THE PERFECTION DEFAULT MODULE
OF A EUCLIDEAN LATTICE
(AFTER A TALK IN LUMINY, SEPTEMBER 2000)

by J. MARTINET!

ABsTRACT. Following an idea of Roland Bacher, we discuss a notion of perfection
over Z for a Euclidean lattice.

RESUME. Suivant une idée de Roland Bacher, nous discutons une notion de perfection
sur Z pour les réseaux euclidiens.

TITRE FRANGAIS : Le module de défaut de perfection d’un réseau euclidien.

§1. Introduction. Some time ago, Bacher ([Bc]) suggested that the property of
perfection for a Euclidean lattice L, which can be defined using symmetric tensors
of degree 2 (one requires that the tensors z ® z for x minimal in L span the
Symmetric square of the Euclidean space), could be considered over Z, not only
as usual over Q or R. We can define in this way new invariants, which contain
more information on the lattice that the mere perfection rank, as defined in [M],
chapter I1I, section 2. To this end, we construct a finitely generated Z-module (the
perfection default module, see below, %) inside a convenient symmetric square,
whose rank is the perfection co-rank (i.e., dim End®(E)-perfection rank of A). The
study of its torsion submodule is the object of this note.

The notion of a perfect lattice goes back to Korkine & Zolotareff and Voronoi
(1873, 1908). Perfect lattices are precisely those which possess a finite perfection
default module. They are the central object of our study.

Several years ago, for algorithmic reasons, Batut and myself considered perfec-
tion modulo a prime p: if the linear forms which define the perfection of a lattice
have maximal rank modulo some prime p, then the lattice is certainly perfect.
However, we were not able to assert conversely that a lattice which is not perfect
modulo some conveniently chosen prime p is indeed not perfect in the usual sense,
since there may be a phenomenon of “bad reduction”. Bacher’s notion of a perfec-
tion default module might be an important tool to solve the question above: “good
primes” are those which do not divide the order of its torsion submodule.

§2. Symmetric squares. Let R be a commutative ring and let M be an
R-module. Usually (e.g. in [Boul], III, pp. 67 and 76), the symmetric algebra
(as well as the exterior algebra) of M is defined as a quotient of the tensor algebra
Q@ M. In what follows, we need modify the definition of the symmetric algebra.
We only need to consider the degree 2 part of the symmetric algebra.

Key words and phrases. Perfect lattices, symmetric squares. October, 2000.
Haboratoire A2X, UMR 5465 associée au C.N.R.S. — Université Bordeaux 1

1



2 J. MARTINET

2.1. Definition. The symmetric square of M denoted by Sym?(M) (or Sym% (M)
2

if we need the ring R in the notation) is the submodule of QM generated by the
symmetric tensors r @ x, z € M.

2
[Note that the inclusion Sym2 (M) — ®M induces an isomorphism of Sym2 (M) onto the

2
classical \/M anytime the map & — 22 is bijective, compare [Boul], III, p. 68.]

In the applications to lattices, M will be either a vector space over Q or R, in
which case the above map is bijective, or a finitely generated torsion free Z-module,
in which case it is not, except for M = {0}.

Let T be a generating subset of M, endowed with an arbitrary total ordering.
Then, the identity

(2.2) (Z )\mx)@)(z Ayy) = Z)\m)\mxébx—l—Z)\m)\y(a:@y—l—y@x)

xeT yeT xeT <y

shows that Sym?(M) is generated by the split symmetric tensors z ® =, z € T' on
the one hand, and the tensors (z @ y +y ® z), z,y € T on the other hand. The
identities

(2.3) (zxy)Q(zty) -2z —yQy=+(rzQRy+yx)

shows that we may replace for any pair (z,y) € T x T the tensor z ® y + y ® = by
one of the tensors (z +y) ® (x + y) or (x —y) @ (z — y).

2.4. Definition. For S ¢ M, let S@ = {z®x | x € S}, and let Perf5(M) be the
submodule of Sym?(S) generated by S?). We call Perfs(M) the perfection module
of M ( with respect to S). We often write Perf(M) rather than Perfg(M) when
the reference to S is clear from the context.

Since we are interested in the submodule of Sym? (M) generated by S (2), we may
assume that 0 does not belong to S and that S = —S (just replace if necessary S
by S U —S). Denote now by S’ a system of representatives of S/{£1}. We then

have S = S’ U (=S8’), SN S =, and of course S = 5@,

Let N be a submodule of M and let P = M/N. The embedding N < M induces
maps NQN — N®M — M @ M, which are injective whenever Torl(P, N) =
Tor (P, M) = 0, whose product N @ N — M Q) M is then also injective.

Take now N = (S). The quotient Sym?(M)/Perf(M) is an extension of the
two modules Sym?(N)/Perf(M) = Sym?(N)/Perf(N) and Sym?(M)/Sym?(N).
For this reason, we shall most of the time restrict ourselves to pairs (M, S) where
S generates M. This hypothesis does not imply that S generates Sym?(M)!
In applications to lattices, such a circumstance is indeed rather scarce, see below,

section %. Note for further use the following result, which easily follows from
formulae 2.2 and 2.3:

2.5. Proposition. If S contains a generating system {ei,...,e.} of M together
with all differences e; — ey, j # k, then Perf(M) = Sym®(M). O

2.6. Definition. The quotient
Dfts(M) = Sym?(M)/ Perfs(M)
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is called the perfection default module of (M, S). We shall forget the index S when
the reference to S is clear from the context.

§ 3. Dedekind domains. In this section, we suppose that R is a Dedekind domain.
We denote by K is fraction field, by M a finitely generated torsion free R-module,
and by V' be the K-vector space M @ K. We still consider a symmetric subset S
of M which does not contain 0.

Since R is Dedekind, the torsion product Tor® (M1, M>) is zero anytime at least
one of the modules M7, Mj is torsion free (reduce by localization to the case when
R is a principal ideal domain, and apply [Boul], X, p. 29, prop. 3.) Thus, for any
submodule N of M, Sym?(N) can be identified with a submodule of Sym?(M).
In particular, the canonical map z — 2 ® 1 : M ~ M Q@R — V is injective.
We use it to embed M inside V. By making use of the composition of the maps
MM —-> MRV - VQV, we obtain a canonical embedding

Sym? (M) < Sym?(V).

3.1. Definition. The rank 7 of S in Sym?(V) is called the perfection rank
of S, and the difference w — 7 = dim Sym?(V') — r the perfection co-rank of S.

We say that M is perfect (with respect to S) if r is maximum, i.e. if S() spans
Sym?(V).

Clearly,

M is perfect <= V is perfect <= Dftg(M) is torsion.

3.2. Proposition. If (M,S) is perfect, then S spans V.

Proof. Let W be the span of S in V. There exists a direct sum decomposition V =
W @ W', which shows that Sym?(W’) is a direct summand of Sym?(V'). Because
of the inclusion S C Sym?(W), M cannot be perfect unless Sym?*(W’) = 0, which
implies W/ =0, hence W =V. 0O

The rank of the perfection default module is the perfection co-rank of M. Its
torsion submodule is a new invariant, that we shall investigate later, at least for
perfect modules. In the applications, K will be a number field. This implies that
the torsion submodule of the perfection default module is finite, since all residue
fields of R are then finite.

3.3. Proposition. If Dftg(M) =0, then S generates M.

Proof. If M = {0}, there is nothing to prove. Otherwise, let N be the sub-
module of M generated by S, and let P = M/N. Since M is perfect, we have
dim N = dim M = n # 0. The commutative diagram

0 —— NN — s NQM — s NQP —— 0

J | J

0 — > MM — MM — 0 —— 0
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yields via the snake lemma an injective map NQP — M Q M/N R N. Now,
we have the inclusions (S S) C NQN C M Q M. Since Dft(M) = 0, we have
(SQRS) = MM, hence NQN = M QM, whence NP = 0. Since N is
projective and non-zero, this implies P =0, i.e. N=M. [

Recall that given a finitely generated torsion free R-module P of rank p and
a submodule @ of P of rank ¢ (¢ < p), there exist a K-basis B = (eq,...,e,) of
W = K@ P (we identify P to a submodule of W, so that W = KP), fractional
ideals by,..., b, of R and integral ideals ay, ..., a4 of R such that

(1) P = 5161®...®bp6p;

(2) Q = alblel @ A @ aqbqeq ;

(3) a1 ]ag,...,0q | ag_1.
Moreover, the integers p, g and the sequence a4, ..., a, are invariants of the isomor-
phism class of the pair (P, Q).

3.4. Definition. The ideals ay,...,a, are called the elementary divisors of the
pair (P,QQ C P). The ordered set (a1,...,a,), denoted Smith(P,Q), is called the
Smith invariant of (P, Q).

The torsion submodule of P/Q is P/(P N KQ), and we have a direct sum de-
composition P/QQ = P/(PNKQ) € P’ where P’ is a projective R-module of rank
p — ¢. The first term a; is the annihilator of P/Q). The last one a, is a “mea-
sure of imprimitivity” for the pair (P, Q); it becomes trivial when we replace @) by
Q = a;lQ; note that when a, is principal, @’ is isomorphic to ). The product of
the ideals a; is an “R-index”: over Z, it is simply the index [P N KQ : Q]. If K is
more generally a number field and if R = Zg (the ring of integers of K), we have
[P N KQ : Q] = NK/Q(al) .. .NK/Q(aq).

We now apply the definition above to P = Sym?*(M) and Q = Perfg(M)
(i-e., @ = (Symy(S)) C Sym,(M)).

3.5. Definition. We denote by Smithg) (M), or simply by Smith® (M), the Smith
invariant of (Sym?(M), Perf(M)).

If a,...,a, are the elementary divisors of the pair (Sym?(M), Perf(M)), then
Dft(M) is isometric to the direct sum R/a1 P ... D R/a, D R P. When R = Z
and Dft(M) is a finite group, then a; = (a;) for a well defined integer a; > 1. We
shall use the notation Smith® (M) = (67*,...,b%) to say that ay = -- - = ag, = by,
g, 41 == a4, = bay oy = ap = b,

3.6. Remark. When W is endowed with a symmetric bilinear form taking
values in R on M (we then say that M is integral), M is contained in its dual
M* ={z €V |Vy € M,zy € R}, so that we can define the Smith invariant
Smith(M) of M, namely the Smith invariant of the pair (M*, M). Experimental

data indicate that Smith® (M) has essentially nothing to do with Smith(M).

§4. Symmetric endomorphisms and matrices. Let W be a vector space of
finite dimension n over some field C'. The map

(e,9) = (z— p(z)e) : W x W* — End(W)
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(W* is the dual L(W,C) of W) induces a canonical isomorphism W Q) W* ~
End(W). (This homomorphism is easily seen to be surjective, and both sides have
the same dimension). Suppose now that W is endowed with a non-degenerate
symmetric bilinear form (z,y) — z -y. We can then identify W and W* (by
f = ¢=(x— f-x)), obtaining in this way an isomorphism W &Q W ~ End(W),
which is characterized by the condition

VeeW, (e f)(x)=(f-z)e.

Recall that v € End(W) is symmetric if it satisfies the identity u(z) -y =
z-u(y) ; We denote by End® (W) the vector space of symmetric endomorphisms of W.
Among symmetric endomorphisms, orthogonal projections onto non-isotropic lines
D play a crucial réle. Given a non-zero e € D, this projection is defined by the

formula pp (z) (= pe(z)) = % e. The endomorphism x — (f - x) e is symmetric

if and only if f and e are collinear, and if e - e # 0, the image of e ® e in End* (W)
is (e €) pe.

Let B = (e1,...,e,) be a basis of L. For x € W, let X be the column vector of
the components of z on B, and let e € W. For the endomorphism u, : z — (e-z)e,
we have the matrix representation Mat(ue, B*, B) = X*X. We can thus pass from
symmetric squares to matrix rings by the correspondence

r® z € Sym* (W) +— X'X € Sym,, (C).

We can now recover the usual definition of perfection for Euclidean lattices. The
traditional definition of perfection (in terms of quadratic forms) is that ¢ is perfect if
the rank-1 n xn matrices X'X, X € S(q) span the space Sym,, (R) of real symmetric
matrices; we pass from lattices to quadratic forms by taking for B a basis of the
lattice and considering the quadratic form g(z) = "X AX where A = (e; - €;) is the
Gram matrix Gram(B) of B.

Applying the definitions of the previous sections with R = Z, K = Q, and
C = R, choosing for W a Euclidean space F, for M a lattice A C F, and for §
the set S(A) of minimal vectors of A, we see immediately that A is perfect in the
sense of definition 3.1 if and only if the projections pe, e € S span End®*(F), and
this is precisely one of the possible definitions for the perfection of A as a Euclidean
lattice, see [M], chapter III, definitions 2.2 and 2.7. We have thus proved:

4.1. Proposition. A Fuclidean lattice A is perfect if and only if the pair (A, S(A))
is perfect in the sense of definition 2.6. U

Let us come back to the C-vector space W. We define the norm of x € W by
the formula N (z) = x-z. (This extends the definition currently used in the theory
of lattices, where this norm is the square of the Euclidean norm z +— ||z||.) The
bilinear map

(,y)—z-y: WXW—=C

induces a linear map from W Q) W onto C' which is well defined by the condition
that it takes the value z - y on the split tensors x ® y. By restriction, we obtain a
linear map N : Sym?(W) — C which is well defined by the condition

(4.2) Ve e W, N(z®x) = N(z).
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We have the formula
Nz®y+y®z)=N(z+y)®(x+y)) - N@E@®z)—Ny®y) =2z-y.

4.3. Definition. The map N from Sym?(W) onto C defined above is called the
norm map.

Let S =S"U-S5" (S'N—S" = 0) be a symmetric subset of W and let ¢ be a sym-
metric tensor belonging to the span of S@ in Sym? (W). Choose a representation

t=> At)zew

z€eS'

of t on S@) and let

A) =D Aalt).

z€S’'

4.4. Proposition. Suppose that all the vectors of S have the same non-zero norm,
that we denote by N(S). Then, we have

In particular, \(t) does not depend on the representation of t on 52,
Proof. By the linearity of the norm map, we have N(t) = > A, ({) N(z®z). O

N
4.5. Corollary. Ift =y ®y, then A(t) = M

N(S)

§ 5. Euclidean lattices. We again apply the previous sections taking R = Z,
K =Q, C =R, M, now denoted A, being a lattice in W, now denoted F, endowed
with a Euclidean structure. We denote by S the sets of its minimal vectors, and
by S’ a half system of minimal vectors. The norm of z € E is N(z) = z - x, and
the norm (or minimum) of A is the common norm of its minimal vectors.

For any similarity u of E, we have S(u(A)) = u(S(A)). Hence, the perfection
default module of A only depends on the similarity class of A. Now, by an old
result of Korkine and Zolotareff (see [M], chapter III, proposition 2.11), a perfect
lattice is proportional to an integral lattice, so that its similarity class contains an
integral primitive lattice, well defined up to isometry.

5.1. Theorem (A.-M. Bergé). Let A be an integral and primitive perfect lattice,
of norm m. Then, the annihilator of the torsion submodule of the perfection default
module of A is divisible by 3 if m is even, and by m if m is odd.

Proof. Let o € Z be the annihilator of the perfection default module of A (which
is a finite group because A is perfect). It is the smallest integer such that, for all
y € A, there is a relation

ay@y= Y Ay)zew
=
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with A;(y) € Z. By Corollary 3.5, we have

aN(y) = ( > /\z(y)) m.

z€S’

This proves that m divides the product a X g.c.d.(N (y),y € A), whence the result
since the g.c.d. of the norms on A is 2 when A is even and 1 when A is odd. [

We shall now use this theorem to characterize lattices whose perfection default
module is trivial. Recall that a root in a lattice A is a non-zero primitive vector e
of A such that A is invariant under the reflection o, with respect to the hyperplane
orthogonal to e. A lattice generated by its roots is called a root lattice. It is easy
to see that the roots of a lattice constitute a root system in the space they span,
and the classification of root systems (see [Bou2], VI) shows that a root lattice is
isometric to an orthogonal sum of irreducible root lattices, each of which is similar
to one of the integral primitive lattices Z, A,,, n > 2, D,,, n > 4, Eg, E;, or Eg (see
[M], chapter IV,sections 1-5 for the definitions). Finally, we see (“Witt’s theorem”)
that integral lattices generated by vectors of norm 1 or 2 are root lattices and are
isometric to direct sums of copies of Z, A,,, n > 1, D,,n >4, or E,, n = 6,7,8,
which are pairwise non-isometric.

5.2. Theorem. A lattice A has a trivial perfection default module if and only if
it 1s stmilar to one of the irreducible root lattices Z, A, , n > 2, D,, n > 4, Eg, E;,
or Esg.

Proof. If Dft(A) = {0}, A is perfect, hence irreducible and proportional to an
integral primitive lattice, which is unique up to isometry. Let m = N(A). By
Theorem 5.1, m divides 2. By proposition 3.3, S generates A. By Witt’s theorem,
A is one of the lattices which are listed in the theorem we want to prove,

Conversely, we must show that irreducible integral primitive root lattices have
trivial perfection default modules, a result which was known to Bacher. This is
clear if m = 1, where A = Z. We may thus restrict ourselves to lattices with m = 2
and n > 2. For such a lattice, we make use of bases of type “Korkine-Zolotareft”
in the sense of [M], chapter IV. These are bases whose Gram matrix A = (a; ;)
fulfils the conditions a; ; = 2 and a; ; = 1 for ¢ # j except for {7, j} = {1,2} in the
case of I, and {¢,5} = {1,2} or {1, 3} if the case of E,, where a; ; = 0. Clearly,
S(2) contains all tensors e; ® e;. We shall show that it also contains all tensors
e;Qe;+e;®e; for 1 <1< j <mn,; By formula 2.3, we may replace any such tensor
by (ei —€;) ® (ei — ;).

The case of A,, is now a consequence of proposition 2.5.

For D,,, we must show that e; ® es + es ® e1 is a linear combination of vec-
tors belonging to S @ S. This is achieved by making use of the minimal vector
e1 + ez —es.

A similar argument applies to Eg, E7, Eg, using the minimal vectors e; + ey — ey
and e; +e3 —eq. 0O

§ 6. Numerical results. We account here for some calculations of Smith® which
have been done using the PARI package together with some more specific programs
written by Batut.
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We have first considered the 48 perfect lattices of dimension n < 7 and the 10916
known perfect lattices (at the date this paper is written, [B-M]) with n = 8. All
these lattices are even, except the root lattice Z and the lattice P? ~ E%, of norm 3.
For the 10962 even known perfect lattices of dimension up to 8, the following facts
have been observed:

6.1. Facts.

(1) The components of Smith® of rank r > n are trivial;
(2) The first component of Smith(® (i.e., the annihilator of the perfection de-

fault module) is equal to % or to m.

(3) For m = 4, Smith® reduces to its first component, which is always equal
to 7 = 2.

Note that all these lattices possess a basis of minimal vectors. This is no more
true in dimensions n < 10, and the remark we have made in section 2 about lattices
which are not generated by their minimal vectors shows that the facts 2 and 3 above
cannot be true when S does not generate A.

For instance, the lattices D}, when scaled to a primitive integral lattice, have
norm 2 if n = 0 mod 4 and 4 if n = 2 mod 4. For all (even) n, we have
Smith® (D) = 4. 271,

Consider now the Coxeter lattices A7, r | n + 1, the sublattices of A which
contain A,, to the index r. Results similar to that we obtained for D} hold for
2<r< ”TH (exactly the same one for r = 2). However, the “exotic” perfect lattices
Agzn+1) /2

n—1

A&”“)/ 2 is even with minimum n — 1 if n =1 mod 4 and odd with minimum o
if n =3 mod 4, in all cases generated by their minimal vectors. However, for all
n > 5 odd, we likely have

Smith® (Ar+1/2) = <(" - 1)4(n -3 <n . 3)n—1> |

produce original examples. When rescaled to an integral primitive lattice,

. a n—3 n—3 ) ) ) .
The ratio —1, equal to 1 or 5 tends to infinity with n. This shows that
m

the second experimental fact verified for known perfect lattices up to dimension 8
is not general. However, no bad prime p > n occur.

I have no counter-examples to facts 1 and 3. However, since the value of Smith®
depends on subtle linear relations over Z between minimal vectors, it does not seem
reasonable to conjecture that fact 3 holds for all norm 4 lattices generated by their
minimal vectors.

§7. Relative perfection over Z. We still denote by A a lattice in the n-
dimensional Euclidean space E. Let F' be a hyperplane of £ such that M = ANF
is a lattice in F'. It was proved by Barnes (see [M], chapter XII, theorem 3.5) that if
M is perfect, then A is perfect whenever there exists a set of n independent minimal
vectors in L N~ M. The following statement is a kind of enlargement of Barnes’s
theorem:

7.1. Theorem. Suppose that there exists e € A~ M and generators ey, ..., e, of
M such that

(1) e,e+e1,...,e+e. € S(A).
(2) e,e1,...,e. generate A.
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Then, the canonical map Dft(M) — Dft(A) is surjective.

Proof. Set eg = 0 and e} = e+ ¢; for 0 < i < n. Then, {e),€},...,e} is a
generating set for A. Hence, Sym(2) (A) is generated by the symmetric tensors
e;®e;, 0 < i < n, which belong to Perfg,)(A), and e} ® e +e) ®e}, 0 <i < j < m,
for which we write

e;®e;~+e;~®e; :e;®e;+e;®e;~— (e}—eé)@(e;—eg)
=e;®e;+e;®e; — (ej —e;) ® (e —€;)
€ Perfg(a)(A) + Sym(? (M). O

The theorem above could have been used to prove that irreducible root lattices
have trivial perfection default modules, using the inclusions A, 1 C A, (n > 2),
D,—1 CD, (n>4),and E,_; C E, (n > 6), together with the standard isometries
D3 ~ A3 and E5 ~ D5. Consider now the ascending sequence of laminated lattices

A={0}CA;C---CA,C...

These are norm 4 lattices, integral for n < 24, uniquely defined up to isometry in the
ranges 0 < n < 10 and 14 < n < 24, which are scaled copies of root lattices for n < 8
([C-S], chapter 6). Hence, the corresponding perfection default modules are trivial
up ton = 8 For n > 9, they are not, because primitive integral scaled copies
have a norm N > 2 (N = 4if 9 < n < 24). We have actually Dft(Ag) ~ Z/27Z.
(Proof: note that Ag is a scaled copy of Eg + Dy, see [M], chapter 5, section 5.) I
have verified that Theorem 7.1 applies up to n = 16 (A6 is the Barnes-Wall lattice
BWig). I have also verified in the same way that Dft(K,,) is also cyclic of order 2
forn =9,10,11,12.

Theorem 7.1 also allows to prove that Dft(L) ~ Z/27Z for lattices L belonging
to some classical infinite series. This is for instance easily verified for the Barnes
lattices L), n > 5, 7 > 2, on the definition given in [M], chapter V, section 4.
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