

EXTENSIONS OF THE PERFECT LATTICE P_6^6

JACQUES MARTINET (*)

ABSTRACT. We construct two families L_n, L'_n of perfect lattices which extend beyond dimension 6 the six-dimensional perfect lattice P_6^6 , with $L'_n \simeq L_n$ if n is even, but not if n is odd.

INTRODUCTION

We denote by E a Euclidean space, of dimension $n \geq 2$. Given a lattice $\Lambda \subset E$, its *minimum* is $\min \Lambda = \min_{x \in \Lambda \setminus \{0\}} x \cdot x$. We denote by $S(\Lambda)$ its set of *minimal vectors* (those with $x \cdot x = \min \Lambda$) and set $s(\Lambda) = \frac{1}{2} |S(\Lambda)|$.

We refer to [M], in particular to chapters 1 and 3 for general definitions relative to (Euclidean) lattices, including the perfection and eutaxy properties.

Perfect lattices in dimensions $n = 2$ to 7 are defined up to similarity by an integral, primitive matrix P_n^i , with $i = 1, \dots, 7$ if $n = 6$ and $i = 1, \dots, 33$ if $n = 7$. In dimension 8 I shall use the notation $p8dk[i]$ of my homepage, where $k \in [2, 7]$ defines the family of perfect lattices having a k -dimensional perfect section with the same minimum, but none of dimension $k + 1$ (if $k < 7$); we shall essentially need the case when $k = 7$, where i may take 1175 values, defining lattices of decreasing density from $p8d7[1] \simeq \mathbb{E}_8$ to $p8d7[1175] \simeq \mathbb{A}_8$. $A \setminus B$

The lattice P_6^5 was discovered in 1957 by Barnes when he established the classification of 6-dimensional perfect lattices. He then constructed a series P_n extending extending $P_6 := P_6^5$ beyond dimension 6; see [B1], [B2], and [M], Section 5.3. In this note we construct analogues of Barnes's P_n relatively to P_6^6 .

The lattice P_6^6 can be defined by the Gram matrix

$$P_6^6 = \begin{pmatrix} 4 & 1 & 2 & 2 & 2 & 2 \\ 1 & 4 & 2 & 2 & 2 & 2 \\ 2 & 2 & 4 & 1 & 2 & 2 \\ 2 & 2 & 1 & 4 & 2 & 2 \\ 2 & 2 & 2 & 2 & 4 & 1 \\ 2 & 2 & 2 & 1 & 4 & \end{pmatrix}.$$

2010 *Mathematics Subject Classification.* 11H55, 11H71.

Key words and phrases. Euclidean lattices, perfect forms

(*) Jacques.Martinet@math.cnrs.fr – April 2016.

Consider for $n \geq 2$ the matrix $B'_n(X)$ with entries in the polynomial ring $\mathbb{Z}[X]$, equal to 4 on the diagonal and to 2 off the diagonal, except $B_{i,i+1} = B_{i+1,i} = X$, and set $A'_n = B_n(1)$. Then A'_6 is the Gram matrix for P_6^6 displayed above. It will turn out that the matrices A'_n are positive, definite, hence can be viewed as Gram matrices for lattices L'_n in a convenient basis $\mathcal{B}'_n = (e_1, \dots, e_n)$. Clearly L'_n is the cross-section of L'_{n+1} by the hyperplane orthogonal to the vector e'^*_{n+1} of the dual basis to \mathcal{B}' .

We then define L_n to be L'_n if n is even, and the orthogonal of $e'^*_1 + \dots + e'^*_n$ in L_{n+1} if n is odd.

Explicit calculations with *PARI-GP* show that we have the following isomorphisms:

$$L_5 \simeq P_5^2, L_6 \simeq P_6^6, L_7 \simeq P_7^{27}, L'_7 \simeq P_7^{32} \text{ and } L_8 \simeq p8d7[1168].$$

Theorem 0.1. *The lattices L_n , $n \geq 5$, and L'_n , $n \geq 6$, are extreme.*

This means that the Hermite invariant $(\gamma(L) := \frac{\min L}{\det(L)})$ attains a local maximum at L_n and L'_n . This is equivalent to *perfection* and *eutaxy*. That the lattices L_n and L'_n are perfect (resp. eutactic) will be proved in Section 2 (resp. 3). Basics facts concerning perfection and eutaxy are recalled in Subsection 3.2.

1. COMPUTATION OF DETERMINANTS

Lemma 1.1. *The determinant of $B'_n(X)$ are as follows:*

$$(n \geq 2 \text{ even}) \det(B'(X)) = (-1)^{n/2} (X - 4)^{n/2} X^{(n-2)/2} (X + 2n);$$

$$(n \geq 3 \text{ odd}) \det(B'(X)) = 4(-1)^{(n-1)/2} (X - 4)^{(n-1)/2} X^{(n-3)/2} (X + n - 1).$$

Proof. Denote by R_1, \dots, R_n the rows of the matrix B' , by $f \in \mathbb{Z}[X]$ its determinant.

We first consider even dimensions. Since X occurs once in each row and column of $B(X)$, f has degree n and leading coefficient $a_n = \pm 1$. Developing the determinant along the first two rows shows the relation $a_n X^n = (-X^2) a_{n-2} X^{n-2}$, hence $a_n = (-1)^{n/2}$. Since the combinations $R_{i+1} - R_i$, $i \geq 1$ odd (resp. $R_{i+1} + R_i - R_1 - R_2$, $i \geq 3$ odd) are zero for $X = 4$ (resp. for $X = 0$), f is divisible by $(X - 4)^{n/2}$ and $X^{(n-2)/2}$, hence of the form

$$(-1)^{n/2} (X - 4)^{n/2} X^{(n-2)/2} (X + \alpha);$$

and since the components of $\sum_i R_i$ are all equal to $X + 2n$, we have $\alpha = -2n$.

Similar arguments show that for odd n , f has leading coefficient $4(-1)^{(n-1)/2}$, and that 4, 0 are roots of f , of multiplicities $\frac{n-1}{2}$ and $\frac{n-3}{2}$,

respectively. The combination $R_1 + \cdots + R_{n-1} - (n-1)R_n$ shows that B' is also divisible by $X + (n-1)$, which proves the lemma for B'_n , n odd. \square

Lemma 1.1 shows that the $B'_n(x)$ have a positive determinant on $(0, 4)$. Since they contain a sequence of principal minors of the form B'_k for $k < n$, these matrices are positive definite on $(0, 4)$. In particular the A'_n are positive definite. This gives sense to the notation L'_n of the introduction, thus also of L_n , which is defined as a cross-section of L'_n .

Proposition 1.2. *The determinants of the lattices of the families L_n and L'_n are as follows:*

- (1) $\det(L_n) = \det(L'_n) = (2n+1)3^{n/2}$ (n even).
- (2) $\det(L_n) = (n+1)3^{(n+1)/2}$ (n odd).
- (3) $\det(L'_n) = 4n3^{(n-1)/2}$ (n odd).

Proof. Assertions (1) and (3) are direct consequences of Lemma 1.1.

To prove (2) consider the matrix $A'' = (a''_{i,j})$ with entries $4(n-1)$ on the diagonal and -6 off the diagonal, except $a''_{i,i+1} = a''_{i+1,i} = 2n-5$ for $i = 1, 3, \dots, 2n-1$, and the all ones vector v . We then check that

$$A' A'' = 3(2n+1)I_n \quad \text{and} \quad v A''^t v = \sum_{i,j} a''_{i,j} = 3n,$$

which implies

$$A'^{-1} = \frac{1}{3(2n+1)}A'' \quad \text{and} \quad N(e_1^* + \cdots + e_n^*) = \frac{3n}{3(2n+1)} = \frac{n}{2n+1}.$$

This shows that the determinant of the section of L_n by $(e_1^* + \cdots + e_n^*)^\perp$ is equal to $(2n+1)3^{n/2} \times \frac{n}{2n+1} = n3^{n/2}$, which gives us formula (2) after changing n into $n+1$. \square

2. MINIMAL VECTORS

Except in the statements, we assume that E has even dimension $n = 2m$; the results will then be applied to the hyperplane section L_{n-1} or the extension L'_{n+1} of L_n .

We consider the three sets o_1, o_2, o_3 below of norm 4 vectors, which will be proved to be the orbits under $\text{Aut}(L_n)$, the first two of which lie in L_{n-1} :

- $o_1 = \{\pm(e_j - e_i)\}, i < j, j \neq i+1$ if i is odd.
- $o_2 = \{\pm(e_j + e_{j+1} - e_i - e_{i+1})\}, i, j$ odd, $i < j$.
- $o_3 = \{\pm e_i\}$.

Proposition 2.1. *The lattices L_n have minimum 4, and for every $n \geq 4$, their sets of minimal vectors are $S = o_1 \cup o_2 \cup o_3$ if n is even, and the union of the sets o_1 and o_2 relative to L_{n+1} if n is odd.*

Proof. For $x = \sum_i x_i e_i \in L_n$, we have

$$\begin{aligned} N(x) &= 2\left(\left(\sum_i x_i\right)^2 + \sum_i x_i^2 - \sum_{i \text{ odd}} x_i x_{i+1}\right) \\ &= 2\left(\sum_i x_i\right)^2 + \sum_i x_i^2 + \sum_{i \text{ odd}} x_i x_{i+1}. \end{aligned}$$

Let $x \neq 0$ and denote by k the number of non-zero components of x . We shall show that $N(x) \geq 4$ and that equality holds if and only if x belongs to one of the sets o_i . Negating x if need be, we may assume that $\sum x_i \geq 0$. We have $\sum x_i^2 \geq k$, so that we may assume that $k \leq 4$.

If $k = 1$ and $x_i \neq 0$ we have $N(x) = 4x_i^2 \geq 4$ and equality holds only if $x = e_i$.

Let now $k \geq 2$. If $|x_i| \geq 2$ for some i , we have $\sum x_i^2 \geq 4 + (k-1) > 4$, so that we may assume that all x_i are 0 or ± 1 .

If $k = 3$, $\sum x_i$ is odd, and we have $N(x) \geq 2 + k > 4$. Hence we have $k = 2$ or 4, $\sum x_i$ is even, and if $\sum x_i \geq 2$, we have $N(x) \geq 4 + k \geq 6$, so that we may assume that $\sum x_i = 0$.

If $k = 2$, we have $x_i = \pm 1, x_j = \mp 1$ for to indices i, j . If $\{i, j\} = \{i, i+1\}$, i odd, we have $x_i - x_{i+1} = \pm 2$ and $N(x) = 6$. Otherwise, x belongs to o_1 .

Finally, if $k = 4$, we obviously have $N(x) \geq 4$, and equality holds if and only if all terms $x_i - x_{i+1}$ with odd i are zero, that is, if and only if x belongs to o_2 . \square

We state without a proof Proposition 2.2 below, which can be proved by similar arguments.

Proposition 2.2. *The minimal vectors of the lattices L'_{n+1} which lie off $L'_n = L_n$ are $\pm e_n$ and the $\pm(e_n - e_i)$, $i = 1, \dots, n-1$.* \square

Corollary 2.3. *The lattice L_n , $n \geq 5$ and L'_n , $n \geq 6$, are perfect.*

Proof. Recall (see [M], Proposition 3,5,3) that an n -dimensional lattice having a perfect hyperplane section with the same minimum and containing n independent minimal vectors off this section is perfect. The two propositions above show that $L_n \setminus L_{n-1}$ (any n) and $L'_n \setminus L_{n-1}$ ($n \geq 7$ odd) contain n independent minimal vectors. Since $L_5 \simeq P_5^2$ is perfect, so are all lattices L_n ($n \geq 5$) and L'_n ($n \geq 6$). \square

Corollary 2.4. *The kissing numbers of the lattices L_n and L'_n are as follows:*

- (1) $s(L_n) = s(L'_n) = \frac{n(5n-2)}{8}$ (n even).
- (2) $s(L_n) = \frac{5(n^2-1)}{8}$ (n odd).
- (3) $s(L'_n) = \frac{5n^2-4n+7}{8}$ (n odd).

Proof. The numbers of minimal vectors results from Propositions 2.1 and 2.2, changing n into $n+1$ in case (2) and into $n-1$ in case (3). \square

3. AUTOMORPHISMS AND EUTAXY

3.1. Automorphisms. We still assume that E has even dimension $n = 2m$. We let the symmetric group \mathfrak{S}_m act as a permutation group on $\{e_1, \dots, e_n\}$ by

$$\sigma e_{2i+1} = e_{2\sigma i+1} \text{ and } \sigma e_{2i+2} = e_{2\sigma i+2}.$$

The group \mathfrak{S}_m acts as a group of automorphisms of L_n , and so does the larger group G_0 generated by \mathfrak{S}_m and the m transpositions $(i, i+1)$, i odd. We set $G = \langle G_0, -\text{Id} \rangle$. This is a semi-direct product:

$$G \simeq C_2 \times (C_2^m \cdot \mathfrak{S}_m).$$

Clearly the sets o_i are orbits under the action of G on $S(L_n)$, and consideration of the spectrum of minimal vectors (for each x minimal, the numbers of vectors having a given scalar products with x) easily shows that G is the full automorphism group of L_n and L_{n-1} and that the orbits of minimal vectors are o_1, o_2, o_3 on L_n and o_1, o_2 on L_{n-1} , except that o_1, o_2 collapse to a single orbit in L_5 , which has a twice larger automorphism group.

The situation is slightly more complicated for L'_{n+1} . There are four orbits, namely $o'_1 := o_1$, $o'_3 := o_3$, $o'_4 = \{\pm e'_{n+1}\}$, and o'_2 , the union of o_2 and the $\{\pm(e'_{n+1} - e'_i)\}$, exchanged by a twice bigger automorphism group.

3.2. Eutaxy. Denote by p_F the orthogonal projection onto a subspace F of E . For $x \in E$, set $p_x = p_{\mathbb{R}x}$, and for a lattice Λ , consider the set $\mathcal{E}_\Lambda := \{p_x, x \in S(\Lambda)/\{\pm\}\}$. The lattice Λ is *perfect* if \mathcal{E} is of maximal rank $(\frac{n(n+1)}{2})$ and *eutactic* if there exists a relation $\text{Id} = \sum_{x \in \mathcal{E}} \lambda_x p_x$ (a *eutaxy relation*) with strictly positive coefficients λ_x .

Let \mathcal{B} be a basis for Λ , let $A = \text{Gram}(\mathcal{B})$, and for $x \in E$, denote by X the column of components of $x \in \mathcal{B}$. One has $A = \text{Mat}(\text{Id}, \mathcal{B}, \mathcal{B}^*)$, $\text{Mat}(p_x, \mathcal{B}^*, \mathcal{B}) = \frac{1}{x \cdot x} X^t X$, thus

$$\text{Mat}(p_x, \mathcal{B}, \mathcal{B}) = \frac{1}{x \cdot x} \text{Mat}_{\mathcal{B}^*}(\mathcal{B}) X^t X = \frac{1}{x \cdot x} A X^t X,$$

and the eutaxy relation reads $I_n = A \sum \lambda_x X^t X$, $A^{-1} = \sum \mu_x X^t X$ with coefficients μ_x proportional to the λ_x . (Indeed, $\mu_x = \frac{\lambda_x}{\min \Lambda}$.)

An averaging argument shows that for any subgroup G of $\text{Aut}(\Lambda)$, the coefficients λ_x (or μ_x) may be chosen to be constant on orbits of G . We shall use this remark. We assume that n is even and consider first L_n , then L_{n-1} , and finally L'_{n+1} .

Set $M_i = \sum_{x \in o_i/\pm} X^t X$. Because of the action of G , it suffices to consider the first three components of M_1 , M_2 , M_3 and A'^{-1} , namely

$$(n-2, 0, -1), \left(\frac{n-2}{2}, \frac{n-2}{2}, -1\right), (1, 0, 0), \text{ and } \frac{1}{3(2n+1)}(4(n-1), 2n-5, -6).$$

The eutaxy coefficients are the the solutions of the linear system

$$\begin{pmatrix} n-2 & \frac{n-2}{2} & 1 \\ 0 & \frac{n-2}{2} & 0 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{1}{3(2n+1)} \begin{pmatrix} 4(n-1) \\ 2n-5 \\ -6 \end{pmatrix},$$

$$\text{i.e., } x_1 = \frac{2(n-1)}{3(n-2)(2n+1)}, x_2 = \frac{2(2n-5)}{3(n-2)(2n+1)} \text{ and } x_3 = \frac{1}{2n+1}.$$

We now consider L_{n-1} . Let $f = e_1^* + \cdots + e_n^*$ and $H = f^\perp$, so that $L_{n-1} = L_n \cap H$. A eutaxy relation for L_{n-1} may be written on the form $p_H = \sum_{S/\{\pm\}} \lambda_x p_x$, which allows to calculate in the basis we used for L_n . Denoting by M the matrix of p_H in \mathcal{B} and working in \mathcal{B}^* and \mathcal{B} , the eutaxy relation takes the form $MA'^{-1} = x_1 M_1 + x_2 M_2$.

We have $p_H(x) = x - p_f(x) = x - \frac{c \cdot f}{f \cdot f} f$ and $f \cdot f = \frac{n}{2n+1}$. Setting $A'^{-1} = (\alpha_{i,j})$, we have $e_j^* = \sum_k \alpha_{k,j} e_k$ and $\sum_j \alpha_{k,j} = \frac{1}{2n+1}$, whence

$$p_H(e_i) = e_i - \frac{2n+1}{n} \sum_j e_j^* = I_n - \frac{1}{n} J$$

where J is the all ones matrix. This makes easy the calculation of MA'^{-1} . The result, after changing n into $n+1$, is

$$(x_1, x_2) = \frac{2}{3(n^2-1)} (n-2, \frac{n+1}{2}).$$

Note that up to a scaling factor, the eutaxy coefficients are

$$(n-1, 2n-5, \frac{3(n-2)}{2}) \text{ (n even) and } (n-2, \frac{n+1}{2}) \text{ (n odd).}$$

[The scaling factor can be recovered from the orbit lengths, $(\frac{n(n-2)}{2}, \frac{n(n-2)}{8}, n)$ (n even) and $(\frac{n^2-1}{2}, \frac{n^2-1}{8})$ (n odd).]

There remains to prove the eutaxy property for the series L'_n , $n \geq 7$ odd. We shall not give the details of the complicated calculations with the matrix A'^{-1} , but just state the very simple result: the eutaxy coefficients are proportional to $(4, 6, 8, 3)$.

[The orbit lengths are $(\frac{(n-1)(n-3)}{2}, 2(n-2), \frac{(n-1)(n-3)}{8}, 1)$.]

This completes the proof of Theorem 0.1.

3.3. Duality. I collect here a few putative invariants of the series L_n and L'_n related to duality. Thus the data I list largely rely on experimentation.

Let $n \geq 6$ even. Then the first two layers of L_n^* appear to be $\{\pm(e_1^* + \cdots + e_n^*)\}$ and $\{\pm e_1^*, \dots, \pm e_n^*\}$, acted on transitively by $\text{Aut}(L_n)$, so that L_{n-1} and L'_{n-1} are the densest two cross-sections of L_n , isometric to L_{n-1} and L'_{n-1} , respectively. When L_n^* is scaled to the smallest minimum which makes it integral the norms of these layers

are n and $\frac{4}{3}(n-4)$ if $n \equiv 4 \pmod{6}$, and $3n$ and $4(n-1)$ if $n \equiv 0, 2 \pmod{4}$, respectively.

Let now $n \geq 7$ odd. Experimentation suggests that $S(L_n^*)$ has the configuration of $S(\mathbb{A}_n^*)$, i.e., that up to sign the minimal vectors of L_n^* are of the form $f_1, \dots, f_n, f_0 := f_1 + \dots + f_n$. With the Gram matrix $P66(n)$ of next Section, one could choose $f_1 = -e_1^*$ and $f_i = e_i^*$ for $i = 2, \dots, n$. However there seems to be three orbits on $S(L_n^*)$, namely $\{\pm f_1, \dots, \pm f_{n-2}\}$, $\{\pm f_{n-1}, \pm f_n\}$ and $\{\pm f_0\}$, and that orthogonality with respect to the vectors of the first orbit defines lattices isometric to L_{n-1} whereas the other two orbits define non-perfect lattices.

Thus the descending chain $L_n \supset L_{n-1} \supset L_{n-2} \supset \dots$ is most certainly made of successive densest cross-sections.

As for L'_n , experimentation suggests that with the Gram matrix $P66a(n)$ of next Section, $S(L'_n)$ consists of $\pm e_n^*$ and $\pm(e_1^* + \dots + e_n^*)$, both having an orthogonal in L_n isometric to $L'_{n-1} = L_{n-1}$.

4. PROGRAMS

We give below *PARI-GP*-codes which produce Gram matrices for L_n ($P66(n)$) and L'_n ($P66a(n)$; the matrices A' of Section 1). Note that $P66(n) = P66a(n)$ for even n . For the sake of completeness, we also give a *PARI-GP*-code for the Barnes lattices P_n mentioned in the introduction.

```

{P66(n) =
local(m,a,b);
if(n == 1, return[4]); if(n%2 == 0, m = n, m = n + 1);
a = 2 * matid(m) + matrix(m, m, i, j, 2);
forstep(i = 1, m, 2, a[i, i + 1] = 1; a[i + 1, i] = 1);
if(n%2 == 1, b = matrix(n, n, i, j, a[i + 1, j + 1]);
for(i = 2, n - 2, b[1, i] = 1; b[i, 1] = 1);
a = b; );
a; }

{P66a(n) =
local(m,a);
if(n == 1, return[4]); if(n%2 == 0, m = n, m = n + 1);
a = P66(m); if(n%2 == 1, a = matrix(n, n, i, j, a[i, j]));
a; }

```

```

{PBarn(n) =
local(a);
if(n < 4, print("dimension must be at least 4"); return (0));
a = matrix(n, n); for(i = 2, n, a[i - 1, i] = -1); for(i = 3, n, a[i - 2, i] = -2);
for(i = 4, n, a[i - 3, i] = 1);
a[1, n - 1] = 1; a[2, n] = 1; a[1, n] = -2;
if(n%2 == 1, a[1, n] = -1; a[2, n] = 0; a[3, n] = 2; a[4, n] = -1;
a[n - 2, n] = -1; a[n - 1, n] = 2; for(i = 5, n - 3, a[i, n] = 0));
a + a~+4 * matid(n); }

```

REFERENCES

- [B1] E.S. Barnes, *The perfect and extreme senary forms*, Canad. J. Math. **9** (1957), 235–242.
- [B2] E.S. Barnes, *The complete enumeration of extreme senary forms*, Phil. Trans. Roy. Soc. London (A), **249** (1957), 461–506.
- [M] J. Martinet, *Perfect Lattices in Euclidean Spaces*, Grundlehren **327**, Springer-Verlag, Heidelberg, 2003, 527 pp.
- [PARI] *PARI/GP, a computer algebra system designed for fast computations in number theory*, url <http://pari.math.u-bordeaux.fr/> .