3 lattices) and n = 28
(38 lattices). It turns out that unimodular lattices of minimum 3 in
the range [24, 31] share out among two types, related to their parity
vectors; see Definition 2 below.
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2. Parity vectors.

Recall that a parity vector for an integral lattice L is a vector v ∈ L
such that

∀x ∈ L, x · x ≡ v · x mod 2 .

It is easy to see that parity vectors exist, that they constitute a sin-
gle class modulo 2L if det(L) is odd, and that there norms v · v are
well-defined modulo 8. For unimodular lattices, one has the more pre-
cise result: the norms of parity vectors are congruent to n modulo 8.
[The result holds for any signature: replacing L by L ⊥ Z−, we are reduced

to the case of odd “indefinite lattices”, and the result is then easy since

these lattices are isometric to a direct orthogonal sum (Z+)p ⊥ (Z+)q; see

e.g. [Se], Chapter 5. Note that 0 is a parity vector for L if and only if L is

even, so that the dimension of an even unimodular lattice is divisible by 8.]

Definition 1. We denote by P the set of parity vectors of L and by
Npar the smallest possible norm of a parity vector.

It was proved by Elkies in [El1] that we have Npar ≤ n, with equality
if and only if L ' Zn, so that if minL ≥ 2, we have Npar ≤ n− 8; and
in [El2] that if minL ≥ 2 and n ≥ 24, then Npar ≤ n − 16. (For the
lattice O23, we have Npar = n− 8 (= 15).)

In dimension 24, we may have either Npar = n− 24 = 0, and then L
is even, hence isometric to the Leech lattice Λ24, or Npar = n− 16 = 8,
and then L is odd, hence isometric to O24.

In the range [25, 31], Npar may a priori be equal to n − 16 or to
n− 24.

Definition 2. (Bacher-Venkov.) We say that a unimodular lattice of
dimension n ∈ [24, 31] and minimum 3 is of general type (G.T. for short)
if Npar = n−16 and of exceptional type (E.T. for short) if Npar = n−24.
We may extend the notion of a G.T. lattice to any n; note ([Ne-V], Corol-

lary 3.4) that n is then bounded from above by 46.

Thus O24 and O26 (because O26 has no vectors of norm 2) are of
general type whereas Λ24 is of exceptional type.

In dimensions 27 and 28, Bacher and Venkov have proved:

Theorem 3. Consider unimodular lattices L of minimum 3 and
dimensions n = 27, 28.

(1) If n = 27, there are two G.T. lattices and one E.T. lattice.
(2) If n = 28, there are 36 G.T. lattices and 2 E.T. lattices.

Notation. In the ordering of [B-V], the G.T. lattices are denoted
below by o27a i, i = 1, 2 and o28a i, i = 1, . . . , 36, and the E.T. by o27b1,
o28b1, o28b2.
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3. Some data.

In this section we restrict ourselves to unimodular lattices L of
minimum 3. We denote by L0 its even sublattice, by S, S0 and S∗

0 the
sets of minimal vectors of L, L0 and L∗

0 (the dual of L0), respectively,
and by s, s0 and s∗0 the corresponding numbers of pairs of minimal
vectors.

3.1. Theta series. It is proved in [B-V] that the theta series ΘL of a
lattice L as above only depends on its type (general or exceptional).
The even coefficients of this series are then those of the even sublattice
Leven of L, and the theta series also defines that of L∗

even.
The proposition below lists the kissing numbers of the three lattices

L, Leven, and L∗
even.

Proposition 4. The kissing numbers of the lattices above in dimen-
sions 24 to 28 are as follows:
• n = 24 (G.T.) s = 2048, s0 = 49128, s∗0 = 24 (S∗

0 ∼ S(Z24)) ;
• n = 26 (G.T.) s = 1560, s0 = 51090, s∗0 = 312 ;
• n = 27 (G.T.) s = 1332, s0 = 50571, s∗0 = 864 ;
• n = 27 (E.T.) s = 820, s0 = 59787, s∗0 = 1 ;
• n = 28 (G.T.) s = 1120, s0 = 49140, s∗0 = 3360 ;
• n = 28 (E.T.) s = 864, s0 = 53236, s∗0 = 1 .
For the sake of completion, we give below the data for n = 23:

• n = 23 (Npar = 15) s = 2300, s0 = 46575, s∗0 = 2300 (S(L∗
even) ∼ S(L)).

3.2. Strong eutaxy. Recall (Venkov, [Ve]) that a lattice is strongly
eutactic if the set of its minimal vectors is a spherical 3-design. This
amounts to the fact that the sum of the orthogonal projections to the
lines which support its minimal vectors is proportional to the identity,
a condition which can be easily checked on a computer. The follow-
ing proposition is proved (though not explicitly stated) in Section 2
of [Ne-V].

Proposition 5. (Nebe–Venkov). Let L be a unimodular lattice of
minimum 3 and dimension n ∈ [24, 31]. If L is of general type, then
L, L0 and L∗

0 are strongly eutactic.
If L is one of the three lattices of exceptional type of dimension27 or 28,

none of the lattices L, L0 and L∗
0 is strongly eutactic.

3.3. Perfection (minimum 3). The basic facts concerning the per-
fection property can be read in the third chapter of [Ma2]. Recall that

the perfection rank of a lattice L is the rank r ∈ [1, n(n+1)
2

] in the space
of symmetric endomorphisms of E of the set of orthogonal projections
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px to the minimal vectors x of L. The co-rank of L is n(n+1)
2
− r. A

lattice is perfect if its perfection rank is maximal.
In [Ve], Venkov has defined the notion of a strongly perfect lattice, a

lattice the minimal vectors of which constitute a 5-design, and proved
that such lattices are indeed extreme, hence in particular perfect. He
has also classified the integral, strongly perfect lattices of minimum 3,
proving that there are exactly five such lattices, one in each of the
dimensions 1, 7, 16, 22, and 23 — in dimension 23, this is O23, even
a 7-design. For n ≥ 24, our lattices L are never strongly perfect, and
indeed no general perfection rules show up. We list below the status
of the lattices L with respect to perfection.

Proposition 6. Among the unimodular lattices of minimum 3 and di-
mension n ∈ [24, 28], there are 29 perfect lattices, all of general type,
namely o27a1 (r = 378), and 28 lattices o28a i (r = 406), those with
i = 1, . . . , 25, 28, 30, 32. The remaining 13 lattices are listed below
according to their perfection co-ranks:
co-rank 1: o26, o28a29 ; co-rank 2: o28a26, o28a27, o28b37 ;
co-rank 6: o27a2, o28a31 ; co-rank 14: o28a33 ; co-rank 23: o24 ;
co-rank 26: o27b1 ; co-rank 37: o28b38 ; co-rank 42: o28a34 ;
co-rank 70: o28a35 ; co-rank 105: o28a36 ;
[Note that the perfect lattices above are actually extreme and dual-extreme.]

3.4. More on parity vectors. Let Λ be a unimodular lattices of min-
imum 3, with even sublattice Λ0, and let v be a parity vector for Λ.
We have Λ0 ⊂ Λ ⊂ Λ∗

0, and v
2

clearly belongs to Λ∗. The easy con-
gruence N(v) ≡ n mod 2 shows that we have v ∈ ΛrΛ0 if n is odd,
and v ∈ Λ0 if n is even. The quotient Λ0/Λ∗

0, of order 4, is cyclic, with
representatives {0, v,±v

2
} if n is odd, and elementary, with representa-

tives {0, w, v
2
, w + v

2
} if n is even, where w is any vector in ΛrΛ0. In

both cases, we have L∗
0rL = {v

2
, v ∈ P} . As a consequence, we have

minL∗
0 = min(n−16

4
, 9) (n−16

4
for n = 24, 26, 27; 9 for n = 28, 29, 30, 31).

Moreover, except for n = 28, v 7→ v
2

induces a one-to-one correspon-
dence between the set of shortest vectors of P and S∗

0 . (For n = 28, S∗
0

also contains S.)

3.5. Perfection (minimum 4). All the even sublattices L0 of the 44
unimodular lattices L of minimum 3 are perfect, so that those for which
L is of general type are extreme and dual-extreme (the remaining three
lattices have not been tested for eutaxy). Among the lattices L∗

0, those
for which L = O23 or L is of general type and dimension 28 are perfect
(note that S(L∗

o) then contains S(L)), the others are not. These 37
perfect lattices are of course extreme and dual-extreme.
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3.6. Density. The even lattices L0 all have minimum 4 and determi-
nant 4. Their Hermite invariants are smaller than those of the lam-
inated lattices for n = 24, 26, 30, 31, and are equal to them for for
n = 27, 28, 29. However they are not the densest known lattices in
these dimensions; see just above in this WEB-page the lattices con-
structed by Roland Bacher.

4. The tables.

The file unimod23to28.gp is a PARI-GP-file containing LLL-reduced
Gram matrices for the 44 unimodular lattices of minimum 3 which
exist in dimensions n ∈ [23, 28]. This can be downloaded in a PARI-
GP session (strike \r unimod23to28.gp).

Gram matrices are named as above, i.e., o23, o24, o26, 027a1, o27a2,
o28a1,. . . ,o28a36 for the G.T. lattices, o27b1, o28b1,o28b2 for the E.T.
lattices. In dimensions 27 and 28, one can load them as vectors o27 of
length 3 and o28 of length 38. The G.T. lattices are o27[i], i = 1, 2 and
o28[i], i = 1, . . . , 36 where the subscript i is the same as in o27ai and
o28ai, and the E.T. lattices are similarly o27[3], o28[37], and o28[38].

The file also contains Gram matrices o29 and o31 taken from
Nebe=Sloanes catalogue, examples of general type in dimensions 29
and 31, respectively,
and two little gp-programs:
• esl(a) outputs an LLL-reduced Gram matrix for the even sublattice

of the lattice with Gram matrix a ;
• vpar(a) outputs a parity vector for the lattice with Gram matrix a .

Acknowledgements. Merci, Christine !
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