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Abstract. We construct two families Ln, L
′
n of perfect lattices

which extend beyond dimension 6 the six-dimensional perfect lat-
tice P 6

6 , with L′n ' Ln if n is even, but not if n is odd.

Introduction

We denote by E a Euclidean space, of dimension n ≥ 2. Given a
lattice Λ ⊂ E, its minimum is min Λ = minx∈Λ\{0} x · x. We denote
by S(Λ) its set of minimal vectors (those with x · x = min Λ) and set
s(Λ) = 1

2
|S(Λ|.

We refer to [M], in particular to chapters 1 and 3 for general
definitions relative to (Euclidean) lattices, including the perfection and
eutaxy properties.

Perfect lattices in dimensions n = 2 to 7 are defined up to similarity
by an integral, primitive matrix P i

n, with i = 1, . . . , 7 if n = 6 and
i = 1, . . . , 33 if n = 7. In dimension 8 I shall use the notation p8dk[i]
of my homepage, where k ∈ [2, 7] defines the family of perfect lat-
tices having a k-dimensional perfect section with the same minimum,
but none of dimension k + 1 (if k < 7); we shall essentially need the
case when k = 7, where i may take 1175 values, defining lattices of
decreasing density from p8d7[1] ' E8 to p8d7[1175] ' A8. A \B

The lattice P 5
6 was discovered in 1957 by Barnes when he established

the classification of 6-dimensional perfect lattices. He then constructed
a series Pn extending extending P6 := P 5

6 beyond dimension 6; see
[B1], [B2], and [M], Section 5.3. In this note we construct analogues of
Barnes’s Pn relatively to P 6

6 .

The lattice P 6
6 can be defined by the Gram matrix

P 6
6 =

( 4 1 2 2 2 2
1 4 2 2 2 2
2 2 4 1 2 2
2 2 1 4 2 2
2 2 2 2 4 1
2 2 2 2 1 4

)
.
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Consider for n ≥ 2 the matrix B′n(X) with entries in the polynomial
ring Z[X], equal to 4 on the diagonal and to 2 off the diagonal, except
Bi,i+1 = Bi+1,i = X, and set A′n = Bn(1). Then A′6 is the Gram matrix
for P 6

6 displayed above. It will turn out that the matrices A′n are
positive, definite, hence can be viewed as Gram matrices for lattices
L′n in a convenient basis B′n = (e1, . . . , en). Clearly L′n is the cross-
section of L′n+1 by the hyperplane orthogonal to the vector e′∗n+1 of the
dual basis to B′.

We then define Ln to be L′n if n is even, and the orthogonal of
e′∗1 + · · ·+ e′∗n in Ln+1 if n is odd.

Explicit calculations with PARI-GP show that we have the following
isomorphisms:

L5 ' P 2
5 , L6 ' P 6

6 , L7 ' P 27
7 , L′7 ' P 32

7 and L8 ' p8d7[1168] .

Theorem 0.1. The lattices Ln, n ≥ 5, and L′n, n ≥ 6, are extreme.

This means that the Hermite invariant (γ(L) := minL
det(L)

) attains a

local maximum at Ln and L′n. This is equivalent to perfection and
eutaxy . That the lattices Ln and L′n are perfect (resp. eutactic) will be
proved in Section 2 (resp. 3). Basics facts concerning perfection and
eutaxy are recalled in Subsection 3.2.

1. Computation of determinants

Lemma 1.1. The determinant of B′n(X) are as follows:

(n ≥ 2 even) det(B′(X)) = (−1)n/2 (X − 4)n/2 X(n−2)/2 (X + 2n) ;

(n ≥ 3 odd) det(B′(X))= 4(−1)(n−1)/2 (X−4)(n−1)/2 X(n−3)/2 (X + n−1) .

Proof. Denote by R1, . . . , Rn the rows of the matrix B′, by f ∈ Z[X]
its determinant.

We first consider even dimensions. Since X occurs once in each row
and column of B(X), f has degree n and leading coefficient an = ±1.
Developing the determinant along the first two rows shows the relation
anX

n = (−X2)an−2X
n−2, hence an = (−1)n/2. Since the combinations

Ri+1 − Ri, i ≥ 1 odd (resp. Ri+1 + Ri − R1 − R2, i ≥ 3 odd) are zero
for X = 4 (resp. for X = 0), f is divisible by (X − 4)n/2 and X(n−2)/2,
hence of the form

(−1)n/2 (X − 4)n/2X(n−2)/2 (X + α) ;

and since the components of
∑

iRi are all equal to X + 2n, we have
α = −2n.

Similar arguments show that for odd n, f has leading coefficient
4(−1)(n−1)/2, and that 4, 0 are roots of f , of multiplicities n−1

2
and n−3

2
,
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respectively. The combination R1 + · · ·+Rn−1− (n− 1)Rn shows that
B′ is also divisible by X + (n − 1), which proves the lemma for B′n,
n odd. �

Lemma 1.1 shows that the B′n(x) have a positive determinant on
(0, 4). Since they contain a sequence of principal minors of the form
B′k for k < n, these matrices are positive definite on (0, 4). In particular
the A′n are positive definite. This gives sense to the notation L′n of the
introduction, thus also of Ln, which is defined as a cross-section of L′n.

Proposition 1.2. The determinants of the lattices of the families Ln
and L′n are as follows:

(1) det(Ln) = det(L′n) = (2n+ 1) 3n/2 (n even).
(2) det(Ln) = (n+ 1) 3(n+1)/2 (n odd).
(3) det(L′n) = 4n 3(n−1)/2 (n odd).

Proof. Assertions (1) and (3) are direct consequences of Lemma 1.1.

To prove (2) consider the matrix A′′ = (a′′i,j) with entries 4(n− 1) on
the diagonal and −6 off the diagonal, except a′′i,i+1 = a′′i+1,i = 2n − 5
for i = 1, 3, . . . , 2n− 1, and the all ones vector v. We then check that

A′A′′ = 3(2n+ 1) In and vA′′ tv =
∑

i,j a
′′
i,j = 3n ,

which implies

A′−1 = 1
3(2n+1)

A′′ and N(e∗1 + · · ·+ e∗n) = 3n
3(2n+1)

= n
2n+1

.

This shows that the determinant of the section of Ln by (e∗1 + · · ·+e∗n)⊥

is equal to (2n + 1) 3n/2 × n
2n+1

= n 3n/2, which gives us formula (2)
after changing n into n+ 1. �

2. Minimal vectors

Except in the statements, we assume that E has even dimension
n = 2m; the results will then be applied to the hyperplane section
Ln−1 or the extension L′n+1 of Ln.

We consider the three sets o1, o2, o3 below of norm 4 vectors, which
will be proved to be the orbits under Aut(Ln), the first two of which
lie in Ln−1 :

o1 = {±(ej − ei)}, i < j, j 6= i+ 1 if i is odd.

o2 = {±(ej + ej+1 − ei − ei+1)}, i, j odd, i < j.

o3 = {±ei}.

Proposition 2.1. The lattices Ln have minimum 4, and for every
n ≥ 4, their sets of minimal vectors are S = o1 ∪ o2 ∪ o3 if n is even,
and the union of the sets o1 and o2 relative to Ln+1 if n is odd.
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Proof. For x =
∑

i xi ei ∈ Ln, we have

N(x) = 2
((∑

i

xi
)2

+
∑
i

x2
i −

∑
i odd

xixi+1

)
= 2
(∑

i

xi
)2

+
∑
i

x2
i +

∑
i odd

xixi+1 .

Let x 6= 0 and denote by k the number of non-zero components of x.
We shall show that N(x) ≥ 4 and that equality holds if and only if x
belongs to one of the sets oi. Negating x if need be, we may assume
that

∑
xi ≥ 0. We have

∑
x2
i ≥ k, so that we may assume that k ≤ 4.

If k = 1 and xi 6= 0 we have N(x) = 4x2
i ≥ 4 and equality holds only

if x = ei.
Let now k ≥ 2. If |xi| ≥ 2 for some i, we have

∑
x2
i ≥ 4+(k−1) > 4,

so that we may assume that all xi are 0 or ±1.
If k = 3,

∑
xi is odd, and we have N(x) ≥ 2+k > 4. Hence we have

k = 2 or 4,
∑
xi is even, and if

∑
xi ≥ 2, we have N(x) ≥ 4 + k ≥ 6,

so that we may assume that
∑
xi = 0.

If k = 2, we have xi = ±1, xj = ∓1 for to indices i, j. If {i, j} =
{i, i + 1}, i odd, we have xi − xi+1 = ±2 and N(x) = 6. Otherwise, x
belongs to o1.

Finally, if k = 4, we obviously have N(x) ≥ 4, and equality holds if
and only if all terms xi − xi+1 with odd i are zero, that is, if and only
if x belongs to o2. �

We state without a proof Proposition 2.2 below, which can be proved
by similar arguments.

Proposition 2.2. The minimal vectors of the lattices L′n+1 which lie
off L′n = Ln are ±en and the ±(en − ei), i = 1, . . . , n− 1. �

Corollary 2.3. The lattice Ln, n ≥ 5 and L′n, n ≥ 6, are perfect.

Proof. Recall (see [M], Proposition 3,5,3) that an n-dimensional lattice
having a perfect hyperplane section with the same minimum and con-
taining n independent minimal vectors off this section is perfect. The
two propositions above show that Ln \ Ln−1 (any n) and L′n \ Ln−1

(n ≥ 7 odd) contain n independent minimal vectors. Since L5 ' P 2
5 is

perfect, so are all lattices Ln (n ≥ 5) and L′n (n ≥ 6). �

Corollary 2.4. The kissing numbers of the lattices Ln and L′n are as
follows:

(1) s(Ln) = s(L′n) = n(5n−2)
8

(n even).

(2) s(Ln) = 5(n2−1)
8

(n odd).

(3) s(L′n) = 5n2−4n+7
8

(n odd).
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Proof. The numbers of minimal vectors results from Propositions 2.1
and 2.2, changing n into n+1 in case (2) and into n−1 in case (3). �

3. Automorphisms and Eutaxy

3.1. Automorphisms. We still assume that E has even dimension
n = 2m. We let the symmetric group Sm act as a permutation group
on {e1, . . . , en} by

σ e2i+1 = e2σ i+1 and σ e2i+2 = e2σ i+2 .

The group Sm acts as a group of automorphisms of Ln, and so does the
larger group G0 generated by Sm and the m transpositions (i, i + 1),
i odd. We set G = 〈G0,− Id〉. This is a semi-direct product:

G ' C2 × (Cm
2 ·Sm) .

Clearly the sets oi are orbits under the action of G on S(Ln), and
consideration of the spectrum of minimal vectors (for each x minimal,
the numbers of vectors having a given scalar products with x) easily
shows that G is the full automorphism group of Ln and Ln−1 and that
the orbits of minimal vectors are o1, o2, o3 on Ln and o1, o2 on Ln−1,
except that o1, o2 collapse to a single orbit in L5, which has a twice
larger automorphism group.

The situation is slightly more complicated for L′n+1. There are four
orbits, namely o′1 := o1, o′3 := o3, o′4 = {±e′n+1}, and o′2, the union of
o2 and the {±(e′n+1− e′i)}, exchanged by a twice bigger automorphism
group.

3.2. Eutaxy. Denote by pF the orthogonal projection onto a subspace
F of E. For x ∈ E, set px = pRx, and for a lattice Λ, consider the set
EΛ := {px, x ∈ S(Λ)/{±}}. The lattice Λ is perfect if E is of maximal

rank (n(n+1)
2

) and eutactic if there exists a relation Id =
∑

x∈E λxpx (a
eutaxy relation) with strictly positive coefficients λx.

Let B be a basis for Λ, let A = Gram(B), and for x ∈ E, denote by
X the column of components of x ∈ B. One has A = Mat(Id,B,B∗),
Mat(px,B∗,B) = 1

x·x X
tX, thus

Mat(px,B,B) = 1
x·x MatB∗(B)X tX = 1

x·x AX
tX ,

and the eutaxy relation reads In = A
∑
λxX

tX, A−1 =
∑
µxX

tX with
coefficients µx proportional to the λx. (Indeed, µx = λx

min Λ
.)

An averaging argument shows that for any subgroup G of Aut(Λ),
the coefficients λx (or µx) may be chosen to be constant on orbits of G.
We shall use this remark. We assume that n is even and consider first
Ln, then Ln−1, and finally L′n+1.
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Set Mi =
∑

x∈oi/± X
tX. Because of the action of G, it suffices to

consider the first three components of M1, M2, M3 and A′−1, namely

(n− 2, 0,−1), (n−2
2 , n−2

2 ,−1), (1, 0, 0), and 1
3(2n+1)(4(n− 1), 2n− 5,−6) .

The eutaxy coefficients are the the solutions of the linear system(
n−2 n−2

2
1

0 n−2
2

0
−1 −1 0

) (
x1
x2
x3

)
= 1

3(2n+1)

(
4(n−1)
2n−5
−6

)
,

i.e., x1 = 2(n−1)
3(n−2)(2n+1)

, x2 = 2(2n−5)
3(n−2)(2n+1)

and x3 = 1
2n+1

.

We now consider Ln−1. Let f = e′∗1 + · · ·+ e′∗n and H = f⊥, so that
Ln−1 = Ln ∩ H. A eutaxy relation for Ln−1 may be written on the
form pH =

∑
S/{±} λxpx, which allows to calculate in the basis we used

for Ln. Denoting by M the matrix of pH in B and working in B∗ and
B, the eutaxy relation takes the form MA′−1 = x1M1 + x2M2.

We have pH(x) = x − pf (x) = x − c·f
f ·f f and f · f = n

2n+1
. Setting

A′−1 = (αi,j), we have e∗j =
∑

k αk,jek and
∑

j αk,j = 1
2n+1

, whence

pH(ei) = ei − 2n+1
n

∑
j e
∗
j = In − 1

n
J

where J is the all ones matrix. This makes easy the calculation of
MA′−1. The result, after changing n into n+ 1, is

(x1, x2) = 2
3(n2−1)

(n− 2, n+1
2

) .

Note that up to a scaling factor, the eutaxy coefficients are

(n− 1, 2n− 5, 3(n−2)
2

) (n even) and (n− 2, n+1
2

) (n odd) .

[The scaling factor can be recovered from the orbit lengths, (n(n−2)
2 ,n(n−2)

8 ,n)

(n even) and (n
2−1
2 , n

2−1
8 ) (n odd).]

There remains to prove the eutaxy property for the series L′n, n ≥ 7
odd. We shall not give the details of the complicated calculations with
the matrix A′−1, but just state the very simple result: the eutaxy
coefficients are proportional to (4, 6, 8, 3).

[The orbit lengths are ( (n−1)(n−3)
2 , 2(n− 2), (n−1)(n−3)

8 , 1).]

This completes the proof of Theorem 0.1.

3.3. Duality. I collect here a few putative invariants of the series Ln
and L′n related to duality. Thus the data I list largely rely on experi-
mentation.

Let n ≥ 6 even. Then the first two layers of L∗n appear to be
{±(e∗1+· · ·+e∗n)} and {±e∗1, . . . ,±e∗n}, acted on transitively by Aut(Ln),
so that Ln−1 and L′n−1 are the densest two cross-sections of Ln, isomet-
ric to Ln−1 and and L′n−1, respectively. When L∗n is scaled to the
smallest minimum which makes it integral the norms of these layers
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are n and 4
3

(n − 4) if n ≡ 4 mod 6, and 3n and 4(n − 1) if n ≡ 0, 2
mod 4, respectively.

Let now n ≥ 7 odd. Experimentation suggests that S(L∗n) has the
configuration of S(A∗n), i.e., that up to sign the minimal vectors of L∗n
are of the form f1, . . . , fn, f0 := f1 + · · · + fn. With the Gram matrix
P66(n) of next Section, one could choose f1 = −e∗1 and fi = e∗i for
i = 2, . . . , n. However there seems to be three orbits on S(L∗n), namely
{±f1, . . . ,±fn−2}, {±fn−1,±fn} and {±f0}, and that orthogonality
with respect to the vectors of the first orbit defines lattices isometric
to Ln−1 whereas the other two orbits define non-perfect lattices.

Thus the descending chain Ln ⊃ Ln−1 ⊃ Ln−2 ⊃ . . . is most certainly
made of successive densest cross-sections.

As for L′n, experimentation suggests that with the Gram matrix
P66a(n) of next Section, S(L′∗n) consists of ±e∗n and ±(e∗1 + · · · + e∗n),
both having an orthogonal in Ln isometric to L′n−1 = Ln−1.

4. Programs

We give below PARI-GP-codes which produce Gram matrices for
Ln (P66(n)) and L′n (P66a(n); the matrices A′ of Section 1). Note
that P66(n) = P66a(n) for even n). For the sake of completeness, we
also give a PARI-GP-code for the Barnes lattices Pn mentioned in the
introduction.

{P66(n) =
local(m, a, b);
if (n == 1, return[4]); if(n%2 == 0,m = n,m = n+ 1);
a = 2 ∗matid(m) + matrix(m,m, i, j, 2);
forstep(i = 1,m, 2, a[i, i+ 1] = 1; a[i+ 1, i] = 1);

if(n%2 == 1, b = matrix(n, n, i, j, a[i+ 1, j + 1]);
for(i = 2, n− 2, b[1, i] = 1; b[i, 1] = 1);

a = b; );

a; }

{P66a(n) =

local(m, a);

if (n == 1, return[4]); if (n%2 == 0,m = n,m = n+ 1);

a = P66(m); if(n%2 == 1, a = matrix(n, n, i, j, a[i, j]));

a; }
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{PBarn(n) =

local(a);

if(n < 4, print(“dimension must be at least 4”); return (0));

a = matrix(n, n); for(i = 2, n, a[i− 1, i] = −1); for(i = 3, n, a[i− 2, i] = −2);
for(i = 4, n, a[i− 3, i] = 1);

a[1, n− 1] = 1; a[2, n] = 1; a[1, n] = −2;
if(n%2 == 1, a[1, n] = −1; a[2, n] = 0; a[3, n] = 2; a[4, n] = −1;
a[n− 2, n] = −1; a[n− 1, n] = 2; for(i = 5, n− 3, a[i, n] = 0));

a+ a˜+4 ∗matid(n); }
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