EXTENSIONS OF THE PERFECT LATTICE P$
JACQUES MARTINET (*)

ABSTRACT. We construct two families L,, L] of perfect lattices
which extend beyond dimension 6 the six-dimensional perfect lat-
tice P9, with L! =~ L, if n is even, but not if n is odd.

INTRODUCTION

We denote by E a Euclidean space, of dimension n > 2. Given a
lattice A C E, its minimum is min A = min,ecp\qoy 7 - . We denote
by S(A) its set of minimal vectors (those with x - z = min A) and set
s(A) = 1[S(A.

We refer to [M], in particular to chapters 1 and 3 for general
definitions relative to (Euclidean) lattices, including the perfection and
eutaxy properties.

Perfect lattices in dimensions n = 2 to 7 are defined up to similarity
by an integral, primitive matrix P!, with 4 = 1,...,7 if n = 6 and
i=1,...,33 if n = 7. In dimension 8 I shall use the notation p8dk|[i]
of my homepage, where k € [2,7] defines the family of perfect lat-
tices having a k-dimensional perfect section with the same minimum,
but none of dimension k + 1 (if £ < 7); we shall essentially need the
case when k = 7, where ¢ may take 1175 values, defining lattices of
decreasing density from p8d7[1] ~ Eg to p8d7[1175] ~ Ag. A\ B

The lattice P§ was discovered in 1957 by Barnes when he established
the classification of 6-dimensional perfect lattices. He then constructed
a series P, extending extending P := P; beyond dimension 6; see
[B1], [B2], and [M], Section 5.3. In this note we construct analogues of
Barnes’s P, relatively to Pg.

The lattice PS can be defined by the Gram matrix
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Consider for n > 2 the matrix B/, (X) with entries in the polynomial
ring Z[X], equal to 4 on the diagonal and to 2 off the diagonal, except
Biit1 = Bit1, = X, and set A, = B,,(1). Then Aj is the Gram matrix
for P9 displayed above. It will turn out that the matrices A/, are
positive, definite, hence can be viewed as Gram matrices for lattices
L’ in a convenient basis B/, = (e1,...,e,). Clearly L! is the cross-
section of L] ; by the hyperplane orthogonal to the vector €', ; of the
dual basis to B'.

We then define L,, to be L! if n is even, and the orthogonal of
e1+---+¢€ in L, if nis odd.

Explicit calculations with PARI-GP show that we have the following
isomorphisms:

Ls~ P2, Lg~ P§, Ly ~ P¥, LL ~ P and Lg ~ p8d7[1168] .

Theorem 0.1. The lattices L,,, n > 5, and L., n > 6, are extreme.

min L

This means that the Hermite invariant (vy(L) := det(D)
local maximum at L, and L!. This is equivalent to perfection and
eutary. That the lattices L,, and L/, are perfect (resp. eutactic) will be
proved in Section 2 (resp. 3). Basics facts concerning perfection and
eutaxy are recalled in Subsection 3.2.

) attains a

1. COMPUTATION OF DETERMINANTS

Lemma 1.1. The determinant of Bl (X) are as follows:
(n>2 even) det(B'(X)) = (—1)"2 (X — 4)"2 X(=2/2 (X 4 2n);
(n >3 odd) det(B'(X))= 4(—1)"=D/2 (X —4)(n=D/2 x(n=3)/2 (X 4 n—1).

Proof. Denote by Ry,..., R, the rows of the matrix B, by f € Z[X]
its determinant.

We first consider even dimensions. Since X occurs once in each row
and column of B(X), f has degree n and leading coefficient a,, = +1.
Developing the determinant along the first two rows shows the relation
an X" = (=X?)a,_»X" 2, hence a,, = (—1)"2. Since the combinations
Riv1— R;, 1> 10dd (resp. Riy1+ R; — R — Ry, i > 3 odd) are zero
for X =4 (resp. for X = 0), f is divisible by (X —4)"2 and X("~2/2,
hence of the form

(172 (X — 4)/2 X022 (X 4 a);
and since the components of ), R; are all equal to X + 2n, we have
a = —2n.

Similar arguments show that for odd n, f has leading coefficient

4(=1)"=Y/2_and that 4, 0 are roots of f, of multiplicities 25t and %52,
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respectively. The combination Ry +---+ R,—1 — (n — 1) R,, shows that
B’ is also divisible by X + (n — 1), which proves the lemma for B/,
n odd. O

Lemma 1.1 shows that the B/ (z) have a positive determinant on
(0,4). Since they contain a sequence of principal minors of the form
By for k < n, these matrices are positive definite on (0,4). In particular
the A/ are positive definite. This gives sense to the notation L/ of the
introduction, thus also of L,,, which is defined as a cross-section of L/ .

Proposition 1.2. The determinants of the lattices of the families L,
and L are as follows:

(1) det(L,) = det(L!) = (2n + 1) 3"/2 (n even).

(2) det(L,) = (n+ 1)30+V/2 (n odd).

(3) det(L!) = 4n3=V/2 (n odd).

Proof. Assertions (1) and (3) are direct consequences of Lemma 1.1.

To prove (2) consider the matrix A” = (a};) with entries 4(n —1) on
the diagonal and —6 off the diagonal, except a;,,, = ai',,; = 2n — 5
forv=1,3,...,2n — 1, and the all ones vector v. We then check that

A’A” =32n+1)1, and vA"v =3, al; =3n,
which implies
A/—l = 50 +1 A" and N(61+...+e;“1) :%:#_
This shows that the determinant of the section of L,, by (ei+---+e)*
is equal to (2n + 1)3"/2 x -2 = n3"2 which gives us formula (2)

2n+1
after changing n into n + 1.

2. MINIMAL VECTORS

Except in the statements, we assume that £ has even dimension

= 2m; the results will then be applied to the hyperplane section
L, or the extension L;_ , of L,.

We consider the three sets o1, 02, 03 below of norm 4 vectors, which
will be proved to be the orbits under Aut(L,), the first two of which
liein L,_1:

01 = {:I:(ej—ei)}, 1<7,7 #Z"—l if ¢ is odd.

0y = {£(ej +ej1 — e —ei1)}, 4, j odd, i < j.

03 = {:i:el}

Proposition 2.1. The lattices L, have minimum 4, and for every

n > 4, their sets of minimal vectors are S = o1 U 0o U 03 if n is even,
and the union of the sets o1 and oy relative to L,.1 if n is odd.
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Proof. For x = ). x;e; € Ly, we have

N(z) = 2((2%)2 + fo — Z TiTis1)

7 iodd
= 2(2@)2 + Zx? + Z TiTitq -
i i iodd

Let z # 0 and denote by k£ the number of non-zero components of x.
We shall show that N(z) > 4 and that equality holds if and only if x
belongs to one of the sets 0;. Negating x if need be, we may assume
that > x; > 0. We have Y x? > k, so that we may assume that k < 4.

If k=1 and z; # 0 we have N(x) = 42? > 4 and equality holds only
if x =e;.

Let now k > 2. If |z;| > 2 for some i, we have >_ 27 > 4+ (k—1) > 4,
so that we may assume that all z; are 0 or £1.

If k=3, > x;is odd, and we have N(x) > 24k > 4. Hence we have
k=2or4, ) x;is even, and if Y x; > 2, we have N(z) >4+ k > 6,
so that we may assume that ) z; = 0.

If £ =2, we have x; = £1,2; = F1 for to indices ¢,j. If {i,j} =
{i,i+ 1}, i odd, we have x; — z;41 = £2 and N(x) = 6. Otherwise, x
belongs to o;.

Finally, if £ = 4, we obviously have N(z) > 4, and equality holds if
and only if all terms x; — x; 1 with odd ¢ are zero, that is, if and only
if x belongs to 0,. 0

We state without a proof Proposition 2.2 below, which can be proved
by similar arguments.

Proposition 2.2. The minimal vectors of the lattices L, which lie
off L, = L,, are £e, and the (e, —¢;),i=1,...,n— 1. O

Corollary 2.3. The lattice L,, n >5 and L/, n > 6, are perfect.

n’

Proof. Recall (see [M], Proposition 3,5,3) that an n-dimensional lattice
having a perfect hyperplane section with the same minimum and con-
taining n independent minimal vectors off this section is perfect. The
two propositions above show that L, \ L,—1 (any n) and L/ \ L,
(n > 7 odd) contain n independent minimal vectors. Since Lz ~ P2 is
perfect, so are all lattices L,, (n > 5) and L], (n > 6). O

Corollary 2.4. The kissing numbers of the lattices L,, and L', are as
follows:

(1) s(L,) =s(L]) = w (n even).

(2) s(La) = 225 (0 odd).
(3) s(L,) = 2=IntT iy odd).

n
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Proof. The numbers of minimal vectors results from Propositions 2.1
and 2.2, changing n into n+1 in case (2) and into n—1 in case (3). O

3. AUTOMORPHISMS AND EUTAXY

3.1. Automorphisms. We still assume that F has even dimension
n = 2m. We let the symmetric group &,, act as a permutation group

on {ey,...,e,} by
O €241 = €25i41 and 0 €g;19 = €35i12 -
The group &,, acts as a group of automorphisms of L,,, and so does the

larger group Gq generated by &,, and the m transpositions (i,7 + 1),
i odd. We set G = (G, —Id). This is a semi-direct product:

Clearly the sets o; are orbits under the action of G on S(L,), and
consideration of the spectrum of minimal vectors (for each z minimal,
the numbers of vectors having a given scalar products with x) easily
shows that G is the full automorphism group of L, and L,_; and that
the orbits of minimal vectors are o;,09,03 on L, and 01,05 on L, _1,
except that o1, 09 collapse to a single orbit in L, which has a twice
larger automorphism group.

The situation is slightly more complicated for L ;. There are four

orbits, namely o} := o1, 0y := 03, o) = {*xe,,,}, and 0}, the union of
0, and the {£(e},,; —€})}, exchanged by a twice bigger automorphism
group.

3.2. Eutaxy. Denote by pr the orthogonal projection onto a subspace
F of E. For x € E, set p, = prs:, and for a lattice A, consider the set
En = A{ps,x € S(A)/{£}}. The lattice A is perfect if £ is of maximal
rank (@) and eutactic if there exists a relation Id = > . A\;p. (a
eutazxy relation) with strictly positive coefficients \,.

Let B be a basis for A, let A = Gram(B), and for x € E, denote by
X the column of components of z € B. One has A = Mat(Id, B, B*),
Mat(p,, B*, B) = -1 XX, thus

Mat(p,, B, B) = = Matg-(B) X'X = L AX'X

and the eutaxy relation reads I,, = A> A\, XX, A7 =3 1, XX with
coefficients p, proportional to the A,. (Indeed, p, = m’i\;f <)

An averaging argument shows that for any subgroup G of Aut(A),
the coefficients A, (or ) may be chosen to be constant on orbits of G.
We shall use this remark. We assume that n is even and consider first

L,, then L,_q, and finally L/ .
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Set M; = 3 coi/s X'X. Because of the action of G, it suffices to
consider the first three components of My, My, M3 and A’ -1 namely

(n—2,0,-1), (252,252, ~1), (1,0,0), and m@(n —1),2n—5,—6).

The eutaxy coefficients are the the solutions of the linear system
o) (B) = mt (50)
ooz ) s 3@nt1) \ g7 )

2(n—1) _ 2(2n—>5)
3n—2)2nt1)’ L2 = 3(m-2)@n+1)

We now consider L,_1. Let f=¢7+---+¢5 and H = f*, so that
L, 1 = L,NH. A eutaxy relation for L,_; may be written on the
form py =) 4 (4} Azpz, which allows to calculate in the basis we used
for L,. Denoting by M the matrix of py in B and working in B* and
B, the eutaxy relation takes the form MA'™' = 2, M, + x5 M,.

We have pH(z) =z — ps(z) = x — %f and f - f = 575, Setting

ie., r; = and x3 =

_1
2n+1"

A" = (a;;), we have ;=) apjep and Y apj = whence

pule) =e =2 Y er =1, — 1 J

where J is the all ones matrix. This makes easy the calculation of

MA'™'. The result, after changing n into n + 1, is
(21, 22) = 55—y (n = 2,%47) .
Note that up to a scaling factor, the eutaxy coefficients are
(n—1,2n — 5, @) (n even) and (n —2,%) (n odd).
n(n—2) n(n—2)
P} ) ] 7”)

_1
2n+1’

[The scaling factor can be recovered from the orbit lengths, (
(n even) and (51, =1 (n odd).]

There remains to prove the eutaxy property for the series L/, n > 7
odd. We shall not give the details of the complicated calculations with
the matrix A'"', but just state the very simple result: the eutaxy
coefficients are proportional to (4,6,8, 3).

[The orbit lengths are (m_léﬂ, 2(n —2), %8(”_3), 1).]

This completes the proof of Theorem 0.1.

3.3. Duality. I collect here a few putative invariants of the series L,
and L! related to duality. Thus the data I list largely rely on experi-
mentation.

Let n > 6 even. Then the first two layers of L} appear to be
{£(ei+---+e)} and {£e7, ..., Le’}, acted on transitively by Aut(L,,),
so that L,_; and L/,_, are the densest two cross-sections of L, isomet-
ric to L,—; and and L/ _,, respectively. When L7 is scaled to the
smallest minimum which makes it integral the norms of these layers
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are n and 5 (n —4) if n =4 mod 6, and 3n and 4(n — 1) if n = 0,2
mod 4, respectively.

Let now n > 7 odd. Experimentation suggests that S(L) has the
configuration of S(AY), i.e., that up to sign the minimal vectors of L}
are of the form f1,..., fu, fo:= fi +---+ f,. With the Gram matrix
P66(n) of next Section, one could choose f; = —ef and f; = e} for
i =2,...,n. However there seems to be three orbits on S(L} ), namely
{£f1,...,tfna}, {£fa1,L£fn} and {£fo}, and that orthogonality
with respect to the vectors of the first orbit defines lattices isometric
to L,,_1 whereas the other two orbits define non-perfect lattices.

Thus the descending chain L,, D L,,_1 D L, o D ... is most certainly
made of successive densest cross-sections.

As for L/, experimentation suggests that with the Gram matrix
P66a(n) of next Section, S(L'}) consists of +e¥ and +(ej + -+ + ),
both having an orthogonal in L,, isometric to L/, | = L,_;.

4. PROGRAMS

We give below PARI-GP-codes which produce Gram matrices for
L, (P66(n)) and L!, (P66a(n); the matrices A’ of Section 1). Note
that P66(n) = P66a(n) for even n). For the sake of completeness, we
also give a PARI-GP-code for the Barnes lattices P, mentioned in the
introduction.

{P66(n) =
local(m, a, b);
if (n == 1, return[4]); if(n%2 == 0,m =n,m =n + 1);
a = 2 x matid(m) + matrix(m, m, i, j, 2);
forstep(i = 1,m,2,ali,i + 1] = L;ali + 1,7] = 1);
if(n%2 == 1,b = matrix(n,n, i, j,ali + 1, j + 1]);
for(i =2,n —2,b[1,i] = 1;b[i, 1] = 1);
a=1b;);
a; }

{P66a(n) =
local(m, a);
if (n == 1, return[4]);if (n%2 == 0,m =n,m =n+1);
a = P66(m); if(n%2 == 1, a = matrix(n, n, i, j, a[i, j]));

a; }
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{PBarn(n) =

local(a);

if(n < 4, print(“dimension must be at least 4”); return (0));

a = matrix(n, n);for(i = 2,n,afi — 1,i] = —1);for(i = 3,n,afi — 2,i] = —2);

for(i = 4,n,ali — 3,i] = 1);

all,n — 1] = 1;a[2,n] = 1;a[l,n] = —2;

if(n%2 == 1, a[l,n] = —1;a[2,n] = 0;a[3,n] = 2;a[4,n] = —1;
aln —2,n] = —1;a[n — 1,n] = 2; for(i = 5,n — 3, ali,n] = 0));
a+ a~+4 x matid(n); }
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