ALGEBRAIC CONSTRUCTIONS OF LATTICES; ISODUAL LATTICES

by JACQUES MARTINET!

Introduction. Let A be a lattice (discrete subgroup of maximal rank) in some n-
dimensional Euclidean space E. The dual-lattice of A is A* ={z € E |Vy € A,z.y € Z}.

The most important invariant of A is certainly the Hermite invariant v(A), which mea-
sures the density of the sphere packing canonically attached to A. However, invariants
taking into account both A and A* appeared during the last ten years, in connection with
various domains of mathematics (for instance, algebraic number theory or abelian vari-
eties). In this survey, which follows closely my talk in Eger, I shall focus on arithmetical
problems involving duality.

¢ 1. Basic questions. Let E be a Euclidean space, of dimension n, and let A be a lattice
in E. Let z.y denote the scalar product of z,y € E. The norm of a vector z € FE is
N(z) = z.z (= ||z||?), and the norm (or minimum) of A is N(A) = mingea (o3 N(z).

Les B = (ey,...,e,) be a basis of A; its Gram matrix is

Gram(B) = (e;.e;) = Mat(1d, B, B*) ,

whose determinant, which does not depend on the choice of B, is the determinant det(A)
of A. The Hermite invariant of A is
N(A)
’Y( ) - det(A)l/” 9

and the Hermite constant (known only for n < 8) is then v, = sup, v(A). Note that the
density of the sphere packing attached to a lattice A is proportional to y(A)™/2,

An other important invariant is the kissing number 2s of A, where
1
s = §\S| for S=SA)={xz€A|N(x)=NA)}.

By analogy with the Hermite invariant, we define its dual version

1/2

Y(A) = (N(A)N(A)? = (v(A)y(A%))

(the second inequality holds because of the equality det(A*) = det(A)~!). The dual version
of v, is then 7/, = sup, v'(A).
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The constant -, was introduced in [B-M1] as a geometric counterpart to Zimmert’s
analytic study of twin-classes in number fields. (For Zimmert’s theory, see [Oe], [Zi].)

This constant was considered again by Conway et Sloane in [C-S1] (under the name of
“Bergé-Martinet” ), motivated by the paper [B-S] by Buser and Sarnak, where symplec-
tic lattices occur in connection with the theory of abelian varieties; Conway and Sloane
consider more generally isodual lattices, those for which there exists an isometry o of A*
onto A ; symplectic lattices correspond to 02 = —Id. The invariants ¥/ and v are equal for
lattices which are similar to their dual lattice. Note that such a lattice can be rescaled so
as to become isodual. We shall often call isodual those lattices which are merely similar
to their dual lattice.

The value of v,,, as well as the corresponding critical lattices, is known for n < 8. Since
these critical lattices (the root lattices Z, Az, Ag, Dy, D5, Eg, E;7, Eg) are isodual for
n=1,2,4,8, one has v/, = v, for these four dimensions. The constant ~,, is also known in
dimension 3. One conjectures that the lattices which realize ~y/, are the critical lattices and
their dual lattices for all n < 8 (plus an extra pair (A, A*) in dimension 5). To find the
exact value of ~y, or v/, for other values of n looks very difficult. The following problems
are more tractable :

Problems.

(1) To construct lattices with a large 4’ invariant.

(2) Same question for isodual lattices, and more precisely for o-isodual lattices, where
o is a given “interesting” orthogonal transformation of E.

(3) Same question for modular lattices.
(One says after Quebbemann that A is £-modular for some integer £ if A is integral,
and if there exists a similarity of modulus v/2 which maps A* onto A.)

[There is no reason not to look at the Hermite constant itself. The recent constructions by
Bacher ([Bc], 1996) of dense lattices in dimensions 27, 28,29 show that progress can still
be made in comparatively low dimensions.]

We now come to the first part of the title. A great many of the famous even-dimensional
lattices can be constructed over maximal orders in algebras with involutions, especially
C.M. fields or totally definite quaternion algebras; examples are Ay, D4, Fg, Coxeter-
Todd’s K12, Barnes-Wall’s A4, the Leech lattice Ay, some 2-modular lattices of dimen-
sion 32 (Quebbemann, Bachoc), ... The algebras involved are cyclotomic fields and/or
various quaternion skew-fields, in particular those with center Q ramified at co and 2 or 3.

All these lattices are modular and (when conveniently rescaled) symplectic. In all
cases, multiplication by a convenient purely imaginary element of the order yields a sim-
ilarity from A* onto A. Thus, algebraic methods appear to be suitable for construct-
ing interesting symplectic lattices. Other interesting examples are the Craig lattices
AI()T_)l = (‘B’",%TrQ(gp) /0(x7)), where p is an odd prime, (, is a primitive pth-root of

unity and P is the prime ideal above p in Q({p); Aél_)l is the root lattice A,_;.
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§ 2. Isodualities. We still denote by A a lattice in some n-dimensional Euclidean space E.
An isoduality is an isometry o which maps A onto A* (or A* onto A, it amounts to the
same thing). Then, o2 is an automorphism of A.

To o is attached the bilinear form b : (z,y, ) — x.0y, which is unimodular, i.e. integral
on A, of determinant 1. We say that o is orthogonal (resp. symplectic) if b is symmetric
(resp. alternating). This is equivalent to o2 = Id (resp. 02 = —1d), and also to the fact
that the eigenvalues of o are +1 (resp. =+i). In the orthogonal case, if +1 and —1 have
respective multiplicities p and ¢, then (p, q) is the signature of b.

By looking at Gram matrices, or by making use of a convenient Lie group to be defined
later, one shows that, up to similarity, these families are of respective dimensions pg and
m?2+m (we put n = 2m in the symplectic case). The case when b is orthogonal of signature
(n,0) or (0,n) is somewhat special : the 0-dimensional corresponding families are those
of unimodular lattices. Put Aut¥(A) = {7 € O(E) | 7(A) C A or 7(A) C A*}. Then, the
index [Aut®(A) : Aut(A)] is 2 when A is isodual non-unimodular, and 1 otherwise.

There are only finitely many unimodular lattices in each given dimension, whose clas-
sification is known up to dimension 25, cf. [C-S], ch. 17. Their various orthogonal or
symplectic structures can be detected by inspection of the conjugacy classes of order 2 or 4
of their automorphism groups.

§ 3. Connection with Abelian varieties.

Given a complex vector space V of dimension g (thus of real dimension n = 2g), and a
lattice L C V, consider the complex torus 7= V/L; T is an analytic manifold. We say
that T is an Abelian variety if it is an algebraic variety. Abelian varieties possess various
characterizations (see e.g. [L-B]), among which we quote the existence of a Riemann form,
i.e. of a positive definite Hermitian form H, whose imaginary part $(H) takes integral
values on L. Such a form is also called a polarization.

By making use of the elementary divisors theorem, one easily shows that, with respect
to S(H), V is an orthogonal sum of planes possessing a basis for which (H) has a matrix

of form (b(l _g’“) ,k=1,2,...,9. When all by are equal to 1, we say that H is a principal

polarization.

Let us now come back to the notation of the previous two sections.

Let A C E be a lattice with a symplectic isoduality ¢ : A — A*. One defines a
complex structure on F by puting iz = o(x). Then, H(z,y) = z.y + io(x).y is a principal
polarization on E': one has H(z,z) = z.x > 0 for z € E \ {0}, and A/o(A*) is trivial.
Conversely, for any pair (L, H) of a lattice L and a polarization H, the real part R(H)
of H is a scalar product on V, and, when H is principal, L is symplectic for the isometry
T — iz,

To any curve C of genus g, one can attach its Jacobian J(C). It is an Abelian variety of
complex dimension g, which possesses a canonical principal polarization, and thus defines
an isometry class of symplectic lattices. However, for n = 2g > 8, such constructions
cannot produce the examples we gave above: Hurwitz’s theorem asserts that one has
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| Aut(C)| < 84(g — 1), and Torelli’s theorem that the centralizer of ¢ is of order at most
2 x | Aut(C)|; for Eg or Ay, this order is much bigger than 168(g — 1).

It would be interesting to derive from algebraic geometry canonical constructions of

lattices such as Eg or the Leech lattice.

§4. Local theory. We study in this section the local maxima of density of lattices
belonging to various important families. We indeed consider families F of lattices which
are orbits of one lattice in F under the action of a closed subgroup G of GL(E), invariant
under transposition. One can moreover without loss of generality replace G by its connected
component. We refer the reader to [M], ch. X and XI for the proofs.

Here are some examples:

4.1. Example. (G-lattices.) Let G be a finite rational subgroup of O(F). (This means
that the natural representation of G comes from a rational representation.) Let

F={A|Aut(A) O G}.

Then, we can take
G={uecGL(E)|VseGq, su=us}.

4.2. Example. Let G¥ be a finite subgroup of the orthogonal group O(E), and let G be
a subgroup of index 2 of G#. Let

F={A|VocG¥\G,a(A)=A*}.
Then, we can take

G={ucGL(E)|Vo € G*, ou="u"to"1}.

Note that lattices in F are in particular G-lattices, and that we recover the notion of a
o-isodual lattice by taking for G# a cyclic group with generator o.

4.3. Example. In this example, we replace F¥ by E x E, and consider
F={(AA")|ACE}.

Then, we can take
G={(u,u") | ue€ GL(E) Cc GL(E x E)}.

Let F be such a family. Then we say that a lattice A is F-extreme (or G-extreme)
if v attains a local maximum at A among lattices A € F, and that A is strictly F- (or
G- )extreme if there exists a neighbourhood V of A in the set of lattices of E such that
A e VN F and v(A') > v(A) is possible only if A’ is similar to A.
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To characterize extreme lattices, we must introduce a few more definitions. Let 7y be
the tangent space of G at 1g, and let

T={u+"u|ueTo}.
For z € S(A), let ¢, be the restriction to 7 of the linear form

defined on the space End®(E) of symmetric endomorphisms of E.

We say that A is G-perfect if the ¢, generate Hom(7,R), and that A is G-eutactic if
there is in Hom(7, R) a relation

Trjr =) Putpu

with strictly positive coefficients p,.

4.4. Theorem ([B-M3]).

(1) A is strictly extreme if and only if it is G-perfect and G-eutactic.
(2) If A is extreme, but not strictly extreme, there is a path

t'—)At, tE[O,l]

such that Ag = A, rank(S(A:)) < n fort > 0, and v(A¢) = v(A) on [0,1].

This theorem leaves open the following
Question. When does

“extreme” — “strictly extreme” ?

The answer is positive in the case of example 4.1 ([B-M2]; if G = {Id}, this is an old
theorem of Voronoi ([Vor|) (partially proved previously in 1873 by Korkine and Zolotareff
in [K-Z]). The answer is also positive in the case of example 4.3 ([B-M1]; the G-extreme
lattices correspond to the local maxima of 4’). In the case of example 2, the answer
depends on the representation of G afforded by the inclusion G# C O(E); it is positive for
orthogonal or symplectic lattices.

This problem was recently revisited by Bavard ([Bv]) in the setting of Riemannian
geometry. Let X be a compact non simply connected Riemannian manifold. Consider the
systole of X, i.e. the minimal length of a homotopically non-trivial closed curve C' on X,

length (C)
vol (X)l/ dim X’
Riemannian metrics on X. This supremum on the set of flat tori is precisely the Hermite
constant. A characterization a la Voronoi of local maxima, involving convenient notions
of perfection and eutaxy, is proved in [Bv].

then the ratio

and finally the supremum of this ratio over some family of
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§ 5. Isodual lattices and the Voronoi algorithm. Voronoi developped at the begin-
ning of the century an algorithm which yields (theoretically) a classification of all perfect
lattices in a given dimension. He applied it to recover the results of [K-Z] in dimen-
sions n < 5, and only began shortly before his death the classification in dimension 6,
which was completed half a century later by Barnes ([Brn]). Such an algorithm was ex-
tended in [B-M-S] to the case of G-lattices. No general result is known for the families of
examples 4.2 and 4.3, and this is an important open problem of the theory. (However, some
families of symplectic lattices have been recently dealt with by Bavard, using methods of
differential geometry; it would be interesting to study other examples, e.g. those arising
from example 4.3.)

Let us explain briefly (in terms of lattices, though the consideration of positive definite
quadratic forms would be more suitable) how the generalized Voronoi algorithm works for
example 4.1.

Thus, let G be a finite subgroup of O(F), and let G be as in the example. One easily
checks that 7 is the space

Endg(F) = {u € End*(F) | Vs € G, su = us}.

Let A be a G-perfect (i.e., a G-perfect) lattice. For z € S(A), let p, € End®(E) be the
orthogonal projection on the line Rx, and consider the average

Wy =

1
@l > pso € Endg(E).

s€EG

The Voronoi domain of A is the convex hull Dy in 7 of the rays Rw,. Choose a vector
F € T orthogonal to some face of codimension 1 of this polyedral cone, with orientation
towards the interior of Dj. Then, for § positive and not too large, Ag = (Id +0F)/2(A) is
a non-perfect G-lattice with the same norm as A. Let p be the upper bound of such 8’s. If
p is finite (this is always the case for the original Voronoi algortihm, for which G = {Id}),
then A, is again a G-perfect lattice with the same norm as A. Such a lattice A, is called
a Voronoi neighbour of A, and the path 6 — Ay from [0, p] to the topological space of G-
lattices is called a (G-)Voronoi path. Tt is shown in [B-M-S] that the neighbouring graph
is connected when one restricts oneself to lattices belonging to a fixed class of integral
representations of G.

If A and A’ are Voronoi neighbours, and if A’ is similar to A*, then one can reasonnably
expect to find an isodual lattice on the Voronoi path which connects them. In practice,
there is an involution ¢ — ¢* of [0, p] such that A} is similar to A4, and the isodual lattice
Aisoq is its fixed point.

Most of the isodual lattices of high density found by Conway and Sloane in [C-S1] by
means of their gluing theory can also be found by the above procedure. One can use
Ss-lattices in dimension 5, with A ~ D5 ([M], ch. XIII, § 4). The usual Voronoi algorithm
works in dimensions 6 and 7, with paths Eg — E§ and E; — E¥ ([Brl)).
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The case of dimension 6 is of great interest. The above lattice Ajsoq is symplectic,

1
with Hermite invariant y(Ajsoa) = 1 + 7 It has been proved by Quine in [Qi] (and

independently, by Bavard — private communication), and that it corresponds to the curve
y3z = 2* — 2* (known as the Picard or the exceptional Wiman curve); it is denser than the

perfect symplectic lattice A((f), which corresponds to the Klein quartic y3z+ 23z + 23y = 0.

These two lattices are extreme among the family of symplectic lattices ([Q-Z]; Aé2) was
known to Barnes ([Brn]) to be extreme in the usual sense). Note that the Fermat curve
z* 4+ y* = 2* does not correspond to an extreme lattice.

The problem of the local maxima of the systole of principally polarized abelian varieties
is equivalent to the corresponding problem for the Hermite invariant of symplectic lattices.
The relations which might exist between the systole of a Riemann surface and that of its
Jacobian are not clear.

§ 6. Modular lattices. Let ¢ be a positive integer. Recall that an integral lattice A is
¢-modular if there exists a similarity o : A* — A of modulus v/£. Thus, modular lattices
are isodual.

Following Quebbemann, we restrict ourselves to even lattices. The theta series of such
a lattice is then a modular form for the Fricke group of level £, a group which contains
['o(£) with the index 2, except for £ = 1, where this group is simply the full modular group
SL2(Z) . Note that 1-modular lattices are just unimodular lattices.

We are as usual interested in finding the densest possible lattices for given £ and n
(if any). Upper bounds of the Hermite constant yield upper bounds for the minimal
norms of /-modular lattices, but better bounds can often be derived from the theory of
modular forms. Indeed, if A has (even) minimum m, then its theta series takes the form
In(g) = 1+ 3,5, akg® (with ¢ = €?™# as usual), where aj, is the number of vectors
z € A with z.z = k. For m large enough (in practice, the dimension of the corresponding
space of modular forms), the | %] conditions ap = 1 and a3 = --- = a,,_2 = 0 determine
9 uniquely. Actually, one can say much more, and, by calculating the dimensions of the
corresponding spaces of modular forms, derive strong constraints for the maximal possible
value for m. For instance, Hecke proved that for £ = 1, even unimodular lattices exist if
and only if n = 0 mod 8, and that one must have m < 2 + 2| 3;|. This result has been
generalized to other levels. In particular, Quebbemann proved that, for

Lprimeand £+1|24 <«— [(€{1,2,3,5,7,11,23},

Z-modular lattices can exist only if £ =3 mod 4 or n =0 mod 4, and obained the upper
bound

(6.1) m§2+2{%J ,

which reduces to Hecke’s for ¢ = 1.
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A fundamental problem is to find the largest possible value m(n, £) for m. It is customary
to call extremal those lattices for which equality holds in 6.1, though, in my opinion, it
does not deserve a name. Actually, there are other methods to obtain upper bounds of m,
for instance:

e Nebe and Venkov proved by making use of Siegel modular forms that extremal
lattices for n = 12, £ = 11,13 do not exist ([Ne-Ve]);

e Scharlau and Hemkemeier proved the impossibility of (n,£) = (12,7) by classify-
ing all lattices in the genus which would be that of such a lattice. (They found 395
lattices!)

Dimensions for which there is a jump in 6.1 are of particular interest, for the corre-
sponding lattices (if any) often yield the best known values of the Hermite invariant. Here
are some examples (disregarding the 0-dimensional lattice):

e/=1.n=8: Eg; n=24: the Leech lattice Ays; n =48 : 3 known lattices.

e/ =2. n=4: Dy; n=16: the Barnes-Wall lattice A1g; n = 32: 3 known lattices.
Extremal lattices also exist for n = 48 (thus, m = 8), but are less dense that the extremal
unimodular lattices (with m = 6).

e/=3.n=2: Ay;n=12: the Coxeter-Todd lattice K;s.

For / = 1, extremal lattices are known to exist for n = 8,16, 24, 32, 40, 48, 56, 64, 80. The
case of dimension 80 (with m = 8) was recently settled by Bachoc and Nebe who gave two
examples in [Ba-Ne], solving simultaneously the problem for (n,£) = (20,7) and (40, 3).
The idea is to start with a (20, 7)-extremal lattice constructed as a module for the ring
O = Z[HT‘/E] (such an example can be found in [ATLAS], in relation with the Mathieu
group Mass), then to show that extending the scalars from O to a maximal order 93 of
the quaternion algebra with center QQ ramified at 3 and at {co} (the corresponding lattice
is Ay 1 Ay) preserves the minimum 8, yielding a (40, 3) extremal lattice, and finally to
extend the scalars over 93 by Eg (or a Cayley order). They used coding theory to prove
the inequality m > 8.

Coulangeon (private communication) gave an alternative proof involving general proper-
ties of tensor products, which would apply to the sequence (n,£) = (18,7) — (36,3) — (72,1)
if any (18,7)-extremal lattice were to exist on £, thus solving positively the fundamen-
tal problem of the existence of 72-dimensional unimodular lattices. However, no 18-
dimensional 7-extremal lattice is known.

Note that the existence of such lattices would establish new records of density in di-
mensions 18, 36, 72. My guess is that such extremal lattices do not exist.

§ 7. Some algebraic constructions. We consider a (skew) field K of one of the following
three types:

(1) A totally real number field.

(2) A C.M. field.

(3) A totally definite quaternion algebra.

The field K contains a largest totally real number field K, (with [K : Ko = 1,2,4
respectively). Let z — T be the standard conjugacy of K (the identity map in case 1),
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and let Tr = Trg /g be the (reduced) trace. Put n = [K : Q] and ng = [Ko : Q]. For
any totally positive a € Ky, (z,y) — Tr(azy) is a positive definite Q-bilinear form on K,
which extends to a scalar product on the completion K = R@QK ~ K" of K, where
K =R, C, H respectively.

We now construct lattices in K. To this end, we consider a maximal order 9 in K (the
ring Zg of the integers of K in the first two cases), and a (left) fractional ideal I of 9.
(This means that I is a finitely generated non-zero 9t-submodule of K.) One has 9 = I.

Hence, I is a finitely generated Z-module of rank n, and thus a lattice in K.

For 8 € K*, the map x +— z( is an isomorphism of 9-modules of I onto the equivalent
ideal I8. For z,y € K, one has Tr((zf)(y3)) = Tr((88)(«7)), and one easily sees that this

map is a similarity if and only if 83 € Q.
Let D be the (reduced) different of K/Q. For I as above, the dual module of I is
I*=o 'D' T
As a consequence, we see that, if I is isodual by an isometry z — z3, then oIDI is
the principal ideal generated by S~ !. Conversely, if this condition is satisfied with some
generator fy, then I is isodual provided there exists some unit ¢ in 9 with €5y, € Q.

To determine the nature of the isoduality (e.g., symplectic or orthogonal) reduces to a
calculation of eigenvalues.

In the case of the Craig lattices defined in section 1, one has K = Q((,), Ko = Q((p -I—Zp),
1

1 _
I=%" a= D and D = PP~ 2, hence oDII = P2 ~1. For p= —1 mod 4 and r = %,

one can take 8 = \/—p, and x — x( yields a symplectic isoduality.

[For r not too large, the minimum of Aj(f_)l is at least 2r, cf. [C-S], ch. 8, § 6, th. 7; equality
holds for small values of 7, and moreover for r = 4% (Elkies) and also whenever r divides
p — 1 (Bachoc and Batut); these authors conjecture that equality holds for r < I’TH.]

More generally, one may consider (left) K-vector spaces of dimension m > 1. Then,
many of the most famous lattices have been contructed as modules of small rank over an
order of one of the above three types. We refer the reader to [Bay] for the case of cyclotomic
fields and to the recent papers [Bt-Q-S|, [Bay-M], [M1] for other examples; see also [M],
ch. VIII. This kind of construction often provides obvious symplectic isomorphisms. For
instance, consider a lattice A constructed over a maximal order 90 of the quaternion field
H with center QQ, with ramified places 2,00 (resp. 3,00), so that H may be defined by
elements 7, j with i2 = j2 = —1,4j = —ji (resp. with i® = —1,52 = —3,4j = —ji). Then,
right multiplication by j — i (resp. j) is a similarity of square —2 (resp. —3). In this
way, one obtains a nice definition of the Barnes-Wall lattice A1g (resp. of the Coxeter-
Todd lattice Kj5), which immediately shows that it is 2-modular (resp. 3-modular) of
symplectic type.

ACKNOWLEDGEMENTS. I would like to thank Christophe Bavard with whom I had several
discussions when writing this survey, and also Anne-Marie Bergé for the help I found in
listening to the talk she delivered at the Luminy meeting of October, 1996.



J.IVIARTINET

REFERENCES

[ATLAS] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, ATLAS of Finite Groups,

[Bc]
[Ba-Ne]

[Brl]
[Brn]

[Bt-Q-S]

Oxford Univ. Press, Oxford, 1985.
R. Bacher, Dense lattices in dimensions 27, 28 and 29, Invent. Math., to appear.

C. Bachoc, G. Nebe, FEztremal lattices of minimum 8 related to the Mathieu group Maa, to
appear.

J.-L. Baril, Thése, Bordeauz, 1996.

E.S. Barnes, The complete enumeration of extreme senary forms, Phil. Trans. Roy. Soc. London
(A), 249 (1957), 461-506.

C. Batut, H-G. Quebbemann, R. Scharlau, Computations of Cyclotomic Lattices, Exp. Math. 4
(1995), 175-179.

C. Bavard, Systole et invariant d’Hermite, J. reine Angew. Math. (1997), to appear.

E. Bayer-Fluckiger, Definite unimodular lattices having an automorphism of given characteristic
polynomial, Comm. Math. Helvet. 59 (1984), 509-538.

E. Bayer-Fluckiger, J. Martinet, Formes quadratiques liées auz algébres semi-simples, J. reine
angew. Math. 451 (1994), 51-69.

A.-M. Bergé, J. Martinet, Sur un probléme de dualité lié auzx sphéres en géométrie des nombres,
J. Number Theory 32 (1989), 14-42.

A.-M. Bergé, J. Martinet, Réseaux extrémes pour un groupe d’automorphismes, Astérisque 198—
200 (1992), 41-66.

A.-M. Bergé, J. Martinet, Densité dans des familles de réseaux. Application aux réseaut isodu-
auz, L’Enseignement Mathématique 41 (1995), 335-365.

A.-M. Bergé, J. Martinet, F. Sigrist, Une généralisation de l’algorithme de Voronoi, Astérisque
209 (1992), 137-158.

P. Buser, P. Sarnak, On the period matriz of a Riemann surface of large genus (with an Appendiz
by J.H. Conway and N.J.A. Sloane), Invent. Math. 117 (1994), 27-56.

J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Grund-
lehren n°290, Heidelberg, 1988.

J.H. Conway, N.J.A Sloane, On Lattices Equivalent to Their Duals, J. Number Theory 48
(1994), 373-382.

J.H. Conway, N.J.A. Sloane, Appendix to [B-S].
A. Korkine, G. Zolotareff, Sur les formes quadratiques positives, Math. Ann. 11 (1877), 242-292.

H. Lange, Ch. Birkenhake, Complex Abelian Varieties, Springer-Verlag, Grundlehren n°® 302,
Heidelberg, 1992.

J. Martinet, Les réseaux parfaits des espaces euclidiens, Masson, Paris, 1996.

J. Martinet, Structures algébriques sur les réseaus, Number Theory, S. David éd. (Séminaire
de Théorie des Nombres de Paris, 1992-93), Cambridge University Press, Cambridge, 1995,
pp. 167-186.

G. Nebe, B.B. Venkov, Nonezistence of Extremal Lattices in Certain Genera of Modular Lattices,
J. Number Theory 60 (1996), 310-317.

J. Oesterlé, Séminaire de Théorie des Nombres de Paris, 1983-84, Birkhiuser, Prog. Math.
n°59, Bale, 1985.

H.-G. Quebbemann, Modular Lattices in Fuclidean Spaces, J. Number Theory 54 (1995), 190
202.

J.R. Quine, Jacobian of the Picard Curve, preprint, Florida State University, 1995.



ALGEBRAIC UCONSTRUCTIONS OF LATTICES ; 1ISODUAL LATTICES 11

[Qi-Z] J.R. Quine, P. L. Zhang, Extremal Symplectic Lattices, preprint, Florida State University, 1995.

[S-H] R. Scharlau, B. Hemkemeier., Classification of integral lattices with large class numbers, Math.
Comp., to appear.

[Vol] G. Voronoi, Nouvelles applications des paramétres continus a la théorie des formes quadratiques :
1 Sur quelques propriétés des formes quadratiques positives parfaites, J. reine angew. Math 133
(1908), 97-178.

[Zi] R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulator Abschdtzung, Invent. Math.
62 (1981), 367-380.

J. MARTINET

LABORATOIRE D’ALGORITHMIQUE ARITHMETIQUE
UNIVERSITE BORDEAUX I

351, COURS DE LA LIBERATION

33405 TALENCE CEDEX

E-mail : martinet@math.u-bordeaux.fr



