

**THE PERFECTION DEFAULT MODULE
OF A EUCLIDEAN LATTICE**
(AFTER A TALK IN LUMINY, SEPTEMBER 2000)

by J. MARTINET¹

ABSTRACT. Following an idea of Roland Bacher, we discuss a notion of perfection over \mathbb{Z} for a Euclidean lattice.

RÉSUMÉ. Suivant une idée de Roland Bacher, nous discutons une notion de perfection sur \mathbb{Z} pour les réseaux euclidiens.

TITRE FRANÇAIS : Le module de défaut de perfection d'un réseau euclidien.

§ 1. Introduction. Some time ago, Bacher ([Bc]) suggested that the property of perfection for a Euclidean lattice L , which can be defined using symmetric tensors of degree 2 (one requires that the tensors $x \otimes x$ for x minimal in L span the Symmetric square of the Euclidean space), could be considered over \mathbb{Z} , not only as usual over \mathbb{Q} or \mathbb{R} . We can define in this way new invariants, which contain more information on the lattice than the mere perfection rank, as defined in [M], chapter III, section 2. To this end, we construct a finitely generated \mathbb{Z} -module (the *perfection default module*, see below, %) inside a convenient symmetric square, whose rank is the *perfection co-rank* (i.e., $\dim \text{End}^s(E)$ -perfection rank of Λ). The study of its torsion submodule is the object of this note.

The notion of a perfect lattice goes back to Korkine & Zolotareff and Voronoï (1873, 1908). Perfect lattices are precisely those which possess a finite perfection default module. They are the central object of our study.

Several years ago, for algorithmic reasons, Batut and myself considered perfection modulo a prime p : if the linear forms which define the perfection of a lattice have maximal rank modulo some prime p , then the lattice is certainly perfect. However, we were not able to assert conversely that a lattice which is not perfect modulo some conveniently chosen prime p is indeed not perfect in the usual sense, since there may be a phenomenon of “bad reduction”. Bacher’s notion of a perfection default module might be an important tool to solve the question above: “good primes” are those which do not divide the order of its torsion submodule.

§ 2. Symmetric squares. Let R be a commutative ring and let M be an R -module. Usually (e.g. in [Bou1], III, pp. 67 and 76), the symmetric algebra (as well as the exterior algebra) of M is defined as a quotient of the tensor algebra $\bigotimes M$. In what follows, we need modify the definition of the symmetric algebra. We only need to consider the degree 2 part of the symmetric algebra.

Key words and phrases. Perfect lattices, symmetric squares.

October, 2000.

¹laboratoire A2X, UMR 5465 associée au C.N.R.S. – Université Bordeaux 1

2.1. Definition. The *symmetric square* of M denoted by $\text{Sym}^2(M)$ (or $\text{Sym}_R^2(M)$ if we need the ring R in the notation) is the submodule of $\bigotimes^2 M$ generated by the symmetric tensors $x \otimes x$, $x \in M$.

[Note that the inclusion $\text{Sym}^2(M) \hookrightarrow \bigotimes^2 M$ induces an isomorphism of $\text{Sym}^2(M)$ onto the classical $\bigvee^2 M$ anytime the map $x \mapsto 2x$ is bijective, compare [Bou1], III, p. 68.]

In the applications to lattices, M will be either a vector space over \mathbb{Q} or \mathbb{R} , in which case the above map is bijective, or a finitely generated torsion free \mathbb{Z} -module, in which case it is not, except for $M = \{0\}$.

Let T be a generating subset of M , endowed with an arbitrary total ordering. Then, the identity

$$(2.2) \quad \left(\sum_{x \in T} \lambda_x x \right) \otimes \left(\sum_{y \in T} \lambda_y y \right) = \sum_{x \in T} \lambda_x \lambda_x x \otimes x + \sum_{x < y} \lambda_x \lambda_y (x \otimes y + y \otimes x)$$

shows that $\text{Sym}^2(M)$ is generated by the split symmetric tensors $x \otimes x$, $x \in T$ on the one hand, and the tensors $(x \otimes y + y \otimes x)$, $x, y \in T$ on the other hand. The identities

$$(2.3) \quad (x \pm y) \otimes (x \pm y) - x \otimes x - y \otimes y = \pm(x \otimes y + y \otimes x)$$

shows that we may replace for any pair $(x, y) \in T \times T$ the tensor $x \otimes y + y \otimes x$ by one of the tensors $(x + y) \otimes (x + y)$ or $(x - y) \otimes (x - y)$.

2.4. Definition. For $S \subset M$, let $S^{(2)} = \{x \otimes x \mid x \in S\}$, and let $\text{Perf}_S(M)$ be the submodule of $\text{Sym}^2(S)$ generated by $S^{(2)}$. We call $\text{Perf}_S(M)$ the *perfection module of M (with respect to S)*. We often write $\text{Perf}(M)$ rather than $\text{Perf}_S(M)$ when the reference to S is clear from the context.

Since we are interested in the submodule of $\text{Sym}^2(M)$ generated by $S^{(2)}$, we may assume that 0 does not belong to S and that $S = -S$ (just replace if necessary S by $S \cup -S$). Denote now by S' a system of representatives of $S/\{\pm 1\}$. We then have $S = S' \cup (-S')$, $S \cap S' = \emptyset$, and of course $S^{(2)} = S'^{(2)}$.

Let N be a submodule of M and let $P = M/N$. The embedding $N \hookrightarrow M$ induces maps $N \otimes N \rightarrow N \otimes M \rightarrow M \otimes M$, which are injective whenever $\text{Tor}_1^R(P, N) = \text{Tor}_1^R(P, M) = 0$, whose product $N \otimes N \rightarrow M \otimes M$ is then also injective.

Take now $N = \langle S \rangle$. The quotient $\text{Sym}^2(M)/\text{Perf}(M)$ is an extension of the two modules $\text{Sym}^2(N)/\text{Perf}(M) = \text{Sym}^2(N)/\text{Perf}(N)$ and $\text{Sym}^2(M)/\text{Sym}^2(N)$. For this reason, we shall most of the time restrict ourselves to pairs (M, S) where S generates M . This hypothesis does not imply that $S^{(2)}$ generates $\text{Sym}^2(M)$! In applications to lattices, such a circumstance is indeed rather scarce, see below, section %. Note for further use the following result, which easily follows from formulae 2.2 and 2.3:

2.5. Proposition. *If S contains a generating system $\{e_1, \dots, e_r\}$ of M together with all differences $e_j - e_k$, $j \neq k$, then $\text{Perf}(M) = \text{Sym}^{(2)}(M)$. \square*

2.6. Definition. The quotient

$$\text{Dft}_S(M) = \text{Sym}^2(M)/\text{Perf}_S(M)$$

is called the *perfection default module* of (M, S) . We shall forget the index S when the reference to S is clear from the context.

§ 3. Dedekind domains. In this section, we suppose that R is a Dedekind domain. We denote by K is fraction field, by M a finitely generated torsion free R -module, and by V be the K -vector space $M \otimes_R K$. We still consider a symmetric subset S of M which does not contain 0.

Since R is Dedekind, the torsion product $\text{Tor}_1^R(M_1, M_2)$ is zero anytime at least one of the modules M_1, M_2 is torsion free (reduce by localization to the case when R is a principal ideal domain, and apply [Bou1], X, p. 29, prop. 3.) Thus, for any submodule N of M , $\text{Sym}^2(N)$ can be identified with a submodule of $\text{Sym}^2(M)$. In particular, the canonical map $x \mapsto x \otimes 1 : M \simeq M \otimes_R K \rightarrow V$ is injective. We use it to embed M inside V . By making use of the composition of the maps $M \otimes M \rightarrow M \otimes V \rightarrow V \otimes V$, we obtain a canonical embedding

$$\text{Sym}^2(M) \hookrightarrow \text{Sym}^2(V).$$

3.1. Definition. The rank r of $S^{(2)}$ in $\text{Sym}^2(V)$ is called the *perfection rank of S* , and the difference $\frac{n(n+1)}{2} - r = \dim \text{Sym}^2(V) - r$ the *perfection co-rank of S* . We say that M is *perfect* (with respect to S) if r is maximum, i.e. if $S^{(2)}$ spans $\text{Sym}^2(V)$.

Clearly,

$$M \text{ is perfect} \iff V \text{ is perfect} \iff \text{Dft}_S(M) \text{ is torsion.}$$

3.2. Proposition. *If (M, S) is perfect, then S spans V .*

Proof. Let W be the span of S in V . There exists a direct sum decomposition $V = W \oplus W'$, which shows that $\text{Sym}^2(W')$ is a direct summand of $\text{Sym}^2(V)$. Because of the inclusion $S^{(2)} \subset \text{Sym}^2(W)$, M cannot be perfect unless $\text{Sym}^2(W') = 0$, which implies $W' = 0$, hence $W = V$. \square

The rank of the perfection default module is the perfection co-rank of M . Its torsion submodule is a new invariant, that we shall investigate later, at least for perfect modules. In the applications, K will be a number field. This implies that the torsion submodule of the perfection default module is finite, since all residue fields of R are then finite.

3.3. Proposition. *If $\text{Dft}_S(M) = 0$, then S generates M .*

Proof. If $M = \{0\}$, there is nothing to prove. Otherwise, let N be the submodule of M generated by S , and let $P = M/N$. Since M is perfect, we have $\dim N = \dim M = n \neq 0$. The commutative diagram

$$\begin{array}{ccccccc} 0 & \longrightarrow & N \otimes N & \longrightarrow & N \otimes M & \longrightarrow & N \otimes P & \longrightarrow 0 \\ & & \downarrow & & \downarrow & & \downarrow & \\ 0 & \longrightarrow & M \otimes M & \longrightarrow & M \otimes M & \longrightarrow & 0 & \longrightarrow 0 \end{array}$$

yields via the snake lemma an injective map $N \otimes P \hookrightarrow M \otimes M/N \otimes N$. Now, we have the inclusions $\langle S \otimes S \rangle \subset N \otimes N \subset M \otimes M$. Since $\text{Dft}(M) = 0$, we have $\langle S \otimes S \rangle = M \otimes M$, hence $N \otimes N = M \otimes M$, whence $N \otimes P = 0$. Since N is projective and non-zero, this implies $P = 0$, i.e. $N = M$. \square

Recall that given a finitely generated torsion free R -module P of rank p and a submodule Q of P of rank q ($q \leq p$), there exist a K -basis $\mathcal{B} = (e_1, \dots, e_p)$ of $W = K \otimes P$ (we identify P to a submodule of W , so that $W = KP$), fractional ideals $\mathfrak{b}_1, \dots, \mathfrak{b}_p$ of R and integral ideals $\mathfrak{a}_1, \dots, \mathfrak{a}_q$ of R such that

- (1) $P = \mathfrak{b}_1 e_1 \oplus \dots \oplus \mathfrak{b}_p e_p$;
- (2) $Q = \mathfrak{a}_1 \mathfrak{b}_1 e_1 \oplus \dots \oplus \mathfrak{a}_q \mathfrak{b}_q e_q$;
- (3) $\mathfrak{a}_1 \mid \mathfrak{a}_2, \dots, \mathfrak{a}_q \mid \mathfrak{a}_{q-1}$.

Moreover, the integers p, q and the sequence $\mathfrak{a}_1, \dots, \mathfrak{a}_q$ are invariants of the isomorphism class of the pair (P, Q) .

3.4. Definition. The ideals $\mathfrak{a}_1, \dots, \mathfrak{a}_q$ are called the *elementary divisors* of the pair $(P, Q \subset P)$. The ordered set $(\mathfrak{a}_1, \dots, \mathfrak{a}_q)$, denoted $\text{Smith}(P, Q)$, is called the *Smith invariant* of (P, Q) .

The torsion submodule of P/Q is $P/(P \cap KQ)$, and we have a direct sum decomposition $P/Q = P/(P \cap KQ) \oplus P'$ where P' is a projective R -module of rank $p - q$. The first term \mathfrak{a}_1 is the annihilator of P/Q . The last one \mathfrak{a}_q is a “measure of imprimitivity” for the pair (P, Q) ; it becomes trivial when we replace Q by $Q' = \mathfrak{a}_q^{-1}Q$; note that when \mathfrak{a}_q is principal, Q' is isomorphic to Q . The product of the ideals \mathfrak{a}_i is an “ R -index”: over \mathbb{Z} , it is simply the index $[P \cap KQ : Q]$. If K is more generally a number field and if $R = \mathbb{Z}_K$ (the ring of integers of K), we have $[P \cap KQ : Q] = N_{K/\mathbb{Q}}(\mathfrak{a}_1) \dots N_{K/\mathbb{Q}}(\mathfrak{a}_q)$.

We now apply the definition above to $P = \text{Sym}^2(M)$ and $Q = \text{Perf}_S(M)$ (i.e., $Q = \langle \text{Sym}_2(S) \rangle \subset \text{Sym}_2(M)$).

3.5. Definition. We denote by $\text{Smith}_S^{(2)}(M)$, or simply by $\text{Smith}^{(2)}(M)$, the Smith invariant of $(\text{Sym}^2(M), \text{Perf}(M))$.

If $\mathfrak{a}_1, \dots, \mathfrak{a}_q$ are the elementary divisors of the pair $(\text{Sym}^2(M), \text{Perf}(M))$, then $\text{Dft}(M)$ is isometric to the direct sum $R/\mathfrak{a}_1 \oplus \dots \oplus R/\mathfrak{a}_q \oplus R^{q-p}$. When $R = \mathbb{Z}$ and $\text{Dft}(M)$ is a finite group, then $\mathfrak{a}_i = (a_i)$ for a well defined integer $a_i \geq 1$. We shall use the notation $\text{Smith}^{(2)}(M) = (b_1^{\beta_1}, \dots, b_r^{\beta_r})$ to say that $a_1 = \dots = a_{\beta_1} = b_1$, $a_{\beta_1+1} = \dots = a_{\beta_1+\beta_2} = b_2, \dots, \dots = a_p = b_{\beta_r}$.

3.6. Remark. When W is endowed with a symmetric bilinear form taking values in R on M (we then say that M is *integral*), M is contained in its dual $M^* = \{x \in V \mid \forall y \in M, x.y \in R\}$, so that we can define the *Smith invariant* $\text{Smith}(M)$ of M , namely the Smith invariant of the pair (M^*, M) . Experimental data indicate that $\text{Smith}^{(2)}(M)$ has essentially nothing to do with $\text{Smith}(M)$.

§ 4. Symmetric endomorphisms and matrices. Let W be a vector space of finite dimension n over some field C . The map

$$(e, \varphi) \mapsto (x \mapsto \varphi(x)e) : W \times W^* \rightarrow \text{End}(W)$$

(W^* is the dual $\mathcal{L}(W, C)$ of W) induces a canonical isomorphism $W \otimes W^* \simeq \text{End}(W)$. (This homomorphism is easily seen to be surjective, and both sides have the same dimension). Suppose now that W is endowed with a non-degenerate symmetric bilinear form $(x, y) \mapsto x \cdot y$. We can then identify W and W^* (by $f \mapsto \varphi = (x \mapsto f \cdot x)$), obtaining in this way an isomorphism $W \otimes W \simeq \text{End}(W)$, which is characterized by the condition

$$\forall x \in W, (e \otimes f)(x) = (f \cdot x)e.$$

Recall that $u \in \text{End}(W)$ is *symmetric* if it satisfies the identity $u(x) \cdot y = x \cdot u(y)$; We denote by $\text{End}^s(W)$ the vector space of symmetric endomorphisms of W . Among symmetric endomorphisms, orthogonal projections onto non-isotropic lines D play a crucial rôle. Given a non-zero $e \in D$, this projection is defined by the formula $p_D(x) (= p_e(x)) = \frac{x \cdot e}{e \cdot e} e$. The endomorphism $x \mapsto (f \cdot x)e$ is symmetric if and only if f and e are collinear, and if $e \cdot e \neq 0$, the image of $e \otimes e$ in $\text{End}^s(W)$ is $(e \cdot e)p_e$.

Let $\mathcal{B} = (e_1, \dots, e_n)$ be a basis of L . For $x \in W$, let X be the column vector of the components of x on \mathcal{B} , and let $e \in W$. For the endomorphism $u_e : x \mapsto (e \cdot x)e$, we have the matrix representation $\text{Mat}(u_e, \mathcal{B}^*, \mathcal{B}) = X^t X$. We can thus pass from symmetric squares to matrix rings by the correspondence

$$x \otimes x \in \text{Sym}^2(W) \longleftrightarrow X^t X \in \text{Sym}_n(C).$$

We can now recover the usual definition of perfection for Euclidean lattices. The traditional definition of perfection (in terms of quadratic forms) is that q is *perfect* if the rank-1 $n \times n$ matrices $X^t X$, $X \in S(q)$ span the space $\text{Sym}_n(\mathbb{R})$ of real symmetric matrices; we pass from lattices to quadratic forms by taking for \mathcal{B} a basis of the lattice and considering the quadratic form $q(x) = {}^t X A X$ where $A = (e_i \cdot e_j)$ is the *Gram matrix* $\text{Gram}(\mathcal{B})$ of \mathcal{B} .

Applying the definitions of the previous sections with $R = \mathbb{Z}$, $K = \mathbb{Q}$, and $C = \mathbb{R}$, choosing for W a Euclidean space E , for M a lattice $\Lambda \subset E$, and for S the set $S(\Lambda)$ of minimal vectors of Λ , we see immediately that Λ is perfect in the sense of definition 3.1 if and only if the projections p_e , $e \in S$ span $\text{End}^s(E)$, and this is precisely one of the possible definitions for the perfection of Λ as a Euclidean lattice, see [M], chapter III, definitions 2.2 and 2.7. We have thus proved:

4.1. Proposition. *A Euclidean lattice Λ is perfect if and only if the pair $(\Lambda, S(\Lambda))$ is perfect in the sense of definition 2.6. \square*

Let us come back to the C -vector space W . We define the *norm* of $x \in W$ by the formula $N(x) = x \cdot x$. (This extends the definition currently used in the theory of lattices, where this norm is the square of the Euclidean norm $x \mapsto \|x\|$.) The bilinear map

$$(x, y) \mapsto x \cdot y : W \times W \rightarrow C$$

induces a linear map from $W \otimes W$ onto C which is well defined by the condition that it takes the value $x \cdot y$ on the split tensors $x \otimes y$. By restriction, we obtain a linear map $N : \text{Sym}^2(W) \rightarrow C$ which is well defined by the condition

$$(4.2) \quad \forall x \in W, N(x \otimes x) = N(x).$$

We have the formula

$$N(x \otimes y + y \otimes x) = N((x + y) \otimes (x + y)) - N(x \otimes x) - N(y \otimes y) = 2x \cdot y.$$

4.3. Definition. The map N from $\text{Sym}^2(W)$ onto C defined above is called the *norm map*.

Let $S = S' \cup -S'$ ($S' \cap -S' = \emptyset$) be a symmetric subset of W and let t be a symmetric tensor belonging to the span of $S^{(2)}$ in $\text{Sym}^2(W)$. Choose a representation

$$t = \sum_{x \in S'} \lambda_x(t) x \otimes x$$

of t on $S^{(2)}$ and let

$$\lambda(t) = \sum_{x \in S'} \lambda_x(t).$$

4.4. Proposition. *Suppose that all the vectors of S have the same non-zero norm, that we denote by $N(S)$. Then, we have*

$$\lambda(t) = \frac{N(t)}{N(S)}.$$

In particular, $\lambda(t)$ does not depend on the representation of t on $S^{(2)}$.

Proof. By the linearity of the norm map, we have $N(t) = \sum \lambda_x(t) N(x \otimes x)$. \square

4.5. Corollary. *If $t = y \otimes y$, then $\lambda(t) = \frac{N(y)}{N(S)}$.* \square

§ 5. Euclidean lattices. We again apply the previous sections taking $R = \mathbb{Z}$, $K = \mathbb{Q}$, $C = \mathbb{R}$, M , now denoted Λ , being a lattice in W , now denoted E , endowed with a Euclidean structure. We denote by S the sets of its minimal vectors, and by S' a half system of minimal vectors. The *norm* of $x \in E$ is $N(x) = x \cdot x$, and the *norm* (or *minimum*) of Λ is the common norm of its minimal vectors.

For any similarity u of E , we have $S(u(\Lambda)) = u(S(\Lambda))$. Hence, the perfection default module of Λ only depends on the similarity class of Λ . Now, by an old result of Korkine and Zolotareff (see [M], chapter III, proposition 2.11), a perfect lattice is proportional to an integral lattice, so that its similarity class contains an integral primitive lattice, well defined up to isometry.

5.1. Theorem (A.-M. Bergé). *Let Λ be an integral and primitive perfect lattice, of norm m . Then, the annihilator of the torsion submodule of the perfection default module of Λ is divisible by $\frac{m}{2}$ if m is even, and by m if m is odd.*

Proof. Let $\alpha \in \mathbb{Z}$ be the annihilator of the perfection default module of Λ (which is a finite group because Λ is perfect). It is the smallest integer such that, for all $y \in \Lambda$, there is a relation

$$\alpha y \otimes y = \sum_{x \in S'} \lambda_x(y) x \otimes x$$

with $\lambda_x(y) \in \mathbb{Z}$. By Corollary 3.5, we have

$$\alpha N(y) = \left(\sum_{x \in S'} \lambda_x(y) \right) m.$$

This proves that m divides the product $\alpha \times \text{g.c.d.}(N(y), y \in \Lambda)$, whence the result since the g.c.d. of the norms on Λ is 2 when Λ is even and 1 when Λ is odd. \square

We shall now use this theorem to characterize lattices whose perfection default module is trivial. Recall that a *root* in a lattice Λ is a non-zero primitive vector e of Λ such that Λ is invariant under the reflection σ_e with respect to the hyperplane orthogonal to e . A lattice generated by its roots is called a *root lattice*. It is easy to see that the roots of a lattice constitute a root system in the space they span, and the classification of root systems (see [Bou2], VI) shows that a root lattice is isometric to an orthogonal sum of irreducible root lattices, each of which is similar to one of the integral primitive lattices \mathbb{Z} , \mathbb{A}_n , $n \geq 2$, \mathbb{D}_n , $n \geq 4$, \mathbb{E}_6 , \mathbb{E}_7 , or \mathbb{E}_8 (see [M], chapter IV, sections 1–5 for the definitions). Finally, we see (“Witt’s theorem”) that integral lattices generated by vectors of norm 1 or 2 are root lattices and are isometric to direct sums of copies of \mathbb{Z} , \mathbb{A}_n , $n \geq 1$, \mathbb{D}_n , $n \geq 4$, or \mathbb{E}_n , $n = 6, 7, 8$, which are pairwise non-isometric.

5.2. Theorem. *A lattice Λ has a trivial perfection default module if and only if it is similar to one of the irreducible root lattices \mathbb{Z} , \mathbb{A}_n , $n \geq 2$, \mathbb{D}_n , $n \geq 4$, \mathbb{E}_6 , \mathbb{E}_7 , or \mathbb{E}_8 .*

Proof. If $\text{Dft}(\Lambda) = \{0\}$, Λ is perfect, hence irreducible and proportional to an integral primitive lattice, which is unique up to isometry. Let $m = N(\Lambda)$. By Theorem 5.1, m divides 2. By proposition 3.3, S generates Λ . By Witt’s theorem, Λ is one of the lattices which are listed in the theorem we want to prove,

Conversely, we must show that irreducible integral primitive root lattices have trivial perfection default modules, a result which was known to Bacher. This is clear if $m = 1$, where $\Lambda = \mathbb{Z}$. We may thus restrict ourselves to lattices with $m = 2$ and $n \geq 2$. For such a lattice, we make use of bases of type “Korkine-Zolotareff” in the sense of [M], chapter IV. These are bases whose Gram matrix $A = (a_{i,j})$ fulfills the conditions $a_{i,i} = 2$ and $a_{i,j} = 1$ for $i \neq j$ except for $\{i, j\} = \{1, 2\}$ in the case of \mathbb{D}_n and $\{i, j\} = \{1, 2\}$ or $\{1, 3\}$ if the case of \mathbb{E}_n , where $a_{i,j} = 0$. Clearly, $S^{(2)}$ contains all tensors $e_i \otimes e_i$. We shall show that it also contains all tensors $e_i \otimes e_j + e_j \otimes e_i$ for $1 \leq i < j \leq n$; By formula 2.3, we may replace any such tensor by $(e_i - e_j) \otimes (e_i - e_j)$.

The case of \mathbb{A}_n is now a consequence of proposition 2.5.

For \mathbb{D}_n , we must show that $e_1 \otimes e_2 + e_2 \otimes e_1$ is a linear combination of vectors belonging to $S \otimes S$. This is achieved by making use of the minimal vector $e_1 + e_2 - e_3$.

A similar argument applies to \mathbb{E}_6 , \mathbb{E}_7 , \mathbb{E}_8 , using the minimal vectors $e_1 + e_2 - e_4$ and $e_1 + e_3 - e_4$. \square

§ 6. Numerical results. We account here for some calculations of Smith⁽²⁾ which have been done using the PARI package together with some more specific programs written by Batut.

We have first considered the 48 perfect lattices of dimension $n \leq 7$ and the 10916 known perfect lattices (at the date this paper is written, [B-M]) with $n = 8$. All these lattices are even, except the root lattice \mathbb{Z} and the lattice $P_7^2 \simeq \mathbb{E}_7^*$, of norm 3. For the 10962 even known perfect lattices of dimension up to 8, the following facts have been observed:

6.1. Facts.

- (1) The components of $\text{Smith}^{(2)}$ of rank $r > n$ are trivial;
- (2) The first component of $\text{Smith}^{(2)}$ (i.e., the annihilator of the perfection default module) is equal to $\frac{m}{2}$ or to m .
- (3) For $m = 4$, $\text{Smith}^{(2)}$ reduces to its first component, which is always equal to $\frac{m}{2} = 2$.

Note that all these lattices possess a basis of minimal vectors. This is no more true in dimensions $n \leq 10$, and the remark we have made in section 2 about lattices which are not generated by their minimal vectors shows that the facts 2 and 3 above cannot be true when S does not generate Λ .

For instance, the lattices \mathbb{D}_n^+ , when scaled to a primitive integral lattice, have norm 2 if $n \equiv 0 \pmod{4}$ and 4 if $n \equiv 2 \pmod{4}$. For all (even) n , we have $\text{Smith}^{(2)}(\mathbb{D}_n^+) = 4 \cdot 2^{n-1}$.

Consider now the Coxeter lattices \mathbb{A}_n^r , $r \mid n+1$, the sublattices of \mathbb{A}_n^* which contain \mathbb{A}_n to the index r . Results similar to that we obtained for \mathbb{D}_n^+ hold for $2 \leq r \leq \frac{n+1}{3}$ (exactly the same one for $r = 2$). However, the “exotic” perfect lattices $\mathbb{A}_n^{(n+1)/2}$ produce original examples. When rescaled to an integral primitive lattice, $\mathbb{A}_n^{(n+1)/2}$ is even with minimum $n-1$ if $n \equiv 1 \pmod{4}$ and odd with minimum $\frac{n-1}{2}$ if $n \equiv 3 \pmod{4}$, in all cases generated by their minimal vectors. However, for all $n \geq 5$ odd, we likely have

$$\text{Smith}^{(2)}(\mathbb{A}_n^{(n+1)/2}) = \left(\frac{(n-1)(n-3)}{4}, \left(\frac{n-3}{2} \right)^{n-1} \right).$$

The ratio $\frac{a_1}{m}$, equal to $\frac{n-3}{4}$ or $\frac{n-3}{2}$, tends to infinity with n . This shows that the second experimental fact verified for known perfect lattices up to dimension 8 is not general. However, no bad prime $p > n$ occur.

I have no counter-examples to facts 1 and 3. However, since the value of $\text{Smith}^{(2)}$ depends on subtle linear relations over \mathbb{Z} between minimal vectors, it does not seem reasonable to conjecture that fact 3 holds for all norm 4 lattices generated by their minimal vectors.

§ 7. Relative perfection over \mathbb{Z} . We still denote by Λ a lattice in the n -dimensional Euclidean space E . Let F be a hyperplane of E such that $M = \Lambda \cap F$ is a lattice in F . It was proved by Barnes (see [M], chapter XII, theorem 3.5) that if M is perfect, then Λ is perfect whenever there exists a set of n independent minimal vectors in $L \setminus M$. The following statement is a kind of enlargement of Barnes’s theorem:

7.1. Theorem. *Suppose that there exists $e \in \Lambda \setminus M$ and generators e_1, \dots, e_r of M such that*

- (1) $e, e + e_1, \dots, e + e_r \in S(\Lambda)$.
- (2) e, e_1, \dots, e_r generate Λ .

Then, the canonical map $\text{Dft}(M) \rightarrow \text{Dft}(\Lambda)$ is surjective.

Proof. Set $e_0 = 0$ and $e'_i = e + e_i$ for $0 \leq i \leq n$. Then, $\{e'_0, e'_1, \dots, e'_n\}$ is a generating set for Λ . Hence, $\text{Sym}^{(2)}(\Lambda)$ is generated by the symmetric tensors $e'_i \otimes e'_i$, $0 \leq i \leq n$, which belong to $\text{Perf}_{S(\Lambda)}(\Lambda)$, and $e'_i \otimes e'_j + e'_j \otimes e'_i$, $0 \leq i < j \leq n$, for which we write

$$\begin{aligned} e'_i \otimes e'_j + e'_j \otimes e'_i &= e'_i \otimes e'_i + e'_j \otimes e'_j - (e'_j - e'_i) \otimes (e'_j - e'_i) \\ &= e'_i \otimes e'_i + e'_j \otimes e'_j - (e_j - e_i) \otimes (e_j - e_i) \\ &\in \text{Perf}_{S(\Lambda)}(\Lambda) + \text{Sym}^{(2)}(M). \quad \square \end{aligned}$$

The theorem above could have been used to prove that irreducible root lattices have trivial perfection default modules, using the inclusions $\mathbb{A}_{n-1} \subset \mathbb{A}_n$ ($n \geq 2$), $\mathbb{D}_{n-1} \subset \mathbb{D}_n$ ($n \geq 4$), and $\mathbb{E}_{n-1} \subset \mathbb{E}_n$ ($n \geq 6$), together with the standard isometries $\mathbb{D}_3 \simeq \mathbb{A}_3$ and $\mathbb{E}_5 \simeq \mathbb{D}_5$. Consider now the ascending sequence of laminated lattices

$$\Lambda_0 = \{0\} \subset \Lambda_1 \subset \dots \subset \Lambda_n \subset \dots$$

These are norm 4 lattices, integral for $n \leq 24$, uniquely defined up to isometry in the ranges $0 \leq n \leq 10$ and $14 \leq n \leq 24$, which are scaled copies of root lattices for $n \leq 8$ ([C-S], chapter 6). Hence, the corresponding perfection default modules are trivial up to $n = 8$. For $n \geq 9$, they are not, because primitive integral scaled copies have a norm $N > 2$ ($N = 4$ if $9 \leq n \leq 24$). We have actually $\text{Dft}(\Lambda_9) \simeq \mathbb{Z}/2\mathbb{Z}$. (Proof: note that Λ_9 is a scaled copy of $\mathbb{E}_8 + \mathbb{D}_9$, see [M], chapter 5, section 5.) I have verified that Theorem 7.1 applies up to $n = 16$ (Λ_{16} is the Barnes-Wall lattice BW_{16}). I have also verified in the same way that $\text{Dft}(K_n)$ is also cyclic of order 2 for $n = 9, 10, 11, 12$.

Theorem 7.1 also allows to prove that $\text{Dft}(L) \simeq \mathbb{Z}/2\mathbb{Z}$ for lattices L belonging to some classical infinite series. This is for instance easily verified for the Barnes lattices L_n^r , $n \geq 5$, $r \geq 2$, on the definition given in [M], chapter V, section 4.

ACKNOWLEDGMENTS. I thank Anne-Marie BERGÉ, with whom I had numerous helpful discussions. I also thank the authors of the *PARI* system, and in particular Christian BATUT, whose various programs on lattices have been very useful in many instances.

REFERENCES

- [Bc] R. Bacher, Private communication, 1998.
- [Bt-M] C. Batut, J. Martinet, Martinet's WEB page, <http://www.math.u-bordeaux.fr/~martinet>.
- [Bou1] N. Bourbaki, *Algèbre, ch. I-X*, Hermann, Masson, Paris, 1970, 1980.
- [Bou2] N. Bourbaki, *Groupes et algèbres de Lie, chapitres IV, V, VI*, Masson, Paris, 1981.
- [C-S] J.H. Conway, N.J.A. Sloane, *Sphere Packings, Lattices and Groups*, Springer-Verlag, Grundlehren nu. 290, Heidelberg, 1988.
- [M] J. Martinet, *Les réseaux parfaits des espaces euclidiens*, Masson, Paris, 1996.

JACQUES MARTINET
 A2X, INSTITUT DE MATHÉMATIQUES
 UNIVERSITÉ BORDEAUX 1
 351, COURS DE LA LIBÉRATION
 F-33405 TALENCE CEDEX

E-mail : martinet@math.u-bordeaux.fr