

ON SUCCESSIVE MINIMA OF
RINGS OF ALGEBRAIC INTEGERS
(EXTENDED ABSTRACT AND COMMENTS)

par JACQUES MARTINET¹

The article appeared under the reference

On Successive Minima of Rings of Algebraic Integers, J.P. Buhler (Ed.), Lectures Notes in Computer Science **1423**, Springer-Verlag, Heidelberg, 1998, pp. 424–432.

The aim of the paper was to draw attention upon the possibility of using Minkowski's theorem on successive minima to obtain nice reductions of rings of algebraic integers.

Let K be a number field of degree n and signature (r_1, r_2) ($r_1 + 2r_2 = n$). We order the embeddings $\sigma_k : K \rightarrow \mathbb{C}$ in the usual way: σ_k is real for $1 \leq k \leq r_1$ and $\sigma_{k+r_2} = \bar{\sigma}_k$ for $r_1 + 1 \leq k \leq r_1 + r_2$. We consider on K the standard positive definite quadratic form (the “twisted” trace form) defined by

$$q(x) = \sum_{k=1}^n \sigma_k(x)\bar{\sigma}_k(x).$$

The completion of K for the real embedding of \mathbb{Q} yields the real algebra with involution $E = \mathbb{R} \bigotimes_{\mathbb{Q}} K$. It is a Euclidean space for the form $\text{Tr}_{E/\mathbb{R}}(x\bar{x})$, whose restriction to K is the form q considered above, and the ring \mathbb{Z}_K of integers of K is a lattice Λ in E , whose successive minima m_1, \dots, m_k are defined in the usual way : m_k is the smallest real number λ such that the set of elements $x \in \mathbb{Z}_K$ with $q(x) \leq \lambda$ spans a subspace of E of dimension at least k .

Two problems were considered, and stated as conjectures (but conjecture 1, page 429, is not true, see below).

1. The first problem consists of the following two questions:

Do (arbitrary) representatives of the successive minima constitute a \mathbb{Z} -basis of \mathbb{Z}_K ? If not, what can be the index in \mathbb{Z}_K of the sublattice Λ' generated by such representatives ?

The general upper bound $[\Lambda : \Lambda'] \leq \gamma_n^{n/2}$ where γ_n is the *Hermite constant for dimension n* , which is sharp for $n \leq 8$, is improved in case $\Lambda = \mathbb{Z}_K$ and $n = 4, 6, 7, 8$. For instance, one finds the upper bound $[\Lambda : \Lambda'] \leq 2$ for $n = 6$ whereas $[\mathbb{Z}_K : \Lambda'] = 4$ could hold for the root lattice $\Lambda = \mathbb{D}_6$.

Key words and phrases. Number fields, lattices, successive minima.

¹laboratoire associé au C.N.R.S. – Université Bordeaux 1

However, examples due to H.W. Lenstra and Bart de Smit show that for $n = 6$ (and indeed probably for all $n \geq 6$), the index 2 may occur, as well as larger indices for larger values of n .

The idea of their counterexamples, as explained to me by F. Diaz y Diaz, is as follows: consider a polynomial $f \in \mathbb{Z}[X]$ of the form

$$aX^n + a_1X^{n-1} + \cdots + a_{n-1}X + b$$

with large a, b and small $a - b, a_1, \dots, a_{n-1}$, in some sense close to a Kummer polynomial. Then, modulo some restrictions (in particular on the behaviour of $f(X) \bmod 2$), the index $[\mathbb{Z}_K : \Lambda']$ is at least 2. The example with the smallest known discriminant in degree 6 is provided by Diaz y Diaz's polynomial

$$7X^6 + X^5 - X^4 + 3X^3 + X^2 - 7,$$

with discriminant

$$d_K = 3\,731\,647\,088\,561 \# 3.7\,10^{12},$$

a value which lies far beyond the existing tables of sixth degree fields.

Consequently, for algorithmic purposes, to use representatives of the successive minima as a basis of \mathbb{Z}_K often works and provides the best possible reduction. This is an important practical remark: all those who make use of packages such as *KANT* or *PARI* to compute units and class groups know the importance of reduction to make the calculations faster. The same remark applies to the calculation of relative extensions.

2. The second problem, of a less computational nature, concerns Abelian fields and the Kronecker-Weber theorem, at least for fields of prime degree.

Let thus K be cyclic over \mathbb{Q} of odd prime degree ℓ (the case $\ell = 2$ is trivial), with conductor f , and hence discriminant $d_K = f^{\ell-1}$. It is clear that the successive minima are $m_1 = \ell$ (represented by $1 \in \mathbb{Z}_K$) and that $m_2 = \cdots = m_\ell > m_1$ (because of the Galois action on \mathbb{Z}_K). Let $\zeta \in \overline{\mathbb{Q}}$ be a root of unity of order f , and let $\theta = \text{Tr}_{\mathbb{Q}(\zeta)/K}(\zeta)$. Then, θ is an element of \mathbb{Z}_K which generates K over \mathbb{Q} .

Does θ represent m_2 ?

The answer is positive for $\ell = 3$ (use “quasi-normal” integral bases). Calculations for $\ell = 5, 7, 11$ to be found in Huguette NAPIAS's thesis (Bordeaux, 1996) suggest that the answer could be positive for all ℓ .

J. MARTINET
 A2X, INSTITUT DE MATHÉMATIQUES
 UNIVERSITÉ BORDEAUX 1
 351, COURS DE LA LIBÉRATION
 F-33405 TALENCE CEDEX
 E-mail: martinet@math.u-bordeaux.fr