ON PARITY CLASSES
JACQUES MARTINET

ABSTRACT. This paper deals with various problems in lattice the-
ory related to the notion of parity.

Risume. Sur les classes de parité. Nous considérons dans cet article
divers problemes de la théorie des réseaux liés a des questions de
parité.

1. INTRODUCTION.

Recall that given an n-dimensional unimodular lattice A, a parity
or characteristic vector is a vector e such that Vo € A,e-z = x-x
mod 2. The set of parity vectors is a union of classes modulo 2A. Two
theorems play a key role in the theory of unimodular lattices:

(1) N(e) =n mod 8;

(2) (Elkies) The smallest norm of a parity vector is at most n, and
equality holds uniquely on the Z" lattice.

Actually, we shall see that parity vectors may be defined for all
integral lattices. More precisely, we shall define in Sections 2 and 3
the parity class in the dual lattice and parity classes in the lattice
itself. The aim of this paper is to prove various results on these vectors
and their classes.

We recall various preliminary results in Section 2 and then consider in
Section 3 parity vectors in A. Section 4 is devoted to various examples.
In section 5, we explain how to construct from a given lattice a larger
one having a smaller determinant. These technical results are then
applied in Section 6 to study the norm modulo 8 of parity classes for
lattices whose determinants are not divisible by 4. Finally, 2-modular
lattices are considered in Section 7.
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As far as we only consider congruences, there is no need to restrict
oneself to positive definite forms. Hence, unless otherwise stated, we
shall use the word lattice in the more general sense we are going to de-
fine. Of course, for Euclidean lattices, to estimate the smallest possible
norm on a given parity class (as in Elkies’s theorem quoted above) is
a very interesting problem, but that we shall not anymore consider in
these notes; see [Ell], [E]12] and [N-V].

In the whole paper, we denote by V' a finite-dimensional vector space
over the field Q of rational numbers, equipped with a non-degenerate
symmetric bilinear form (z,y) — =z -y, that we call the scalar prod-
uct on V even when it is not positive definite. The norm of x € V is
N(z) = x-x. A lattice in V is then a finitely generated Z-module
A of rank (or dimension) n in V. We say that A is integral if the
scalar product takes only integral values on V', and primitive if it gen-
erates Z. Given a basis B = (e1,...,e,) for A over Z, the Gram
matrix of B is Gram(B) = (e; - ¢;), and the determinant of A is
det(A) = det(Gram(B)) where B is an arbitrary basis for A. We say
that A is unimodular if it is integral of determinant +1.

We denote by (p, q) the signature of the quadratic form z +— N(z).
It is the signature of the real quadratic space £ = R ®Q V. Of course,
p+q=n, and if ¢ = 0, F is a Euclidean vector space and the lattices
naturally embed in E as classical Euclidean lattices. For any non-zero
A € Q, we denote by *A the rescaled lattice A with scalar product
Az - y). We write "'A = A~ and sometimes AT = A. The signature
of *A is (p, q) or (g, p), depending on the sign of \.

2. PRELIMINARIES.

We first recall the definition of elementary divisors (which does not
make use of the scalar product). Given lattices A and A’ D A in V,
the elementary divisors of the pair (A’,A) are the positive integers

ai, ..., a, uniquely defined by the two conditions:
(1) There exist bases B’ = (€],...,el) for A’ and B = (eq,...,€,)
for A such that e; = a; €, for i = 1,...,n (we say that B is a
Smith basis for (A, A));
(2) a1 divides a; for i =1,...,n— 1.

We have a; - - - a,, = [A’ : A, since A’/A is the direct sum of the cyclic
groups Z/a;Z.

Elementary divisors are indeed defined over any principal ideal do-
main (where one must considers the ideals (a;) rather than the ele-
ments a;), and in particular over localization of such rings, a very useful
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point of view (which yields in particular a quick definition over arbi-
trary Dedekind domains). In our situation, they are defined over Z)
for all primes ¢, and are of the form ¢ with my(¢£) > --- > m, ().
We have m;(¢) = vy(a;). Disregarding the ordering of the exponents,
the local invariants of direct sums are obtained by concatenation from
those of the components.

The existence of a scalar product allows us to attach to any lattice
A its dual lattice

N={zreV|VyelA z yecl}.

The lattice A is integral if and only if it is contained in its dual and
unimodular if and only if it is equal to its dual. Consequently, taking
A = A*, we may attach to any integral lattice the set of elementary
divisors of the pair (A*, A):

Definition 2.1. The Smith invariant (also called the group determi-
nant) of an integral lattice A, denoted by Smith(A), is the n-tuple
(ay,...,a,) of the elementary divisors of (A*, A). The first term a; of
Smith(A) (the annihilator of A*/A) is called the level of A.

Warning. One sometimes consider for even lattices a more restrictive no-
tion of a level, for which we require that the level IV is such that N A* should
be even. We then have N = a1 or N = 2a,.

Note that the last term a, is the ged of the =z -y, x,y € A; it
is equal to 1 if and only if A is primitive. Note also the formula
Smith(*A) = X Smith(A) which applies for all A € Q with \a, € Z,
and the reciprocity formula

Smith(a;A*) = <ﬂ, e -1 , 1) :

an Qn

Lemma 2.2. Let A be an integral lattice with Smith invariant
(ay,...,a,), and let B = (ey,...,e,) be a Smith basis for (A*,\), with
dual basis B* = (e3,...,e). Then (aref,...,an€) is a basis for A,
=a,'e,) for A*.

T n

namely the dual basis of the basis (e} = aj'ei,. .., €,

Proof. By definition of a Smith basis, the vectors e, = a; 'e; constitute
a basis for A*, and we have (a;e;) - € = 3—] 6;; =1L O

Next we say a few words about sublattices (of finite index).

Let a > 2 be an integer. We consider the set &, of submodules M
of A such that A/M is cyclic of order a. An isomorphism A/M —
Z/aZ can be lifted first to a surjective homomorphism @ : A — Z/aZ
with kernel M, then to a homomorphism ¢ : A — Z, and two such
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homomorphisms ¢, ¢ define the same lattice M if and only if ¥ = by
for some b € (Z/aZ)*. We have thus constructed a bijection

Ey — (Z)aZ)*\ Homgyio(A, Z/aZ) .

Now ¢ is of the form z + e - x for some e € A* \ Uy lA* (¢ prime).
Finally, we obtain the following description of &,:

Proposition 2.3. The map which to e € A* attaches the kernel of
x — e-x mod a defines a one-to-one correspondence between the set
of orbits of primitive elements in A*/aN* under the action of (Z/aZ)*
on the one hand, and the set &, of submodules M of A such that A/M s
cyclic of order a on the other hand. In particular, sublattices of index 2
in A are parametrized by A* mod 2A*. O

Let A be an integral lattice. Then the map
AN—Z/2Z : x+— N(z) mod 2

is clearly a homomorphism. Hence there exists e € A*, well-defined
modulo 2A*, such that

Ve e A N(z)=e-xz modA.

Definition 2.4. A vector e as above is called a dual-parity vector for A
and its class modulo 2 the dual-parity class for A.

Proposition 2.5. Let B = (e1,...,e,) be a basis for A and let
B* = (e,...,ey) be its dual basis. Then e = 3, N(ej) e} is a dual-
parity vector for A. Moreover, if B is a Smith basis for (A*,\), then e
belongs to A.

[We could as well have chosen ¢’ =3 ",_, N(e;) e instead of e.]

Proof. Let © = ) A\je; € A. We have
N(z) = A2 N(e) +23 Ndjei-e; =Y AiN(e) mod 2

i<j i
on the one hand, and e - e; = N(e;), hence e - x = >, A\; N(e;) on the
other hand. This proves the first assertion.

If B is a Smith basis for (A*, A), then N(e;) =e; - (a; €}) = a;(e; - €})

is divisible by a; for all i. Hence e = . Ney) (aj €}) belongs to A by

J aj

Lemma 2.2. ]

Corollary 2.6. Dual-parity vectors for an orthogonal sum A; L A,
are the sums e; + ey where e; is a dual-parity vector for A;. O

If A is unimodular, the definition above is the usual one. More gen-
erally, if det(A) is odd, the inclusion A < A* induces an isomorphism
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A/A? ~ A*/A*? and we easily define a unique parity class in A. We
shall consider in the next section lattices with an arbitrary determinant.

3. GENERAL PARITY CLASSES.
In this section, A denotes an integral lattice.

Definition 3.1. For a prime ¢, let t, = t,(A) be the number of com-
ponents of Smith(A) which are divisible by ¢.

With the notation of Section 2, ¢ divides a; for i < t, but not for
1>ty le. e ELN <= 1 <t

Proposition 3.2. (1) te(A) = n — dimg, (A N LA*)/LA.
(2) The difference n — ty(A) is also equal to the rank of the Fy-
bilinear form (z,y) — x -y mod ¢ on A/IA.

Proof. With the notation of Section 2, ¢ divides a; for ¢ < ¢, but not
for i > ty, i.e. e; € IN* < i < t,. The first assertion follows, since
e; € N <— i <t,. For v € A, we have

x
14
hence (¢A* N A)/CA is the kernel of the scalar product modulo /. [

Vye A, z-y=0 modl¢ < VyeA (=) yeEZ < %EA*,

Definition 3.3. We say that A is even if all its vectors have even norms,
and that it is odd otherwise. The kernel of the map x +— N(z) mod 2
is called the even part of A and denoted by A.,.,. We say that a vector
e € A\ is a parity or characteristic vector for N if Vo € A, N(z) =e-x
mod 2. The class mod 2A of e is its parity class. [Clearly, if e is a parity
vector, all the vectors in its class mod 2A also are parity vectors.]

The following proposition is well-known.
Proposition 3.4. If A is even, ts =n mod 2.

Proof. The bilinear form (x,y) — x -y mod 2 on A/2A is alternating,
hence has even rank, and we may apply Proposition 3.2. (More precisely,
the form z-y mod 2 comes from the quadratic form z — § N(z) mod 2.) O

Theorem 3.5. The set of parity classes of A is an affine space of di-
mension ty(A) over Fy. In particular, A contains 2'2(A) parity classes.

Proof. First Proposition 2.5 shows that the set P of parity vectors is
not empty. Let e € P. Then

feP < Vel (f—-e)-z2=0 mod2 < f—ec2A".
This shows that the map
2NNA—-P s z—e+x
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induces on P mod 2 a structure of affine space over the Fao-vector space
(A* N A)/2A, whose dimension is precisely ta(A). O

We now consider the norm of classes modulo a prime, and in partic-
ular those of parity classes.

Given a subset & C A and an integer ¢, we say that the norm
of £ is defined modulo q if for any two elements z, y of £, we have
N(x) = N(y) mod gq.

Proposition 3.6. Let ¢ be a prime, and let C be a class modulo (.

(1) If € is odd, the norm of C is defined modulo ¢; it is defined
modulo (? if and only if C C LA*.

(2) If £ =2, the norm of C is defined modulo 4; it is defined mod-
ulo 8 if and only if C is a parity class.

Proof. Let x, y € C, say, y = + {z. Then
N(y) — N(z)=0(2(z-2)+{N(2)).

This shows that the norm on C is well-defined modulo ¢, and that if
¢ is odd, it is defined modulo ¢? if and only if - 2 = 0 mod ¢ for all
z € A. This proves the first assertion.

If ¢ = 2, the identity above can be written

N(y) = N(z) = 4(z - 2+ N(2)),

which shows that the congruence N(y) = N(z) mod 8 holds if and
only if Vz € A, z- 2= N(z) mod 2, which is the definition of = being
a parity vector. 0

The following lemma, which is needed to state Theorem 3.8 below,
will be a consequence of the more precise statements of this theorem.

Lemma 3.7. All parity vectors of A have the same norm modulo 2.

Proof. Indeed, if e and €’ are parity vectors, we have N(e) = e-¢’ mod 2
and N(¢') =e- ¢ mod 2 as well. O

Theorem 3.8. Set A = Aeyen, t = to(A) and £ = t5(A).

(1) We havet —t =0, 1 or 2.

(2) We have t =t if A is even, t = t + 1 if both A and the norms
of parity vectors are odd, and t =t + 2 if A is odd and parity
vectors have even norms.

(3) Define A(N) = A by A={0} ift=t, A=Z/AZ ift =t +1,
and A = Z)27 X )27 if { = t+2. Then A*/A ~ (A*/A) @ A.

(4) The common norm modulo 2 of parity vectors is N = n + t.
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Proof. (1) If M and L D M are integral lattices, we have M C L C
L* ¢ M*. Since the canonical maps L*/M — L*/L and L*/M —
M*/M are respectively surjective and injective, we have between the
2-ranks 7o of these groups the inequalities 7o(L*/L) < ro(L*/M) <
ro(M*/M). Applied with L = A and M = A, this shows that ¢ < I

The bound ¢ < t + 2 comes from the bound jet o) < 4.

(2) & (3) (a) If A is even, everything is evident.
(b) Otherwise, let e be a parity vector for A, and suppose first that

N(e) is odd. Then ¢ € ANA, for $-z€ZonAbut &-e=1 mod Z.
Hence A* = A*U U((5)+A). Writing any z € A*asx =y orz=y+§
the map x +— y induces a homomorphism modulo A, hence an exact

sequence

0— X*/A* — K*/A — A" /A -0,
which is split by the canonical injection A < A*. Hence we have
t>t+1, and indeed ¢ =t + 1 since £ has order 4 in A*/A.
(¢) Suppose finally that N (e) is even, so that e € A, and let f € ANA.
Then £, f and § + f have order 2 in A*/A f is zero in A*/A, and the

other two do not belong to A*. Hence A*/A ~ A* /AP Z/22. P 7./2Z.,
which completes the proof of both (2) and (3).

(4) By Proposition 3.4, we have t = n mod 2. Hence the last asser-
tion in Theorem 3.8 amounts to the congruence N(e) =t —t mod 2,
which is immediate from the proof of (2) and (3) above. O

The example of root lattices (see next section) shows that congru-
ences modulo 4 cannot hold in general for all the parity classes of a
given lattice.

4. SOME CALCULATIONS OF PARITY CLASSES.

We still denote by A an integral lattice.

First, we consider the case of irreducible root lattices, i.e. A is one of
the lattices A,,, n > 1, D,, n > 4, or E,, n = 6, 7, 8, of determinants
n 4+ 1, 4 and 9 — n respectively. Since these lattices are even, 0 is a
parity vector, and cl(0) = 2A is the only parity class if det(A) is odd,
ie. if A=A, (n > 2 even), Eg or Eg. We now consider the other
irreducible root lattices, and display for every non-zero parity class a
vector e having the smallest possible norm. Using the canonical bases
(€0,€1,-..,6n) for Z" and (eq,...,e,) for Z", we define A,, and D,
by

={reZ" | Y 2,6, =0} and D, ={zx €Z" | xie; =0 mod 2}.
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Short parity vectors for root lattices

tz =1:
An,nodd e=3Y.(-1)¢, N(e)=n+1;
D,,nodd :e=2¢. N(e)=4;
E, ce € 25(Ez), N(e) =6

ty = 2 (besides 2¢4):
D,, neven :e=e;+--+¢e,1+e,, N(e)=n.

For an even lattice, parity vectors are simply those of 2A* N A. How-
ever, the case where A is the even part of an odd lattice L deserves a
remark: for every parity vector e in L, 2e is a parity vector for A whose

class in A/2 A solely depends of L, which we recover as L = (A, %)
where €’ is any representative for this class.

Next we consider Kneser-neighbours relative to the prime 2, which
we define formally by the following construction: given e € AN 2A, let

Ac={ze€A|z-e=0 mod 2} and Ae:AeU(Ae—i—g);

A¢ is the Kneser-neighbour of A relative to e. The lattice A, solely
depends on the class of e in A/2 A, but A¢ depends on e modulo 2A., so
that there are two neighbours corresponding to the class of e mod 2 A,
namely A® and A® where ¢ = e + 2f and f is any vector in A \ A..
Clearly, A€ is integral if and only if N(e) = 0 mod 4, and then both
A€ and A€ are.

In the sequel, we restrict ourselves to integral neighbours. The neigh-
bouring process may be considered as producing cohorts {A,Ae,Ae/}
of three lattices, every member of which is a neighbour of the others.
Explicitly, with the notation above, we have

(1) Ae = (A5 = (M)
(2) A= (A9 = (A
(3) A = (A and A° = (A¥)°.

From the point of view of parity, there are four possibilities to consider:

(1) A is odd and e is not a parity vector. Then A® and A¢ are odd.

(2) A is odd, e is a parity vector, and N(e) =4 mod 8. Then A°
and A® are both odd.

(3) A is odd, e is a parity vector, and N(e) =0 mod 8. Then A®
and A are both even.

(4) A is even. Then A° and A¢ have different parities. (We have
N(e') — N(e) =4 mod 8.)
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[Cases (3) and (4) can be exchanged by a permutation of A, A® and A€

Let as above f € AN A.. For x € A, we have z - (2f) =0 mod 2
and (v + 5) - (2f) =e- f =1 mod 2. This shows that 2f is a parity
vector of A® whenever A€ is odd.

Our next example is devoted to hyperplane cross-sections. For the
sake of simplicity, we only give partial results, which, however, suffice
for our purpose.

Proposition 4.1. Let v € A\ 2A* of norm not divisible by 4, and let
A’ be the orthogonal of v in A. Representatives for the parity classes of
A are given by the following formulae, where e runs through a system
of representatives for the parity classes of A:
(1) If N(v) =1 mod 2, ¢’ = N(v)e — (e-v)wv.
(2) If N(v) =2 mod 4, €] = @e— (Z—v)v and €}, = €} +v" where
v' € N is any vector congruent to v modulo 2.

Proof. Let p be the orthogonal projection onto v*; it is given by the
formula p(y) =y = ¥y V- Then ez = p(e) - x for all x € A

When N(v) =1 mod 2, N(v)p(e) is a parity vector for A’. Since
there are 22 parity classes in A’ (because N(v) is odd), we have
found all parity classes in A’.

When N(v) =2 mod 4, the formula ¢} = @ e—@ v still produce
2'2 parity classes (note that e-v = n(v) =0 mod 2), but since N(v) is
even, there are 227! such classes in A’. Now the equation (v+2w)-v =
0, which is equivalent to v -w = —Ngv), is soluble in A. Then the sums
ey + v with v/ = v 4+ 2w produces the 22 missing classes. O

Our last example concerns cross-sections of twisted lattices Z".
Given p, ¢ > 0, let I, , be the orthogonal sum of p copies of ZT = Z
and ¢ copies of Z~; this has dimension n = p+ ¢, and is endowed with
the canonical basis (e1,...,¢&,) of Z™ for which we choose N(g;) = +1
for 1 <i<pand N(g;) = =1 for p+1<i<p+q=n. Weset
1, = +1if ¢ < pand n = —1if ¢ > p. These lattices are important
because of the following classification theorem, for a proof of which we
refer to [M-H] or [Se]:

Theorem 4.2. An indefinite, odd unimodular lattice of signature (p, q)
is isometric to I, . O

The following well known theorem is an easy consequence of the
theorem above:

Theorem 4.3. The norm of the parity vectors of a unimodular lattice
are congruent to p — q modulo 8.
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Proof. For the sake of completeness, we give the short proof (in [M-H]
and [Sel, only the case of even lattices is considered). Let A be an odd
indefinite unimodular lattice, of signature (p, q), and let e be a parity
vector of A.

If A= 1,,, e has odd components z;, and we have N(e) = > n;a? =
>mi=p—q mod8. Now Ly =A L Z*" and Ly = A L Z~ are odd,
and (e, 1) is a parity vector for both. If p = ¢ = 0, there is nothing to
prove. If ¢ > 0, Ly is indefinite with signature (p+ 1, ¢), hence we have
N(e)+1=p+1—¢q mod38. If p >0, Ly is indefinite with signature
(p,q+ 1), and we have N(e) =1 =p—(¢+ 1) mod 8. O

We now determine in full generality the parity classes of the hyper-
plane cross-sections of lattices of the form I, ,. However, to be consis-
tent with the previous notation, we consider the orthogonal A in I, ;41
of a primitive vector v, with components v;. Let d = det(A). Thus
d = (=1)7"'N(v) (because det(I, 1) = (—=1)7™) and N(v) = nivl.
Moreover, A*/A ~ Z/dZ.

Theorem 4.4. If d is odd (resp. even), A possesses one parity class,
denoted by C (resp. two parity classes, denoted by C and C'). The
vectors e = (e;) in these classes are characterized by the following two
conditions:

(1) vier + -+ vpep — Upp1€pi1 =+ — Uptgr1€prqr1 = 0.

(2) Vi, e; =v;+ 1 (resp. ande; =1) mod 2.
Moreover, we have

NC)=p—q—1+(—1)% and N{C)=p—qg—1 mod 8.

Proof. Condition (1) is simply the condition v - e = 0, equivalent to
e € A. From now on, we assume it is satisfied by a parity vector e.

We next observe that each of the two forms of condition (2) char-
acterizes a class modulo 2 in A. We must show that these classes are
indeed parity classes. Let z =), x;6; € A. We have

N(x) —e-xEZ(xijeixi) mod 2.
Ife; =1 mod 2, thisis > (2? +2;) =0 mod 2. If e; = v; +1 mod 2,
we again find N(z) —e-2 =0 mod 2 using the equality ). vie; = 0.
(Of course, if Vi, ; =1 mod 2, then d = e-v =0 mod 2.)

We must now evaluate modulo 8 the norms of C and C’. The case
of C' (if it exists) is easy: for ¢/ € C', we have €,> =1 mod 8 for all i,
hence N(¢/) = > .m = p—q—1 mod 8. Let now e € C. We have
e; =v; +1 mod 2, say, e; = v; + 1 + 2);, hence

N(e;) = v2 + 14 20; +4\v; + (A2 4+ 4)) =02 + 14 20; + 4.
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The condition e - v = 0 reads Y, 7;(v? + v; + 2A;v;) = 0. Using this
relation, we obtain >, n;(2\;v;) = — >, m; (v + v1), which implies

N(e) =Y m(l—v))=p—q—1-> nu}.
Since Y, v = (—1)7" det(A), we are done. O

5. ENLARGEMENTS AND EXTENSION OF LATTICES.

In this section, we establish a few standard results to be used in next
section. We still denote by A an integral lattice of signature (p, ¢) and
dimension n = p + ¢ contained in an n-dimensional Q-vector space V.

Definition 5.1. We say that a lattice A’ is an enlargement of A if
A C N C V. We say that A is a maximal lattice if it is not strictly
contained in any integral lattice in V. We say that A’ is an extension of
A if A’ is a lattice in some vector space V' D V such that A = A’'NV; we
also say that A is a section of A’. Finally, we say that A is elementary
if A*/A is f-elementary for every prime .

An embedding A < A’ is done via an enlargement A — M with
M c V followed by an extension M < A’. In what follows, we shall
essentially consider enlargements; extensions will then occur as enlarge-
ments of direct sums A @ P for some low-dimensional lattices P.

Lemma 5.2. A maximal lattice M is elementary and for every prime £,
we have vy(det(M)) < 2, and even vo(det(M)) < 1.

Proof. Let A be an integral lattice and let ¢ be a prime.
If A is not f-elementary, there exists e € A* such that e € A \ /A.
Then (A, fe) is an integral lattice which contains A to index /.
Suppose now that A is f-elementary, and consider the quadratic form
¢ induced by the norm on (¢A*NA)/A. If it represents zero on the image
of a vector e € A, then (A, e) is again an integral lattice containing A
to index £. Since every quadratic form in at least 3 variables on a finite
field represents zero, A is not maximal if v,(det(M)) > 3, and this
bound can be lowered to 2 when ¢ = 2 since our quadratic form is then
the square of a linear form.
[To unify the case £ = 2 and ¢ odd, one should consider even lattices, and
equip (¢A* N A)/A with the quadratic form induced by 3 N(z).] U

Lemma 5.3. Any lattice A of signature (p,q) can be embedded into
lattices Ay of signature (p+ 1,q) and Ay of signature (p,q + 1) which
both have the same square-free odd determinant.
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Proof. Embedding A in a maximal lattice, we may assume that A is
(-elementary for all £ and that its determinant d satisfies the conditions
ve(d) =0, 1, or 2 for odd ¢ and ve(d) = 0 or 1. Let

a = 2v2(d) H 0.

ve(d)=2
Applying Lemma 5.2, we see that maximal lattices containing

A L “Z or Ay = A L ~°Z have odd determinants which are (up to
sign) the same product of distinct odd primes. 0

To obtain lattices with determinants prime to ¢, we shall have to
know when does an orthogonal sum of lattices with £, = 1 can be
enlarged to a lattice whose determinant is prime to ¢. To this end,
we introduce a Legendre symbol (%) defined for odd primes ¢ and
lattices A with ¢,(A) = 1 or 2, using the form ¢ defined in the proof of
Lemma 5.2. If t, = 1, let ¢ = az?®. We then set (%) = (%) Ift, =2,
we set (%) = 0 if the form is degenerate (which amounts to saying that
A is not f-elementary), and otherwise, (%) = +1 if ¢ represents zero,
and —1 if it does not.

As usual we extend the definition of the symbol to all odd denomi-
nators by setting (%) = [T,_, (é\—l) it m = [[;_, ¢; where the ¢; are odd
primes.

Lemma 5.4. Let Ly and Ly be two lattices with t, = 1. Then,

(Be) = (1% () ().
Proof. 1f (%) is zero for ¢ = 1 or 2, both sides are zero. Other-
wise, if the ¢(-part of Smith(L;) is fa;, the quadratic form modulo ¢
attached to Ly L Ly is a 2% + apa3, and it represents zero if and only if

(F4%2) = -1. -

Lemma 5.5. Let { be an odd prime and let a € {£1}. If{ = —1
mod 4 or if a = +1 there exist lattices L, both odd of dimension 1 and
even of dimension 2, such that (%) = a. Odd (resp. even) lattices of
dimension 2 (resp. 4) with (£) = a exist unconditionally.

Proof. We first prove what concerns odd lattices. For m = 0 mod /,
we have (%) = +1 and (#) = (’71), so that we are left with the case
where a = —1 and ¢ = +1 mod 4. Let L; = ““Z where ¢ is a prime
such that ¢/ = —1 mod 4 and (%) = —1. By the previous case, there
exists a 1-dimensional lattice L, such that (%) = (%) Then L, 1 Ly

is contained to index ¢ in a lattice L, and we have det(L) = ¢ and

(B) = (B) = (3) = (§) = 1.
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To handle the case of even lattices, we start with a lattice L having
a basis (e, e2) with Gram matrix (_21 %131 > where m is any integer
congruent to —1 modulo 4. The lattice L is even of determinant m.

Then (e; + 2e5, €5) has Gram matrix (2721 % ), hence (%) = (2’"7/5) for

every odd prime divisor ¢ of m. Taking m = ¢, we have (%) = +1 and

(£7) = (=1)“"Y/2. Thus we are again left with the case where £ = +1
mod 4 and a = —1. We then take m = ¢'¢ where ¢’ is a prime congruent
to —1 modulo 4 and such that (27?) = —1. The corresponding lattice
Lq has (%) = —1. We then consider a lattice Ly of determinant ¢’ such
that L1 L L, embeds to index ¢ in an integral lattice L. Then L is

even and has determinant ¢ and Legendre symbol —1. U

6. SOME CONGRUENCES MODULO 8.

The results we are going to prove are generally well-known in the
case of even lattices, where they can be obtained by making use of
Milgram’s formula; see [M-H|, Appendix 4; we could also reduce to
positive lattices and then use modular forms. The proof we present
below are general and do not make use of analytic tools. The method
of extension we use below plays a key role in Conway and Sloane’s
results of [C-S1] and [C-S2].

We keep the notation of the previous section.

Theorem 6.1. If det(A) = £2, A has two parity classes, whose norms
are congruent to p—q—1 and p — q+ 1 modulo 8.

Proof. Since the determinant of A has the sign of (—1)9, we have
(—1)?det(A) = +2.

Assume first that p > 0. By Theorem 5.3, A can be embedded in
unimodular lattices A’ of signature (p, ¢+ 1). Since it is indefinite, this
lattice is isometric to I, 441, and Theorem 6.1 results from Theorem 4.4.

Assume now that p = 0. Then, A~ has signature (¢g,0) and deter-
minant (—1)?det(A) = +2. By the result above, parity vectors e~ for
A~ have norms ¢ £ 1. We can take for e~ any parity vector e for A,
but since we have negated the scalar product, its norm is now given by
the formula N(e”) = —N(e). This shows that the set of norms on A
isnow —(¢q+1)=—qF1=p—qF1since p=0. O

Corollary 6.2. The signature of an even lattice of determinant £2
satisfies one of the the congruences p — q¢ = £1 mod 8.

Proof. We have 0 =p—¢g+1 mod 8. U
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We now consider lattices with odd, square-free level, as defined in
Definition 2.1.

Theorem 6.3. A lattice A of signature (p,q), determinant d and odd
square-free level has a single parity class C, whose norm modulo 8 is
given by the following formulae:

e Ifd=—-1 mod4, NC)=(p—q)+ (d—1)(%).
e Ifd=+1 mod4, NC)=(p—q)+d+1-2(5).

Proof. We shall use induction on the number 7 of prime factors of d,
noting that for r = 0, the theorem we want to prove results from
Theorem 4.3. Suppose now that r > 1, and denote by e a parity vector
for A.

Let ¢ = /,, et let L be the even lattice of determinant ¢ and such
that (%) = (=1)“~1/2(%) of Lemma 5.5. Denote by (p/, ¢') its signature
and let f be a parity vector for L. The way we constructed L shows
that if £ = —1 (resp. +1) mod 4, we have ¢ —p' = =2 or +2 mod 8
(resp. ¢ —p' =0 or 4 mod 8). Applying Lemma 5.4, we may enlarge
A L L to an integral lattice A’ of determinant d’ = %/; its signature
is (p+ 9,9+ ¢), and e + f is a parity vector for A’, of norm N(e) +
N(f). Now, the formulae in Theorem 6.3 hold for L by an immediate
verification and for A’ by the induction hypothesis. Lemma 5.4 then
shows that they hold for A. O

Corollary 6.4. Let A be an even lattice with odd determinant d. Then
ifd = —1 (resp. +1) mod 4, the signature of A satisfies the congruence
q=p—+2 (resp. ¢ =p) mod 4.

Proof. Use the fact that 0 is a parity vector, and notice that ¢ = p £+ 2
mod 8 amounts to ¢ = p+2 mod 4 and ¢ = p or p+4 mod 8 amounts
to ¢ =p mod 4. 0

7. MODULAR LATTICES.

Let a be a positive integer. We say that a lattice A is a-modular
if there exists a similarity ¢ with multiplier a which maps A* onto A;
we say that A is modular if it is modular for some a. We then have
det(A) = a”det(A*), i.e. det(A) = a™2. In particular, if a is square-
free, n must be even, which amounts to p = ¢ mod 2. (For a = 1,
observe that “l-modular” <= “unimodular”.)

By what we proved in the previous section, if a is odd and square-
free, the norms modulo 8 of the parity vectors can be calculated in
terms of the quadratic characters (%), ¢ | a. We shall now consider
2-modular lattices.
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We begin with a canonical construction which transforms a lattice A
of signature (p,q) and even level N into one of signature (2p,2q) and
level % Start with A L A, then adjoin to it all vectors of the form

@ for all x € 2A* N A. This new lattice A’ is integral, for @ (y, 2)

and N(@) = %F are integers, because the scalar products x -y, x - 2
and x - x are even for all x € 2A* N A and y, z € A.

Proposition 7.1. If A is 2-modular, the lattice A" is unimodular and
has the same parity as A.

Proof. We denote by o a similarity of multiplier 2 which maps A
onto A*. The lattice A’ is integral, and obviously odd if A is. If A
N(z)

is even, for every x € 2A* N A, ox belongs to 2A, hence N(%) = —~

is even, which implies N(z) =0 mod 4, whence N(@) =0 mod?2.
Finally, since [A’: A 1 A] = 2"/2, we have det(A’) = 1. O

The following corollary is well known, at least for positive lattices,
and could be also proved using Milgram’s formula:

Corollary 7.2. If A is an even, 2-modular lattice, then p = q mod 4.

Proof. Indeed, A" is a unimodular lattice of signature (2p,2q), hence
2p —2¢ =0 mod 8. O

However, for odd lattices, we cannot prove more on the norms of
parity vectors than the general congruence N(e) =n mod 2. Indeed,
let e be any parity vector. Then the set of parity vectors for A is
E={e+a|xe€2A*}, and since y - x is even for any x € 2A*, we have
N(e+x) — N(e) = N(z) mod 4. Since A is odd, there exists z € A
with N(x) =1 mod 2. Then the oz belongs to 2A* N A and its norm
is 2 mod 4, so that e and e+ ox have different norms modulo 4. Direct
sums of lattices ?Z L Z provide examples with signature (n,0) for any
even dimension n = 2r which for any n > 8 have parity vectors of any
norm N mod 8 congruent to to = r modulo 2.

Proposition 7.3. If A is positive definite, then min A’ = min A.

Proof. We argue as in [M], Chapter 8, Section 8. Let m = minA. We of
course have min(A L A) = minA = m. Let e € A~ (A L A). We have
e= %ﬂ for some z € 2A* N A and y,z € A. The vectors = + 2y and
x + 2z are non-zero, for if x + 2y = 0, say, then e = (0,2 — y) belongs to
A L A. Since they both belong to 2A* N A, their norms are at least 2m. [

The canonical automorphism 7 : (z,y) — (—y,x) of A L A has
square — Id (otherwise stated, it induces on A L A andon V 1L V a
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structure of module over the ring Z[i] of Gaussian integers). It clearly
stabilizes the unimodular lattice A’ that we canonically attached to A.
Hence, following [M], Chapter 8, Section 8, we can continue with it a
sequence a la Barnes-Wall of Z[i]-lattices having dimensions 4n, 8n, etc.
which are alternatively 1- and 2-modular, and even from dimension 4r
onwards; moreover, in the Euclidean case, the minimum doubles when
passing from 1- to 2-modular lattices, and is preserved otherwise.

It is not difficult to list the pairs (n,2n) of dimensions for which the doubling
construction could produce extremal ¢-modular lattices, { = 1or 2, that is
even lattices whose minimum attains Quebbemann’s bound, namely 2 +

41
2 L%J [Warning. In the formula given in [M], Th. 16.4.1, the term “24” is missing.]

The case (32,64) (2- to 1-modular) is especially interesting: four even,
2-modular extremal lattices are known in dimension 32, due to Quebbe-
mann (2), Bachoc, and Nebe. The construction A — A’ thus produces four
extremal unimodular lattices of dimension 64. Up to know, two examples (or
maybe only one), constructed by Quebbemann and by Nebe, were known.
However, I do not know how to prove that “my” four lattices are mutually
non-isometric.

Another interesting case concerns the analogous transition from dimension
20 to 40. There are three 2-modular, extremal 20-dimensional lattices, from
which we can construct three unimodular, extremal 20-dimensional lattices
(all of minimum 4). However, I do not know ...

These three lattices in dimension 20 where found by Nebe (2) and R. Scharlau-B -Hemkemeimer
(in [V], Section 19, they are however all attributed to Nebe); uniqueness was proved by Bachoc
and Venkov in [B-V], Section 5.

Such constructions are also useful to produce odd lattices. For instance,
from Kneser’s 14-dimensional unimodular lattice with root system 2E7, we
obtain a 2-modular, 28-dimensional lattice of minimum 4, most certainly
the lattice described in [N-S].

Gram matrices for some of the lattices considered above can be found in
Nebe and Sloane’s catalogue [N-S]. Constructions for the three lattices of
Quebbemann referred to above can be found in [C-S].
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