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ABSTRACT. We develop some extensions of the ideas which were introduced by Georges Voronoi
in his paper “Nouvelles applications des parameétres continus & la théorie des formes quadratiques :
1 Sur quelques propriétés des formes quadratiques positives parfaites”. In particular, we explain
fairly wide generalizations of Voronoi’s notion of an extreme form (or lattice) for which we can
prove a characterization “4 la Voronoi” in terms of convenient notions of perfection and eutaxy.
We also explain some extensions of the Voronoi algorithm, a problem on which much less is known.

To finish, we give a few indications about Venkov’s recent work on “strongly perfect” lattices.

Introduction. Let F be an n-dimensional Euclidean space. By a lattice of E, we
mean a discrete subgroup A of rank n of E. One classically defines (cf. §2) the
Hermite invariant v(A) of A, and the Hermite constant 7, = sup ;x ao—, Y(A). One
of the main problems of the geometry of numbers is to determine ~, and, more
precisely, to determine the critical lattices (those lattices A for which y(A) = ~,).
We shall consider various extensions of this problem, formerly stated only in terms
of real quadratic forms — there is a “dictionary” (see below) which establishes a one-
to-one correspondence between similarity classes of lattices and equivalence classes
over Z of positive definite quadratic forms having a given minimum over Z. Though
Minkowski’s fundamental book “Geometrie der Zahlen” appeared at the end of the
last century, it was not before the 1970’s that the point of view of lattices became
preponderant.

Korkine and Zolotareff wrote three papers on the Hermite constant, solving
completely for n < 5 the above two problems in [K-Z3], published in 1877. Their
idea is to determine the lattices on which the local maxima of the Hermite invariant
are attained. They call such lattices extreme ([K-Z2]), and show that extreme
lattices possess the following property (to be called later perfection by Voronoi,
[V1], 5): Every extreme form has at least w representations of its minimum
which completely determine this form, if one assumes that this minimum s given
([K-Z3], 7, 2°). They classify all perfect lattices of dimension n < 5 (actually, these
lattices are all extreme); their method is of a combinatorial nature: one easily sees
that perfect lattices must have at least @ pairs £z of minimal vectors, and
they prove that this inequality is indeed “almost” sufficient; for a precise statement,

see [M], ch. VI, th. 2.1, 4.1, 4.2.

The paper [K-Z3] is the main source of inspiration for the paper [V1] that Voronoi
sent thirty years later to “Crelle”, containing two important contributions to the
development of the ideas of Korkine and Zolotareftf:

e A characterisation of extreme lattices (or of extreme forms).

e The introduction of a new algorithm which, starting from a perfect form of a
given dimension n, produces a finite connected graph containing one form in each
equivalence class modulo GL,(Z).

Besides these main two problems, we shall also discuss:
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e The finiteness problem. Korkine and Zolotareff take for granted the fact that
there are (up to similarity) only finitely many perfect lattices; Voronoi proves it
([V1], 7; cf. also [M], ch. III, th. 5.4).

e The rationality problem. Korkine and Zolotareff ([K-Z3], 7, 5°) prove that a per-
fect lattice is rational, i.e. proportional to an integral lattice. Some generalizations
yield interesting problems about the field of definition of a lattice.

2. Notation and dictionary. For a lattice A in E (endowed with the scalar
product z.y ; we define the norm of x as N(x) = x.z), the minimum of A is N(A) =
min A = mingea o} 2.2, its determinant det(A) is the determinant of the Gram

matrix Gram(B) = (e;.e;) of some basis B = (e1,...,e,) of A over Z, and the
N(A
Hermite invariant of A is y(A) = ﬁ. It depends solely on the similarity

class of A, and v(A)™2 is proportional to the density of the sphere packing defined
by A.

Similarly, for a positive definite quadratic form ¢ in R™® with corresponding bilin-
ear form b, the minimum of ¢ is ming = min,ezn 0} ¢(), its determinant det(q)
is the determinant of the Gram matrix of b in the canonical basis of R™, and the
Hermite invariant of ¢ is defined as above. The matrix A of g (or of b) is the matrix
A € Sym,,(R) such that g(z) = X AX when z € R" is represented by the column
X. (We denote by *M the transpose of a matrix M.)

Let moreover S = S(A) = {x € A | N(z) = N(A)} be the set of minimal vectors
of A, and let s = s(A) = 3|S(A)|. We define in the same way S(g) and s(q) for a
quadratic form q.

The dictionary works as follows: given a pair (A, B) as above, we attach to it
the quadratic form ¢(z) = N(_, z;e;), which depends solely on the isometry class
of (A, B). Replacing B by another basis amounts to replacing ¢ by an equivalent
form (modulo GL,(Z)), whence the correspondence stated in the introduction.

Let us now describe the properties of perfection and eutaxy in both the lan-
guages of lattices and quadratic forms. We denote by End®(FE) the set of sym-
metric endomorphisms of F, i.e. the set of elements v € End(E) such that
Ve,Yy € E, u(z).y = z.u(y).

For z # 0 in E, let p, € End®(E) be the orthogonal projection on the line Rz.
For a basis B = (e1,...,e,) of E, let B* = (e7,...,ek) be its dual basis (one has
€;.€j = di ;). Let X be the column of the components of z in B. Then,

1
Mat(ps, B*, B) = — & XtX .

Thus, the following two definitions fit with the dictionary lattices — forms:

The perfection rank of a lattice A is the rank r in End®(E) of the p,, z € S(A),
i.e. the dimension of the span of {p, | z € S(A)}. Similarly, the perfection rank
of a form q is the rank in Sym,(R) of the X*X, X € S(q). We say that A (or
q) is perfect if r = ™t (= dimEnd®(E) = dim Sym,,(R)). This definition of
perfection is equivalent to Korkine-Zolotareft’s definition given in the introduction.

A eutaxy relation for a lattice A is a set of coefficients p,, x € S(A)/{£1} such
that Id = )_ pzpz; by the dictionary, a eutaxy relation for a form q is a set of



coefficients p/, such that A=! =3 _p/ XX, for one has
Al = Gram(B)~! = Mat(Id, B, B*)~! = Mat(Id, B*, B) ;

/
Z—z = N is positive.

We say that A (or q) is weakly eutactic if there exist some eutaxy coefficients,
and eutactic if these coefficients are strictly positive. We also use the expressions
semi-eutactic for the weaker condition p, > 0, and strongly eutactic when all the
coefficients are equal, and thus strictly positive, as one sees by considering the trace.

note that

A simple calculation yields the following formulae which characterize the eutaxy
coefficients p, and pl,: for all @ € R™, one has

() (z.x) = Z pe (z.0)? and (oua) = Z ol (z.c)?.

TES zeS

3. How to characterize extreme lattices. The property of eutaxy was intro-
duced by Voronol to characterize extreme lattices, without giving it a name (the
word “eutaxy” appears for the first time in this setting in Coxeter’s paper [Cox]).

3.1. Theorem (Voronoi). A lattice is extreme if and only if it is perfect and
eutactic.

For a proof, we refer to [V1], 17 or [M], ch. III, th. 4.6; for numerical data, we
refer to [C-S1] and to [M], ch. XIV.

We now explain, following [B-M4], how to generalize this theorem to some impor-
tant families of lattices. For the proofs, we refer to [M], ch. X. A wide generalization
(though leaving aside some interesting examples, such as lattices with a given sec-
tion, cf. [M]. ch. XII) is obtained by taking families F of the following type: we
consider a closed subgroup G of GL(FE) and a lattice Ay of E, and we take for F
the orbit of Ay under G. For convenient choices of G and of Ay, we obtain useful
families for which we are able to prove a theorem of the kind of 3.1. The idea is to
make use of the tangent space Ty C End(F) at the unit of G (which is a Lie group,
since it is closed in GL(F)), and more preciseley of its image 7 by v — v +  in
End®(F), and to define convenient notions of perfection and of eutaxy with respect

to 7.

First, we define the Voronoi scalar product on End®(FE) by (u,v) = Tr(vou) (a
similar definition applies to Sym,, (R)). Moreover, given a subspace H of End®(E),
we denote by pg the corresponding orthogonal projection on H in End®(F). For z
non-zero in E, let w, = py(p,) and let Q = py(Id) ; these are elements of H.

3.2. Definition. Let H be a subspace of End®*(FE). We say that a lattice A is
H-perfect if H is spanned by the w,, z € S(A) and that it is H-eutactic if there is
a relation = Zme S(A) PaWz with strictly positive coefficients p,.

We then introduce a more precise notion of extremality:

3.3. Definition. We say that a lattice A € F is F-extreme if the Hermite invariant
is a local maximum at A among lattices of F, and strictly F-extreme if there is a
neighbourhood V of A in F such that the strict inequality v(A’) < v(A) holds for
every A’ € V which is not similar to A.
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3.4. Theorem (A.-M. Bergé, J. M., [B-M4]). With the above notation, assume
that F is invariant under homotheties and transposition. Then:

(1) A lattice A € F is strictly F-extreme if and only if it is T -perfect and
T -eutactic.

(2) If A is F-extreme but not strictly F-extreme, there is a path ¢ : [0,1] - F
such that (i) (0) = A, (i1) (t) and @(t') are not similar for t' # t, and
(iii) fort > 0, S(¢(t)) is a fired set which generates a proper subspace of E.

This theorem applies to the family of all lattices, with G = GL(E). It implies
Voronoi’s theorem, and shows moreover that extreme lattices are indeed strictly
extreme, a result which is implicit in [K-Z3].

In most of the applications, we first prove that the minimal vectors of extreme
F-lattices span E; condition (2) of the above theorem then shows that F-extreme
F-lattices are indeed strictly F-extreme.

We now give three examples, all of which were found before theorem 3.4 was
proved.

3.5. Example. G-lattices. Let G C O(E) be a finite subgroup of the orthogonal
group O(E). We say that a lattice A is a G-lattice if it is invariant under the action
of G. Note that this notion depends not only on the structure of the group G, but
also on the representation p : G — O(FE) afforded by the inclusion G C O(FE). Let
F be the set of G-lattices. A necessary condition for F not to be empty is that p
should be rational over Q; the converse is true, for, given a basis (es,...,e,) of E,
the vectors se;, s € G span a lattice Ay € F.

Let G = {u € GL(F) | Vs € G, su = us} (G is the group of invertible elements
of the commuting algebra Endg of p), and let Endg,(E) = Endg(E) N End®(E).
Theorem 3.4 applies with F, G, Ay as above and 7 = Endg(E). One has

1 1
ww:@Zspws :@;psm and Q=1d.

We say G-extreme, G-perfect and G-eutactic rather than F-extreme, F-perfect,
F-eutactic. It is now easy to make theorem 3.4 explicit, and we actually obtain:

3.5’. Theorem ([B-M2]). For a G-lattice A, the following conditions are equiva-
lent:

(1) A is G-extreme.
(2) A is strictly G-extreme.
(3) A is G-perfect and G-eutactic.

When G = {1}, the above theorem reduces to Voronoi’s theorem 3.1.
3.6. Example. Duality. We consider the following invariant
7'(A) = (Y(A)Y(A%))/? = (N(A)N(A*))'/?
introduced in [B-M1], and we say that A is (strictly) dual-extreme if ' attains on

A a (strict modulo similarity) maximum. This invariant has an interpretation in
the setting of theorem 3.4, but one must replace £ by E x E, and consider the



local maxima of «y on the family F = {(A,A*) | A € E}. The theory of theorem 3.4
applies with

G ={(u,'u"') € End*(E) x End*(F) C End*(E x E)}.

We say that A is dual-perfect if the set of pg, py, * € S(A),y € S(A*) spans End®(E)
and dual-eutactic if there is a relation

Z Pz Pz = Z p;py

z€S(A) zeS(A*)
with strictly positive coefficients py, p,. Theorem 3.4 takes then the following form:

3.6’. Theorem ([B-M1]). For a lattice A, the following conditions are equivalent:

(1) A is dual-extreme.
(2) A is strictly dual-extreme.
(3) A is dual-perfect and dual-eutactic.

Note that the critical lattices for the constant v, are known only for n =
1,2,3,4,8.

3.7. Example. Isoduality. We come back to the space E itself. Let o € O(FE).
We say that A is o-isodual if o is an isometry of A onto A* (or of A* onto A,
it amounts to the same). The theory of theorem 3.4 works for this family F, of
o-isodual lattices, with

G=G,={u€End(E)|uou=0} and T =T, = {v € End*(E) | vo = —ov}.

However, extreme o-lattices need not be strictly extreme in F,. It is nevertheless
the case for two important families. We say that a lattice is orthogonal (resp.
symplectic) if 02 = Id (resp. if 02 = —1d); this amounts to saying that the bilinear
form b : (z,y) — x.0y is symmetric (resp. alternating). For these families, one can
prove:

3.7’. Theorem ([B-M4]). For a o-isodual lattice A, with o orthogonal or symplec-
tic, the following conditions are equivalent:

(1) A is o-extreme.
(2) A is strictly o-extreme.
(3) A is o-perfect and o-eutactic.

The case of symplectic lattices is of great importance: the existence of o with
0? = —1d yields a complex structure of E (thus, n must be even), and symplectic
lattices modulo symplectic isometries (those which commute with o) are in one-
to-one correspondence with isomorphism classes of principally polarized abelian
varieties.

[Actually, the imaginary part of b (for # = ) is unimodular-alternating; conversely, starting as

usual from a Riemann form H, we recover the Euclidean space F by making use of the real part

ofH.]

Examples of isodual lattices with a large Hermite invariant have been given by
Conway and Sloane in [C-S2]. Actually, their lattices are symplectic when their



rank is even, and orthogonal otherwise. Note that the maxima of v on isodual
lattices are known only for the dimensions 1,2, 3,4, 8.

A generalization of theorem 3.4 in the setting of differential geometry (concerning
the “systole” of a Riemannian manifold) has been recently obtained by Bavard. It
is not possible to explain his theorem in this short report, for which we refer the
reader to [Bavl]; we shall simply remark that the usual Hermite invariant has an
interpretation as “the systole of a flat torus”.

4. The Voronoi algorithm. In this section, we shall follow tradition, and work
with quadratic forms rather than with lattices. From an algorithmic point of view,
it is the better choice. However, the geometric description with lattices may be
useful; Voronoi himself uses such an approach (without saying it) in his study of
the forms attached to the lattice D, , which are described in relation to Z™ ([V1];
see in particular the first displayed formula in 38).

Let g be a positive definite quadratic form with minimum m and matrix A. We
identify the space of quadratic forms with Sym,,. The Voronoi domain of q is the
convex hull D = D, of the rays AX*X, A > 0, X € S(q); it is a convex polyhedral
cone. From the definition, we see that g is perfect if and only if the interior of D is
not empty, and that g is semi-eutactic (resp. eutactic) if and only if A=! belongs
to D (resp. to the relative interior of D).

The Voronoi domain is bounded by facets which are hyperplanes in the sub-
space of Sym,, spanned by D. Given such a facet F, we say that a non-zero form
(or symmetric matrix F) is a face vector for F if it is orthogonal in Sym,, (endowed
with the Voronoi scalar product Tr(MM')) to all vectors of F.

For 0 € R, F' € Sym,, and x € R” with corresponding column X, one has
'’X(A+0F)X = (A+0F, X'X) = (A, X'X) + 0(F, X'X) = q(z) + 0(F, X'X) .

Now, under a small enough transformation of a quadratic form, all minimal vectors
of the new form are minimal vectors of the old one. Hence, for # small enough,
q and the form gy corresponding to A + #F have the same minimal vectors if and
only if (F, X*X) = 0 for all X € S(q).

We now distinguish two cases:

case 1. ¢ is not perfect.

We can choose an F orthogonal to all X*X, X € S(gq). It can then be shown ([V1],
3-5; [M], ch. VII, prop. 2.6) that there exist p1, p2 > 0 such that S(gs) = S(q)
for —p; < 0 < pp and mingyg < ming for 6 < —p; or 0 > py; then, g_,,, gy, have
the same minimum as ¢, but a strictly larger set of minimal vectors. After a finite
number of steps, one obtains a perfect form.

[Refinement: let 7 be the perfection rank of ¢; then ([M], ch. IX, th. 1.9,(4)), one
can proceed in such a way that g,, and ¢,, have perfection rank r + 1.]

case 2. q is perfect.

For each facet F of D,, the corresponding face vectors are proportional. We can
then choose a face vector F' in such a way that there exists p > 0 with the following
two properties:

(1) mingg < ming for 6 <0 or § > p;
(2) S(gg) is the set of minimal vectors X of ¢ with X*X € F for 0 < 0 < p.



Then ([V1], 3.; [M], ch. VII, § 2), g, is again a perfect form.

4.1 Definition. The form ¢, defined above is called the neighbour form of q with
respect to F (or along F).

The neighbouring relation gives the set of perfect forms of dimension n and given
minimum m the structure of a graph. Clearly, the neighbour forms corresponding
to faces of ¢ which are equivalent under Aut(q) are equivalent; thus, we can define
a quotient graph, which is finite. The fundamental result of Voronoi is:

4.2. Theorem. The neighbouring graph is connected (and finite modulo equiva-
lence).

Voronoi made some calculations of neighbour forms, and found in particular the
complete structure of the neighbouring graph in dimension n < 5, obtaining in this
way a new verification of Korkine-Zolotareft’s classification up to dimension 5.

He also began to study the neighbouring graph in dimension 6, as one sees from
the following remark he made in the introduction of [V1] (p. 100): Ce n’est qu’a
partir des formes positives a six variables que j’ai rencontré des formes quadratiques
positives qui jouissent de la propriété (I) (i.e., are perfect) et ne sont pas des formes
extrémes. However, he had not enough time to finish his research; the classification
in dimension 6 was completed half a century later by Barnes in his difficult paper
[Bar|, where he used Voronoi’s method, and made all calculation by hand. He
proved that there exist seven perfect 6-dimensional lattices, among which exactly
one is not extreme, in conformity with the above assertion of Voronoi.

The graph for 7-dimensional forms was obtained by Jaquet in his thesis ([J],
[J1]). He had to develop new algorithms to be able to list all the facets of perfect
forms and classify them up to equivalence (E; has more than 70,000,000 facets!)
and to write a heavy computer program. He proved that there are exactly 33
perfect 7-dimensional lattices, confirming previous calculations due to K. Stacey,
relying on earlier work by Watson extending [W1], without any connection with
the Voronoi algorithm.

Computations done by H. Napias (Ph. D. thesis, Bordeaux, 1996) produced more
than 10,700 inequivalent perfect forms in dimension 8, among which more than
6000 appear as neighbours of Eg. This shows clearly that the determination of the
neighbouring graph in dimension 8 lies far beyond the capabilities of the existing
computers.

Nevertheless, it is possible to develop the Voronoi algorithm in new directions.
The formal generalization deals with a subspace 7 of Sym,,. We define the 7-
domain of Voronoi of a T-perfect form to be the orthogonal projection on 7 (for
the Voronoi scalar product on Sym,,) of the usual Voronoi domain. We choose a
fixed form gy, and then restrict ourselves to those forms ¢ such that g — go belongs
to 7. Neighbour forms are defined in the same way. However, it may happen that
some faces have no neighbour, but, despite this possible existence of some “culs-
de-sac”, a Voronoi-like theorem could be obtained in some interesting settings. We
refer to [M], ch. XIII, §§ 1,2 for the details of the general theory.

There is no reason to develop a detailed “7-Voronoi” theory for arbitrary sub-
spaces 7. Here are two examples which yield interesting applications.



4.3. Example. G-lattices again. The notation is that of example 3.5; in
particular, 7 = End{,. We shall speak indifferently of G-lattices or of G-forms.

4.3’. Theorem ([B-M-S|). The connected components of the Voronoi neighbouring
graph for G-perfect G-lattices are in one-to-one correspondence with the isomor-
phism classes of integral representations afforded by G-lattices.

This extended algorithm was used by Sigrist (work in progress) for cyclotomic
lattices, attached to a cyclic group G of order £ whose generators have ¢, as minimal
polynomial. In particular, he found all G-perfect lattices when £ is one of the prime
numbers 3,5,7,11, 13,17, producing respectively 1,1, 2,5, 25, 1344 G-perfect forms.
One can then extract from his lists of perfect G-lattices those for which the Hermite
invariant attains the greatest value. As a consequence, we derive the optimal upper
bound of this invariant for lattices whose automorphism group contains a group G
as above.

4.4. Example. Lattices with a given minimal section. We consider a
lattice Ag in a subspace F' of E of dimension ng < n, and the family £ of those
lattices A such that AN F = Ay and min A = minAy. The &-extreme lattices
can be characterized by properties of perfection and eutaxy relative to Ay (a fact
mentioned in § 3, cf. [M], ch. XII). But there is also a Voronoi algorithm relative
to F' (cf. [M], ch. XIII). Such algorithms were implemented by M. Lathem and J.-
L. Baril (Ph. D. theses, Bordeaux, 1992 and 1996)). As a consequence, we now know
in particular that there are exactly 1175 perfect 8-dimensional lattices possessing
a 7-dimensional perfect section with the same norm and 53 more perfect lattices
which are direct sums of a perfect 6-dimensional lattice and a As-lattice normalized
to the same minimum. (This last result needs a modification of the above theory,
cf. [M], ch. 13, § 6.)

The usual Voronoi algorithm itself has important applications. With the mere
knowledge of Voronoi’s and Barnes’ results for dimensions n < 6, Watson obtained
in [W2] sharp estimates of the invariant s up to dimension 9, for instance s < 75 for
non-perfect lattices of dimension 8, and the optimal bound s < 136 for dimension 9.

It would be interesting to look again at Watson’s methods, taking into account
recent progress of the theory of perfect lattices (and of computer science).

5. Eutaxy and cell decomposition. The following relation among lattices of E:
A~A < Fue GL(E),u(A) = A" and u(S(A)) =S(A)

is an equivalence relation, for which two similar lattices are equivalent. We call cells
the equivalence classes on the set of lattices modulo similarity (rather than minimal
classes as in [B-M3] and [M], though they are only quotients by finite groups of
cells in the sense of topology, see below).

The perfection rank r is constant on a cell and is equal to its codimension in
End®(E). Cells of dimension 0 (resp. 1) are reduced to the similarity class of a
single perfect lattice (resp. of a Voronoi neighbouring path connecting two perfect
lattices).

It is important to consider the description of cells in terms of quadratic forms,
where they appear as the interior of r-dimensional convex polyedra in R*("+1)/2
whose summits are perfect forms.



We only consider in the sequel the cells built with well rounded lattices or forms
(those which possess n independent minimal vectors; the terminology is Ash’s).
(The complete theory easily reduces to this particular case.)

Actually, the set of all well rounded positive definite quadratic forms with a given minimum
has a structure of an infinite cell complex; our set of classes is its finite quotient by GLy,(Z), but

the classes may be no more topological cells.

In practice, one obtains a finite cell complex by keeping sometimes several representative of a

given class. For instance, for 7 = 4, the Voronoi graph should be written Ay Dy Dy
with two copies of D4 in order that the second 1-dimensional cell should not be folded; then, several

copies of 1-dimensional cells should be used as edges for 2-dimensional cells, and so on.

The cell named bg in [B-M1] is then represented by a square with summits equivalent to
A4, Dy , A4, D4 whose 4 edges are equivalent to the path A4 —DD4, whereas the cell ag corresponds
to a triangle with summits equivalent to D4, Dy, Ay with 2 edges equivalent to the path Ay — Dy
and 1 edge equivalent to the path Dy — D4. To describe the 3-dimensional cells, one must then

repeat some 2-dimensional cells, and thus consider several new copies of the 0-dimensional cells
A4 and Dy.

We refer the reader to [Bt] for a concrete description in dimension 5. However, it should
be noticed that for algorithmic reasons, Batut starts with (-dimensional cells, whereas the cell
complex described above is better understood in each dimension by determining all cells which

appear as edges of a given cell.

This cell decomposition of the space of lattices modulo similarity was first con-
sidered by Stogrin in [St], who stated that there are only finitely many cells, found
the classification for dimensions 2,3,4 and proved in general by an argument of
convexity that the minimum on a cell of the Hermite invariant v, if any, is attained
on a single lattice or form. (Mahler’s compactness lemma shows that the minimum
of v exists on the closure of each well rounded cell.) A much more developed paper
is Avner Ash’s [Ash2].

These results were rediscovered by Bergé and Martinet (who were not aware
of [St]) in [B-M3|, with however an important complement: they introduced the
notion of a weakly eutactic lattice (see § 2), and proved that weakly eutactic lattices
in a cell are exactly those lattices where «y attains its minimum, see [M], ch. IX for
the details and some further results. This proves the finiteness up to similarity of
the set of weakly eutactic lattices of a given dimension; in particular, there are only
finitely many eutactic lattices, a result proved previously by Avner Ash ([Ashl])
in connection with topological Morse theory, and also, as was known to Voronoi,
finitely many perfect lattices, since all perfect lattices are weakly eutactic.

The classifications of well rounded cells and (weakly) eutactic lattices were found
by the autors quoted above when n = 2, 3,4, where one has respectively 3,5,18
well rounded cells. The difficult 5-dimensional classifications were done recently by
Batut ([Bt]), who found in particular 136 well rounded cells.

The cell classification appears to be a wide generalization of Voronoi’s finiteness
theorem and of the Voronoi neighbouring graph, which consists in the union of
0- and 1-dimensional cells. Moreover, it extends naturally to other objects, e.g.
G-lattices, pairs (A, A*) of lattices, orthogonal or symplectic lattices, though no
Voronoi algorithm is in general available.



10

Finiteness theorems have been proved for the F-extreme (or even sometimes for
the
F-perfect) lattices of the above list. Perfect G-lattices are moreover rational, but
rationality is not a general property. It is known that these F-extreme lattices
are algebraic, and, actually, non-rational F-extreme lattices exist for orthogonal or
symplectic lattices. (Whether there exist non-rational extreme pairs (A, A*) is not
known.)

Similarly, weakly eutactic lattices are algebraic, and Batut has found a 5-dimen-
sional eutactic lattice whose field of definition is of degree 9 over Q. The proofs
of algebraicity rely on an argument of real algebraic geometry, modelled on the
argument due to Bergé and Matignon given in [Ber| for the pairs (A, A*).

No general Voronoi algorithm is known (examples 4.3 and 4.4 concern affine fam-
ilies). However, a remarkable example has been obtained very recently by Bavard;
it concerns certain families of symplectic lattices which can be parametrized by the
upper half plane thanks to the interpretation of symplectic lattices as principally
polarized abelian varieties and their parametrization by Siegel’s space. Bavard uses
geodesics of the upper half plane to construct his graph, and proves that it is con-
nected. We refer the reader to [Bav2| for the highly technical details involved in
this paper.

6. Strong perfection and spherical designs. We explain shortly in this last
section a theory of Boris Venkov ([Ven]). We define a highly restrictive notion of
extremality, which nevertheless applies to important classes of lattices, for instance
to the class of 32-dimensional even unimodular lattices.

Let ¢t be a positive integer. A spherical t-design is a finite subset S of some
sphere S C E with center 0 such that the equality

1
/Sde:sze;gf(x)

holds for all polynomials f of degree at most ¢ (do is the usual measure on S
normalized by fS do = 1). This amounts to saying that the equality > s f(z) =0
holds for all non-constant harmonic polynomials of degree at most t. A t-design is
a t'-design for all ¢’ < t¢.

We shall use the above definition when S is the set S(A) of minimal vectors of
a lattice A C E. Note that, since S is then symmetric, every 2¢-design is also a
2t + 1-design. We prove easily:

6.1. Proposition. Lett =2m—+1. Then, the set S of minimal vectors of a lattice
A is a spherical t-design if and only if there exists ¢ € R such that the following

identity
Z(m.a)2m = c(a.a)™
seS
holds for all a € E.
6.2. Definition. We say that a lattice A is strongly perfect if S(A) is a spherical
5-design.

By proposition 6.1, S(A) is a 3-design if and only if A is strongly eutactic (i.e.,
eutactic with equal coefficients, see § 2). For 5-designs, one proves:
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6.3. Proposition. A strongly perfect lattice is extreme.
Venkov has obtained some classification results; for small dimensions, one has:

6.4. Theorem (Venkov). A lattice of dimension n < 9 is strongly perfect if and
only if it is similar to one of the lattices Z, Ay, Dy, Eg, Eg, E7, EX or Eg.

Other results of Venkov concern dimension 11 (there does not exist any strongly
perfect lattice), integral lattices of minimum 3 (there exist exactly five strongly
perfect lattices, one in each of the dimensions 1,7,16,22,23), and lattices with
§= w (the configuration of their minimal vectors defines an equiangular family
of lines).

Note also the following general property: the Bergé-Martinet invariant v'(A) of
a strongly perfect lattice satisfies the inequality v'(A)? > "T"'Q

To finish, we describe some results concerning even unimodular lattices (integral
lattices of determinant 1 whose vectors have even norms). Hecke proved that such
lattices exist if and only if n is divisible by 8, and must have minimum m <

2 {%J + 2. Those for which equality holds are called extremal. (Examples: Eg,

and the Leech lattice Agq.) By applying the theory of modular forms and making
use of theta series with spherical coefficients, Venkov proved the following theorem:

6.5. Theorem. Let A be an even unimodular lattice of dimension n. If n =0
(resp. n = 8, resp. n = 16) modulo 24, then S(A) is a 11- (resp. 7-, resp. 3-
) spherical design. In particular, extremal even unimodular lattices of dimension
n = 0,8 mod 24 are strongly perfect.

This theorem produces examples of strongly perfect lattices in dimensions 8,
24, 32, 48, 56 and 80 (two examples recently found by Bachoc and Nebe; whether
there exist 72-dimensional extremal lattices is one of the main open problems of
the theory of unimodular lattices).

The theory partially extends to lattices A of level £ (even lattices A such that
VI A* is again an even lattice) for which @, = © Via~» and in particular to £-
modular lattices in the sense of Quebbemann (even integral lattices A such that
there exists a similarity o : A* — A of ratio v/#; 1-modular is unimodular). For
£ = 2,3, one can prove results similar to theorem 6.5. In particular, this applies to
the Coxeter-Todd lattice K12 (with £ = 3), to the Barnes-Wall lattice A6 (£ = 2)
and to the 2-modular lattices of dimension 32 and minimum 6, four examples of
which are known, found by Quebbemann, Quebbemann, Bachoc and Nebe.

[There also exist in the same genus (Elkies, Nebe) lattices which are not 2-modular.]
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