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L’arithmétique des algebres de quaternions.

Ce texte rend compte de trois cours que j'ai donnés les 12, 19, et 26 avril
2002 & I'Ecole Polytechnique Fédérale de Lausanne a la demande d’Eva
Baver. Il s’agissait d’expliquer en trois heures ’essentiel de ce que I’on sait
sur la structure et sur 'ensemble des classes d’idéaux (& gauche) des corps
de quaternions sur un corps de nombres.

Comme le lecteur le constatera a la lecture des paragraphes 11 et 13, seuls
certains corps de quaternions se distinguent dans la catégorie de toutes les
algebres centrales simples. Mieux, on obtient des énoncés unifiés en associant
a un corps de quaternions H 'algebre Mqo(H) des matrices 2x 2 sur H. Pour
ces raisons, j’ai préféré ne pas me limiter aux algebres de quaternions, qui
ne sont rien d’autre que les algebres simples de rang 4 sur leur centre.

Vu le temps dont je disposais, il ne m’a pas été possible de donner des
démonstrations ; tout au plus ai-je pu en esquisser quelques unes. La bibli-
ographie commentée qui termine cette rédaction signale quelques ouvrages
dans lesquels le lecteur pourra les lire. L’exposé oral a été enrichi de quelques
exemples et du §9’.

Je remercie Christian MAIRE pour ses remarques qui m’ont permis d’amélio-
rer ce texte au fur et & mesure de sa rédaction, et Boas EREZ pour la relecture
détaillée qu’il en a faite.

Le texte présenté ici est une transcription en IXTEX de mai 2013 de
la version d’origine en AmSTREX. J’ai profité de cette nouvelle édition
pour corriger quelques fautes de style et ajouter la référence [Bo’| en
derniere page.



Arithmétique des algebres de quaternions, I

§ 1. Quaternions. Soit K un corps de caractéristique différente de 2,
et soient a, b € K*. L’algebre de quaternions d’invariants a et b est
I'unique algebre associative sur K ayant une base (1,1, j, k) vérifiant
les relations

i*=a,j?=0bij=—ji=k.

On a alors en particulier k2 = —ab. L’exemple historique, di & Hamil-
ton, est celui ot K = Ret a = b = —1, dolt k2 = —1. On parle
alors de quaternions usuels, quel que soit le corps de base K considéré.
Hurwitz les a étudiés lorsque K = Q, et a introduit I’ordre de Hurwitz
9, anneau de base

—1+it+j+k

2

(1,4,j,w) ou w=

sur Z, sur lequel nous reviendrons.

[Pour étre complet, signalons la définition en caractéristique 2 : on prend
a € K,be K*, et les relations sont i2 =i+4a, j2=0b,ij =k, ji = k+ j,
d’ott k2 = ab.]

§ 2. Algebres simples et notions voisines. Soit K un corps. Une
K-algebre L (associative, de dimension finie) est dite simple si ses
seuls idéaux bilateres sont {0} et L, semi-simple si elle ne contient pas
d’idéaux nilpotents non nuls, centrale si son centre est K. On montre
en considérant les idéaux (a gauche) minimaux qu’une algebre simple
est isomorphe a une algebre M,,,(D) ou D est un corps gauche de centre
C D K, bien défini & isomorphisme pres (ainsi que U'entier m) par L,
et qu’une algebre semi-simple est produit direct d’algebres simples :
L =1TJ,_, L;. Lorsque les centres C; des L; sont des extensions sépa-
rables de K, on dit que L est une algebre séparable.

L’arithmétique dans une telle algebre s’étudie suivant quatre rubriques.
[a] Structures des algebres (semi-)simples sur un corps K arbitraire.
@ Arithmétique dans une algebre séparable relativement & un anneau
de Dedekind A de corps des fractions K.

Situation [a] lorsque K est un corps local ou global, en pratique
un corps de nombres ou I'un de ses complétés (théorie de Hasse).

Situation @ lorsque K est un corps global (théorie de Eichler).



Compléments sur les algebres simples.

e Si L est centrale simple sur K, quelle que soit I'extension K’ de K, la
K’-algebre étendue Ly = K'®L est encore centrale simple. Le produit
tensoriel de deux algebres centrales simples est encore central simple.
(Ces propriétés de stabilité entrainent les propriétés analogues pour les
algebres séparables.)

e Soit K une cloture algébrique de K. Comme K®L ne peut étre qu’une
algebre de matrices, le rang [L : K] d’une algebre centrale simple est
un carré, soit m?2.

e Soit D un corps gauche de centre K, de rang m? sur K. Alors,
tout sous-corps (commutatif) de D est contenu dans un sous-corps
commutatif maximal de D, et un tel sous corps est de degré m sur K.
En outre, il en existe qui sont séparables sur K.

e Soit L/K centrale simple. Pour x € L, le polynome caractéristique
d’une matrice représentant = dans K®L est & coefficients dans K, et
ne dépend que de z. C’est le polynéme caractéristique réduit de x. 1l
est lié au polyndme caractéristique non réduit de z (celui de y — zy)
par la relation x,(X) = Xred,(X)™

e FEcrivons Xredz(X) = X™—a; X™ 4 -+ (=1)a,,. Le coefficient a,
(resp. a,,) est la trace réduite (resp. la norme réduite) de x. Notations :
Trd(z), Nrd(z).

e Dans une algebre centrale simple, la forme bilinéaire (z, y) — Trd(zy)
est non-dégénérée.

e Pour tout x € D, et tout sous-corps commutatif maximal M de D
contenant , on a Xredz = XMm/K,qe, €t en particulier Trd(z) = Try k()
et Nrd(x) = Ny ().

e Théoreme de Skolem-Noether. Soit L/K une algebre centrale simple,
soit, M une sous-algebre simple de L, et soit 0 : M — N C L un isomor-
phisme d’algebres. Alors, o est la restriction a M d’un automorphisme
intérieur de L.

§ 3. Application aux algebres de quaternions. Les notations sont

celles du § 1.
D’abord, trace et norme réduites ont une interprétation simple en

termes d’involution. Décrivons-la dans le cas ou Car K # 2. Pour
qg=x+yi+zj+tk, on pose ¢ =x—yi—zj —tk. L’application ¢ — ¢
est une involution (i.e., ona ¢+¢ = ¢+ ¢, q¢' = ¢, et A = X pour
A€ K). On a alors :

Trd(q) = ¢+ ¢ =2z, Nrd(q) = qq = 2* — ay® — bz + abt®,
Xredq(X) = (X —¢q) (X — ) = X* — Trd(¢) X + Nrd(q).



5

Remarque. La forme K-bilinéaire (¢q,q) — Trd(qq’) a pour forme
quadratique associée ¢ — 2 Nrd(q).

Le théoreme de Skolem-Noether explique la raison d’étre de la défini-
tion quelque peu artificielle d'une algebre de quaternions. On vérifie
facilement qu'une algebre de quaternions est centrale simple.
Réciproquement :

Théoreme. Toute algébre centrale simple de rang 4 est une algébre de
quaternions.

Démonstration. Limitons-nous au cas d'un corps gauche H/K. Soit
M C H un sous-corps de degré 2, séparable sur K. Si Car K # 2 (resp.
si Car K = 2), on peut écrire M = K (i) ou 7 est racine d’'une équation
de Kummer X? —a = 0 (resp. d’Artin-Schreier X? — X —a =0). La
conjugaison ¢ — —i (resp. i — i+ 1) de Gal(M/K) est de la forme
i~ jij 1. Mais b = j? commute avec i et j, donc est dans K, et la fin
de la démonstration est alors immédiate.

[Le cas d’une algebre de matrices releve d'un calcul explicite. Par

exemple, si Car K # 2, on peut prendre i = (§ %) et j=(9}) ] O

Les quaternions pour lesquels x = 0 (ceux qui sont dans le noyau
de la trace réduite) sont appelés quaternions purs. Ils constituent
un sous-espace vectoriel de dimension 3 de H, que nous notons V,
supplémentaire orthogonal de K pour la forme Trd(qg’). On vérifie
sans peine que l'on a ¢ € K si et seulement si ¢ € K ou ¢ est pur, et
que lorsque H est un corps, 'égalité ¢*> = ¢* avec ¢ € K et ¢ pur n'est
possible que si ¢ = ¢ = 0.

§ 4. Considérations géométriques. Soit H un corps de quaternions,
muni ainsi que son sous-espace V' des quaternions purs de la forme
Trd(qq'). Pour tout ¢ € H*, I'application h — qhq™! est une isométrie
de H comme de V. On en déduit des homomorphismes de H*/K* dans
les groupes orthogonaux SO(V') et SO(H). Le premier est surjectif
(utiliser le fait que la réflexion le long de ¢ est h — —qhg™!).

Dans le cas des quaternions de Hamilton (sur R), c’est la construction
classique du revétement universel Sping(R) ~ S — SO3(R).
[On peut de méme construire Sping(R) & partir de (g, 7) + (h +— ghr~1)]

On sait (voir par exemple H. Zassenhaus, The theory of groups) que
les sous-groupes finis de SO3(R) sont isomorphes a l'un des groupes
suivants (qui sont uniques a conjugaison pres) : le groupe cyclique C,,
d’ordre n (Vn > 1), le groupe diédral D,, d’ordre 2n (Vn > 2), ou I'un
des trois groupes Ay, Sy, As, d’ordres respectifs 12, 24, 60. (Ces trois
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groupes sont associés aux polyedres réguliers ; les groupes diédraux

correspondent aux polygones réguliers.) Par relevement dans la sphere

S3 identifiée au groupe des quaternions de norme 1, on obtient les

groupes cycliques Csy,, les groupes quaternioniens H,, d’ordre 4n > 8,

et trois groupes spéciaux Ay, Ss, As, d’ordres respectifs 24, 48, 120.

e Dans R(7) ~ C, une racine de I'unité ¢ d’ordre m engendre un groupe

cyclique C,,.

e Soit ¢ € R(i) d’ordre 2m. Le groupe ((, j) est quaternionien d’ordre
m. (On a j¢(j~' = = (1) Le corps gauche Q(¢, ) est un corps de

quaternions de centre Q(¢ 4+ ¢™!), le sous-corps réel maximal de Q() ;

on obtient des quaternions sur Q si et seulement sim=2oum=3.

o A Conjugalson pres, on a les inclusions A4 D Hy, 5'4 D) A4, et A5 D A4

e Le groupe A4 s’obtient comme groupe des éléments inversibles de

l'ordre de Hurwitz ; ses 24 éléments sont 1, —1 (d’ordre 2), +i, +7j, +k

(d’ordre 4), ==22=E (dordre 3), et FE5EE (dordre 6).

e On construit 54 sur Q(v/2) comme groupe des élément inversibles de

norme réduite 1 de 'anneau de base

a L+i 14j _ —l4itj+hk
9 \/5 9 \/§ ) 9
sur Z[v/2]. On a §4 = @L U 1—\%’ 1&, et §4\A\4 contient 12 éléments de

chacun des ordres 4 et 8. N N
e Finalement, soit 7 = %5 Le groupe Aj est engendré par Ay et

i+ 77+ 7 k. Les éléments de 1%\114 sont d’ordre 5 ou 10.

)

§ 5. Ordres maximaux et discriminant. Etant donnés un an-
neau integre, de corps des fractions K, et une K-algebre L, un ordre
de A dans L est un sous-anneau ) de L, qui est un A-module de
rang n = [L : K] dont les éléments sont entiers sur A. Si A est
noethérien et intégralement clos, il revient au méme de dire que O
est un anneau qui est un A-module de type fini et de rang n. On
construit facilement des ordres par le procédé suivant : on part d’une
base (e; = 1,ey,...,6,) de L sur K, et 'on prouve l'existence d'un
d € A~{0} tel que (ey,des, ..., de,) est une base d'un ordre.

Soit L = [[;_, L; semi-simple de facteurs simples L; ayant pour
centres C;. La trace réduite est définie par

TI"dL/K = ZTrCi/K OTrdLi/Ci .

Siz € L est entier sur A, alors Trd(z) € K est aussi entier sur A.
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A partir de maintenant, on suppose que L est séparable et que A est
un anneau de Dedekind.

La forme bilinéaire (z,y) — Trd(zy) est non-dégénérée, ce qui permet
d’associer a tout sous-A-module M de L de rang n son dual

MY ={x € L|Vye M, Trd(zy) € A}.
Dans le cas d’un ordre 9, on a O D O, et
DcY = DcO cofcol,

ce qui prouve que tout ordre est contenu dans un ordre maximal (pour
I'inclusion).

Etant donné un ordre 9, son dual OF est un O-module & gauche et
a droite, la codifférente de 9. Son inverse (dans un sens a définir, et
sous réserve d’existence) est un idéal bilatere de O, la différente, notée
Do.

Relativement a un ordre £, on a une notion naturelle d’idéal frac-
tionnaire a gauche, a droite, ou bilatére : c’est un sous--module de
L de type fini et de rang n ; un point de vue ne faisant pas référence a
un ordre particulier sera donné plus loin.

Exemple : la codifférente et la différente sont des idéaux fractionnaires
bilateres.

Du fait que la forme Trd(zy) est non-dégénérée, on a une notion
de discriminant réduit d’abord pour une base de L/K (le déterminant
det(Trd(e;e;)), puis pour un module de rang n. Cela se fait en utilisant
des arguments locaux standards, ou en adaptant les méthodes utilisées
par Serre dans le chapitre III de Corps locauz.



Arithmétique des algebres de quaternions, II

§ 6. Idéaux inversibles. Les notations sont celles du § 5. Convenons
d’appeler idéal fractionnaire dans L tout sous-A-module I de L de
rang n. (Autrement dit, K®4/ est libre de rang 1 sur L.) Un tel
module possede des ordres a gauche et a droite

Oy)={xel|zlCl} et O4(I)={zel|lzCl}.

Il est clair que [ est un idéal fractionnaire a gauche au sens précédent
pour un ordre O si et seulement si O,(/) D O. Alors, tout élément
de D4(I) définit un O-endomorphisme de I, ce qui identifie Endy(])
a Oy4(1)° (anneau opposé a D4(I)). On peut multiplier les idéaux
fractionnaires par I J ={> zy; |z € [,y € J}.

Toutefois, sauf mention expresse du contraire, on n’effectuera un tel
produit que lorsque Oq(I) = O4(J).

Soit O un ordre, et soit I un idéal fractionnaire a gauche de O (i.e.,
ona® C Yy(I)). On pose

I'={xeL|IxC9O};

c’est un idéal a droite pour O et a gauche pour D4(I), I’ est un idéal
bilatere de O, et I'[ est un idéal bilatere de O4(I) (on a I (I'f) =
(II"I € O =1, donc I'l C O4(I)). On dit que I est inversible si
I'I = O4(I). Exemple: un idéal fractionnaire principal, ¢’est-a-dire de
la forme I = O z, est inversible. En effet,

I'=37'0, O4() =202, et I'N=2"'O -Or=a2""'Ox.

On peut caractériser les idéaux inversibles comme étant les idéaux pro-
jectifs. Leur structure peut étre tres compliquée. Les choses se simpli-
fient dans le cas des ordres maximaux, dont de nombreuses propriétés
les rapprochent des anneaux de Dedekind.

§ 7. Le groupoide Brandt. Une étude des corps gauches sur les
corps complets permet de montrer qu'un idéal fractionnaire a gauche
sur un ordre maximal © est localement libre, c’est-a-dire que A,®I
est libre sur A,®9O pour tout idéal premier p de A ; en particulier, les
idéaux fractionnaires des ordres maximaux sont inversibles. (N.B. A,
désigne 'anneau local de A en p, non son complété.)
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Comme le fait pour un ordre d’étre maximal est une propriété de
nature locale, cela entraine que ’ordre a gauche d’un idéal fractionnaire
est maximal si et seulement si son ordre a droite l'est (on parle alors
d’idéal normal), et que les ordres maximaux sont localement conjugués.

Définition. On dit que deux idéaux a gauche [ et J sur un méme
ordre maximal £ sont équivalents s’il existe x € L* tel que J = [ x ;
il revient au méme de dire que ce sont des O-modules isomorphes. On
dit que deux ordres maximaux sont du meéme type s’ils sont conjugués.
On note A le nombre de classes a gauche de O, et ¢ le nombre de types
d’ordres maximaux de L. L’idéal de distance de deux ordres maximaux
D1 et Dy est §(D1, 05) = (D2 91) 7! (inverse par rapport & O ou a O5).
[N.B. La finitude de h est vraie lorsque K est un corps de nombres. On ne
s’en occupe pas ici. L’énoncé suivant a un sens méme si la finitude n’est pas
assurée.]

Théoréme. Le nombre h ne dépend pas de . C’est aussi le nombre
de classes a droite de O, et 'on a t < h.

Démonstration. Si 97 et 99 sont deux ordres maximaux d’idéal de
distance §, 'application J — dJ met en bijection les classes a gauche
de O, avec celles de ;. En outre, pour tout ordre maximal O,
Papplication I + I" met en bijection la classe a gauche de I avec
la classe a droite de D4(7). Cela démontre les deux assertions relatives
ah.

Si O et O’ sont deux ordres maximaux, il existe des idéaux a gauche
I de O tels que D4(I) = O, par exemple leur idéal de distance. Comme
D4(Iz) = 271O4(I)x, 'ensemble des images des idéaux de la classe de T
est la classe de conjugaison de ©’. On construit ainsi une surjection de
I’ensemble des classes a gauche de 9 sur 'ensemble des types d’ordres

de L. O

Voici un exemple avec deux types d’ordres. Soit H 'algebre des quater-
nions usuels sur K = Q(v/3). L’ordre de Hurwitz étendu & Z[v/3] se plonge
dans un ordre maximal 911, dont le groupe U; des unités de norme réduite 1
contient le groupe 21\4, et lui est en fait égal, car on doit exclure les groupes
§4 et 21\5, vu que ni 2 ni 5 ne sont des carrés dans K. Comme K est le
sous-corps réel maximal de Q((12), il existe un ordre maximal 9ty dont le
groupe des unités de norme 1 est Ho4. Il y a donc au moins deux types
d’ordres maximaux dans H. (On peut montrer que 'on a h = 2, donc aussi
t = 2, cf. partie IIL.)

La multiplication des idéaux normaux dans L est une loi associative,
mais non partout définie, pour laquelle les «éléments unités) sont les
ordres maximaux (un de chaque coté pour chaque idéal) et telle que
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tout élément a un inverse a gauche et un inverse a droite. C’est le
groupoide Brandt.

Soit O un ordre maximal. On dit qu'un OD-module & gauche M est de
rang r si K®4M est libre de rang r sur L. Un tel module est isomorphe
a une somme directe de r idéaux fractionnaires (M ~ I, Q... @ I,), et
'on peut méme réduire une telle somme sous la forme M ~ O™ 1 P I.
Toutefois, I’analogie avec la théorie des anneaux de Dedekind s’arréte
la : il existe des cas dans lesquels deux idéaux I, J non isomorphes
sont stablement isomorphes, c’est & dire tels que O '@ Tet O™ 1 P J
sont isomorphes pour un 7 > 1 (ou pour r = 1, cela revient au méme,
cf. partie III). Autrement dit, on ne peut pas toujours simplifier.

Dans le cas d’'un anneau de Dedekind, deux modules stablements
isomorphes sont isomorphes (et la classe de I tel que M ~ A" 1@ T
est un invariant, appelé classe de Steinitz de M), mais cela se démontre
en utilisant la théorie des déterminants, qui n’existe que sur les anneaux
commutatifs.

§ 8. Corps gauches sur un corps complet. On suppose que A
possede un unique idéal premier p et qu’il est complet pour la valeur
absolue p-adique. Soit D un corps gauche de centre K. Muni de
n’importe quelle norme de K-espace vectoriel, D est complet.
Théoréme. Soit m? le rang de D sur son centre.

(1) Le corps gauche D possede un unique ordre maximal 9.

(2) O contient un unique idéal maximal a gauche B, qui est bilatere
et aussi maximal en tant qu’idéal a droite.

(3) Les idéaux fractionnaires de D sont bilateres, et ce sont les
puissances LB, k € Z de P.

(4) O/P est un corps gauche.

En outre, si le corps résiduel A/p de K est fini, 'indice de ramification
de P et son degré résiduel sont tous deux égaux a m, i.e., on a

pO =P et [O/P: Afp] =
la différente de D est ™! («une algebre simple est modérément ramifiée
sur son centrey), et son discriminant est donc égal a p™(m=1),

Revenons & la situation globale. Pour tout idéal p de A, considérons
les complétés A de A et K de K. Si L est une K-algebre centrale

simple, sa complétée L en p est isomorphe a Kp® kL. On a des iso-
morphismes

L~ M.(D), L, ~ M, (D(p)), et D,~ M, (D(p))
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ou D(p) est un corps gauche de centre K », les rangs des diverses algebres
vérifiant (avec des notations évidentes) les relations m = s,m, et
rm = rym,. Il existe une notion d’idéal premier (bilatere) rendant
les services habituels. Dans ce cadre, la notion de ramification de p
dans L se traduit par le fait que l'on ait m, > 1. Comme dans le
cas commutatif, les idéaux premiers ramifiés sont exactement ceux qui
divisent le discriminant réduit.

A coté des corps locaux du type K, comme ci-dessus, on doit aussi

considérer les places v infinies, pour lesquelles K, est isomorphe a R ou
a C. Pour v complexe (resp. réelle), 'algebre complétée est isomorphe
a une algebre M,.(C) (resp. M, (R) ou M, (H)). Dans ce dernier cas,
on dit que v est ramifiée.

§9. Résultats locaux et globaux. Le but de ce § est de donner
la classification des corps gauches sur les extensions finies d’un corps
p-adique Q,, (y compris sur Q.. = R), puis sur un corps de nombres.

Les corps gauches de centre un corps K de degré fini sur Q, sont
décrits a isomorphisme pres par un invariant dans le groupe de torsion
Q/Z. A un corps gauche D de rang m? correspond a € Q/Z d’ordre m,
de sorte qu’il y a exactement ¢(m) corps gauches de centre K et de rang
m? sur K, cf. infra, §9’. Pour toute extension K'/K finie, si K'®D
est une algebre de matrices sur un corps gauche D’ 'invariant o’ de
D' est [K': K] a.

Sur R, I'invariant o est & valeurs dans le sous-groupe {0, 3} de Q/Z
(0 pour R, % pour H) ; sur C, 'invariant « est nul.

Cas des corps de quaternions. Il y a dans chaque cas (sauf si
K = C) un unique corps de quaternions. La norme réduite correspond
a I'unique classe de formes quadratiques quaternaires qui ne représente
pas 0 sur K.

Lorsque p est impair, on peut le construire ainsi : on choisit un
générateur m de p et a € A~p qui n’est pas un carré modulo p, et
'algébre H, . convient. En effet, 'équation Nrd(q) = 0 s’écrit 2 —
ay? — 2% + ant®> = 0, et 'on peut supposer que z,y, z,t ne sont pas
tous divisibles par . Elle entraine 2?> — ay? = 0 mod p, donc z =
y =0 mod p, puis 2 =t = 0 mod p en raisonnant modulo p?, en
contradiction avec I'hypothese.

Lorsque p = 2, il faut travailler modulo 4 p. Lorsque le degré [K : Qo]
est impair, le corps des quaternions usuels convient.
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Soit maintenant K un corps de nombres. A un corps gauche D, et
a tout complété K, de K, on associe l'invariant «, de D(v) tel que

D, ~ M, (D(v)).
Théoreme. Les classes d’isomorphismes de corps gauches de centre

K sont en bijection avec les systemes d’invariants locaux vérifiant les
conditions suivantes :

(1) o, = 0 pour presque tout v.

(2) a, =0 si v est complexe.

(3) ay =0 ou a, = 3 si v est réelle.

(4) Z’U Oy = 0
En outre, le corps gauche D correspondant a un systeme d’invariants
o, comme ci-dessus a pour rang m?, ott m est le PPCM des ordres des
Q-
[La condition (4) est connue sous le nom de «loi de réciprocité de Hasse.
C’est une traduction dans le langage des algebres simples de la loi de récipro-
cité d’Artin de la théorie du corps de classes.]

Cas des corps de quaternions. La loi de réciprocité de Hasse signi-
fie simplement que le nombre de places ramifiées (y compris les places
réelles ramifiées) doit étre pair. Le discriminant est le carré 92 d’un
produit d’idéaux premiers distincts. Lorsque ’on se donne un tel pro-
duit, ainsi que le comportement des places réelles de facon que soit
respectée la regle de parité, écrire le corps de quaternions sous la forme
H,; n’a rien évident.

Par exemple, il existe pour tout p premier un unique corps de quater-
nions H,, de centre Q ramifié exactement en p et co. La derniere con-
dition équivaut & ce que H, soit défini par des relations i = —a et
j*> = —b avec a, b > 0. Le discriminant de H, est p?, celui de la base
(1,4, 4, k) est (4ab)?. 11 faut donc faire en sorte que p divise 2ab. Voici
une recette de construction de H, :

e Sip=2 prendrea = —1let b= —1 (oub= —2); Hy est le corps
«usuel.

e Sip=3 mod 4, prendre a = —1 et b= —p.

e Sip=>5 mod 8, prendre a = -2 et b= —p.

e Sip=1 mod8, prendre a = ¢ = 7 mod 8 premier et b = —p tel
que (%) =—1.

[Justification dans le dernier cas : la forme z? + pz? (resp. 22 + qy?)
représente 0 sur Q; parce que (_7”) = +1 (resp. sur Q9 parce que —q = +1
mod 8). L’ensemble des places ramifiées, que 'on sait étre contenu dans
{2,p,q, 00}, est réduit a {p,c0} ou est vide, et ce dernier cas est exclu vu

que la place infinie se ramifie.]
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Pour étre complet, il faudrait encore déterminer un ordre maximal,
en modifiant la base (1,4, j, k) par I'introduction de dénominateurs de
facon a obtenir la bonne valeur du discriminant. Voici une possibilité
pour chacun des trois premiers exemples :

e Dans le cas de Hy, on remplace k par w = _H’Tﬂ% ; on obtient
I'ordre de Hurwitz. '
e Dans le cas de H,, p = 3 mod 4, on remplace j par w = % et k
I 2
par w' =iw. (On a W™ = —1.)
e Dans le cas de H,, p =5 mod 8, on remplace 7 par w = # et j par
W = 14i+5
=5

On vérifie dans chaque cas que les produits deux a deux des éléments
des nouvelles bases s’expriment sur ces bases, ce qui montre que I'on a
bien défini des ordres. Le fait qu’ils soient maximaux résulte du calcul
de leur discriminant, évident a partir de l'indice de l'ordre de base
(1,4,7, k).

Voici un exemple concernant les corps quadratiques réels. Il existe un
unique corps de quaternions H ramifié aux deux places infinies de K et
a aucune place finie. On peut le construire ainsi : on choisit un nombre
premier p qui est inerte ou ramifié dans K ; alors, H = K®qH,. [En
effet, le degré local en p est égal a 2, donc I'extension des scalaires de Q a K
(tuey la ramification en p ; variante globale : H n’est pas ramifié en-dehors
de p, 001, 009 et l'est aux places infinies.]

§9’. Construction de l’invariant local. Avant d’entrer dans le
vif du sujet, signalons que le fait que Q/Z soit un groupe s’interprete
en termes de groupe de Brauer. FEn fait, quel que soit le corps K,
on multiplie les classes d’isomorphismes de corps gauches de centre K
en posant [Di][Dy] = [D'] si D1®g Dy ~ M, (D'). Clest la une loi
commutative et associative, pour laquelle [K] est élément neutre, et
I'inverse de [D] est la classe du corps gauche opposé D°. Le groupe
ainsi construit est le groupe de Brauer de K, noté Br(K).

Etant donnée une extension L/K, on note Br(L/K) le sous-groupe
de Br(K) formé des classes de corps gauches neutralisés par L (c’est-
a~dire tels que L&k D soit une algebre de matrices). Lorsque L/K est
galoisienne finie de groupe G, on peut identifier Br(L/K) au groupe de
cohomologie H?(G, L*). Lorsque G est cyclique, les calculs sont tres
simples. C’est cette remarque que 1'on va utiliser dans le cas local.

Soit donc K un corps complet pour une valuation discrete v, d’anneau
de valuation A et d’idéal maximal p, a corps résiduel k fini avec ¢
éléments. Rappelons qu’une cloture algébrique K de K contient pour
tout n une unique extension non ramifiée L de degré n de K. Soit m un
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générateur de p. C’est aussi un générateur de I'idéal maximal B de L.
Le choix de 7 identifie K* au produit direct Z x Uk (tout z € K*
Sécrit © = 7@y avec u € Uy = ANp), et de méme L* a Z x Uy.
Le groupe Gal(L/K) s’identifie canoniquement au groupe de Galois de
I'extension résiduelle ¢/k, lequel possede un générateur canonique, la

substitution de Frobenius x + x%. On note o ’élément correspondant
de G = Gal(L/K).

Soit D un corps gauche de centre K, de rang m? sur K. On com-
mence par montrer que I contient un sous-corps commutatif maxi-
mal L non ramifié sur K (voir par exemple Corps Locauzr, ch. XII).
Le théoreme de Skolem-Noether montre qu’il existe e € D* tel que
quel Vo € L, ox = exe !. L’indépendance linéaire des éléments
1,0,...,0™ ' de G montre que 1,e,...,e™ ! sont indépendants sur L,
et forment donc une base d’espace vectoriel de D sur L (opérant sur D
par multiplication & gauche). Soit a = ™. Comme a commute avec les
éléments de L et les puissances de e, c’est un élément de K* (et m est
le plus petit entier tel que ™ soit dans K). Le choix de e est unique au

produit pres par un élément x € L. On a (ze)? = zere 'e? = (vox) €?,
(re)® = (woxo?x) e, ..., et finalement

m—1

(xe)™ = (wox...0c™ x)e™ = Np/g(x)a.

Ainsi, on a associé a L un élément canonique a € K*/N(L*), et le
théoreme de Skolem-Noether montre que le résultat ne dépend pas du
choix de L C D.

Il n’y a plus qu’a calculer des normes dans L/K. On a N(7) = n™
et N(Up) = Uk (parce que L/K est non ramifiée ; c’est essentiellement
une application du lemme de Hensel), et I'on peut ainsi identifier la
norme a l'application z — mz de Z dans Z par une identification
indépendante du choix de 7. On termine en identifiant Z/mZ au sous-
groupe (% Z2)]Z de Q/7Z, quod erat demonstrandum. (Et pour étre tout
a fait complet, on passe a la limite sur les extensions non ramifiées,
obtenant Q/Z comme réunion de ses sous-groupe (+ Z)/Z.)

La méthode de Hasse pour traiter le cas global repose aussi sur le fait
qu’'un corps gauche de centre un corps de nombres K possede un sous-
corps commutatif maximal L qui est une extension cyclique de K, et sur le
(théoreme des normes de Hasse), qui affirme que dans une extension L/K
cyclique, tout x € K* qui est une norme dans toutes les extensions locales
qu / I?p est une norme dans L/K.
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Arithmétique des algebres de quaternions, III

§ 10. Compléments sur la norme réduite. Soit L une algebre cen-
trale simple sur un corps K et soit O un ordre maximal de L relative-
ment & un anneau de Dedekind A de corps des fractions K. On définit la
norme réduite d'un idéal fractionnaire (a gauche) I de O comme étant
I'idéal engendré par les normes réduites de ses éléments. C’est un idéal
fractionnaire de K. Ses composantes locales sont les normes réduites
des générateurs de ses localisés. La formule Nrd(/.J) = Nrd(I) Nrd(J)
est vraie chaque fois que O4(I) = O,(J). Par passages aux quotients,
on obtient une application de ’ensemble des classes a gauche de O dans
le groupe des classes de A.

Etant donnés des idéaux fractionnaires Ii,...,I., on associe a leur
somme directe 1'idéal I de M, (L) formé des matrices dont la k-ieme
colonne est constituée d’éléments arbitraires de [;. Dans 'algebre

M, (L), on a Nrd(I) = [],_, Nrd(I).

Soit K un corps local. Si K est une extension finie d'un corps Q, ou
si K =C,onaNrd(L*) = K*. Si K =R, il y a deux possibilités : on a
Nrd(L*) = R* si L est une algebre de matrices sur R, et Nrd(L*) = R%,
si L est une algebre de matrices sur H. (Observer que M, (H) est
connexe par arcs.)

Soit maintenant K un corps de nombres. Rappelons qu’'une place
infinie v : K — C est ramifiée dans L si elle est réelle, et siia norme
réduite est positive en v. Il revient au méme de dire que L, est de
type M,.(H). On dit que lalgebre L est totalement définie si toutes
les places infinies de K se ramifient dans L.

Nous allons maintenant préciser la notion de norme réduite sur les
classes. Rappelons qu’étant donné un ensemble S de places infinies de
K, on définit le groupe C15 des classes d’idéaux de K (relativement
a A) au sens restreint pour S comme le quotient du groupe [ des
idéaux fractionnaires de A par son sous-groupe P3 des idéaux princi-
paux possédant un générateur positif a toutes les places réelles de S.
On éerit CIF (ou CIf) si S = S.. A Dalgebre L, on associe le groupe
Cli ou S est I'ensemble des places infinies de K qui sont ramifiées

dans L. La norme réduite induit une application de I’ensemble des
classes de © dans CI5.
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§ 11. La condition d’Eichler. Sous forme restreinte, il s’agit d'une
notion relative a une algebre centrale simple sur un corps de nombres K,
utilisée lorsque A = Zg

L n’est pas un corps de quaternions totalement défini.

Soit S un ensemble fini de places de K contenant S.. A chaque place
finie v de K, on associe la valuation v, de I'idéal premier correspondant.
Soit alors

As={r e K|Vv ¢S5, vy(x)>0}.

(L’anneau des entiers Zgx de K correspond au cas ou S = S,.) La
condition d’Eichler relative a L et a un sous-anneau A de K de la
forme Ag est :

(CE) [L: K] >4, ouS contient une place qui ne se ramifie pas dans L.
Il est clair que (CE) se réduit a la premiere condition lorsque A = Z.

Théoreme. Soit O un ordre maximal. Si (CE) est satisfaite, la norme
réduite induit une bijection de l’ensemble des classes a gauche de O
sur l’ensemble le,. En outre, le nombre t de types d’ordres divise h, le
quotient étant le nombre de classes de O représentées par des idéauz
bilateres.

La démonstration repose sur un théoréme d’approximation forte, cas
particulier d’un énoncé de Kneser s’appliquant a tous les groupes algé-
briques semi-simples simplement connexes, découvert par Eichler dans
le cas des algebres simples (avec A = Zg ), qui I’a énoncé sous la forme
suivante :

Si (CE) est satisfaite, tout élément de A est norme réduite d’'un quater-
nion entier sur A.

Voici une premiere application du théoreme d’Eichler. Disons que
deux D-modules M et M’ de type fini sans A-torsion sont stablement
isomorphes 8'il existe k > 0 tel que O* @ M ~ OF P M.

Théoréme. Deux O-modules M et M’ sont stablement isomorphes si
et seulement st O@PM ~ OPM'. Si M et M’ sont de rang r >
2, ou si le couple (L, A) vérifie (CE), deuz sous-modules stablement
1somorphes sont isomorphes.

Démonstration. On écrit M et M’ comme sommes directes O™+ € T
et O™ 1P I on I et I’ sont des idéaux fractionnaires. Par hypothése,
il existe t > r tel que O '@ T ~ O P I'. Comme la norme réduite
sur les classes est la méme pour toutes les algebres M, (L), et que (CE)
est vérifiée pour tout t > 2, ona OPI ~ OPI', et méme [ ~ [’ si
L elle-méme vérifie (CE). O
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Lorsque L vérifie la condition d’Eichler, on peut transporter la struc-
ture de groupe de le‘ a I’ensemble des classes de . Le théoreme ci-
dessous va nous permettre en particulier d’expliciter cette structure de
groupe.

Appelons classes stables les classes d’équivalence pour la relation
suivante entre idéaux fractionnaires :

I~y I <= k>0, OFPI=OFPI' <= OPI~OPI'.

Etant donnés I, et I, la classe stable d’un idéal J tel que I @ I ~
O P J est bien définie. On munit ainsi I'ensemble des classes stables
d’une structure de groupe, dont I’élément neutre est la classe des idéaux
I stablement libres, c’est-a-dire tels que DP I ~ O P O. Ce groupe
s’appelle le groupe des classes de ) ou de L, et se note Clj, lorsqu’il
n’y a pas d’ambiguité sur A. Le théoreme précédent entraine tout de
suite :

Théoreme. Pour toute algebre centrale simple L, la norme réduite
induit un isomorphisme de Cl;, sur Cli, S désignant I’ensemble des
places réelles de K ramifiées dans L.

Il reste a calculer le nombre de classes des algebres qui ne vérifient
pas la condition d’Eichler. Des méthodes analytiques vont permettre
d’effectuer ce calcul.

§ 12. Fonctions zéta. On définit la fonction zéta d’une algebre simple
L par la formule habituelle

1
Cls) =D <
ICZD Nrd(7)®
la somme étant étendue aux idéaux fractionnaires entier d’un ordre O
donné. La série converge pour R(s) > 1, et I'on a un produit eulérien
Cr(s) = [, Czp(s) étendu aux idéaux premiers du centre. Posons [L :
K] = m?. Alors, la fonction zéta de L s’exprime en fonction de celle
du centre par une formule de la forme

Gl = [Lexts—) I @),

plo(L/K)

les termes ¢, étant eux-mémes des produits [ [, (1 —Ng /Q(p)as#ﬂ)il.

Dans le cas ou L est une algebre de quaternions H, notons 0 le
produit des idéaux premiers de K ramifiés dans H. La fonction zéta
s’écrit alors simplement

Culs) = Ck(29) (25— 1) J] (1= Nisop)*)

plo(H/K)
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(on «débarassey partiellement (x de ses facteurs locaux aux places ram-
ifiées).

On a besoin de considérer plus généralement les fonctions zéta par-
tielles (1. obtenues en sommant sur les idéaux d'une classe c. On a
¢ = Y_.CLc. Contrairement a ce qui se passe dans le cas commutatif,
le résidu de (. en s = 1 peut maintenant dépendre de c. Ce résidu se
calcule a I'aide d’'un résidu en s = 1 et de valeurs en 2. En utilisant
I’équation fonctionnelle de Hecke, qui relie (x(s) et (x(1 — s), on se
ramene a considérer des valeurs en 0 et —1.

§ 13. Une formule de masse. On considere maintenant une algebre
de quaternions totalement définie, de centre K (totalement réel). Les
ordres maximaux que ’on considere sont relatifs a la cloture intégrale
Zy de Z dans K. L’énoncé ci-dessous, facile a démontrer, met en
évidence une analogie entre corps de quaternions totalement définis et
corps de type C.M. (extensions quadratiques totalement imaginaires
d’un corps de nombres totalement réel). Les notations sont les sui-
vantes : n est le degré de K, Uk est le groupe Zj des unités de K
(isomorphe a {£1} x Z"7!), O est un ordre maximal de H, Uy est
le groupe des unités de 9O, et up le sous-groupe de Uy des unités de
norme réduite 1. C’est un groupe fini, isomorphe a un sous-groupe fini
de la sphere S® C H*.

Proposition. Uy est d’indice fini dans Uy. Plus précisément,
Up : pp Ug] =1,2, oud.
[Dans le cas C.M., cet «indice de Hasse» vaut 1 ou 2.]

On considere maintenant des représentants [q,...,[;, des idéaux
a gauche de 9, et 'on pose

Dk = Dd(Ik) et Wy — [ng - 1o, UK} .
En évaluant les résidus des fonctions zéta partielles, on montre la

formule suivante (comme dans le cas des corps abéliens de type C.M.,
les régulateurs disparaissent des formules) :

Théoréme. (Eichler)

> - Lt [T (- N

h
W
k=1 K plo

[Noter que cette formule prouve que la fonction zéta au point —1 d’un corps
de nombres totalement réel est un nombre rationnel non nul ; Siegel a montré
que ce résultat s’étend a tous les entiers négatifs impairs.]
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Examinons de plus pres le cas o K = Q, en notant dy le produit des
nombres premiers (en nombre impair) ramifiés dans H. On a n = 1,
Uk = {1}, donc wy = 2261 ¢o(=1) = =L (Buler!?), hg = 1, et la
formule se réduit a

Z |Uo| 24 b=D.
pldy
On en déduit que h = 1 n’est possible que pour d < 13, donc d €
{2,3,5,7,11,13}, et l'on doit exclure d = 11, valeur pour laquelle le
membre de droite n’est pas l'inverse d’un entier. On vérifie en exam-
inant les groupes susceptibles d’étre des groupes d’'unités que 'on a
h=1sip=2 3,5,7o0u 13, les groupes Uy étant isomorphes respec-
tivement a 121\4, Hys, Cs, C4let Cs. En revanche, la formule pour p = 11

ne peut étre que mettant en évidence deux classes,

Uo,| 0o, ~ 12
associées aux groupes Cy et Cy, et donc aussi deux types d’ordres.

Pour K quadratique de discriminant d = 5, 8 et 12, les valeurs re-
spectives de (x(—1) sont 55, - et z. Pour les algebres non ramifiées
en-dehors de l'infini, on trouve une classe dans chacun des dgux pre-
miers cas, avec groupe d’unité de norme réduite 1 isomorphe a Az (resp.
a §4). Dans le cas d = 12, on a vu qu’il y a au moins deux classes et
deux types d’ordres. En fait, on a hx = 1, mais h; = 2 (I'unité fonda-
mentale est € = 2 + /3, de norme +1), ce qui donne une autre preuve
de la minoration A > 2. La formule de masse se réduit a 1—12 + % = %,
dou h=t=2.

§ 14. Compléments.

14.1. Eichler a donné en 1955 des formules explicites pour le nombre de
classes. Voici son résultat lorsque K = Q, en écartant les cas singuliers
dg = 2 et dg = 3. Les groupes d’unités sont alors cycliques d’ordre
2i =2, 4 ou 6, ce qui permet d’écrire h = hy + ho + hs, h; désignant le
nombre de classes dont 'ordre a droite possede 2¢ unités. On a alors

M = -6 m=5 I (-6)),

pldg pldy

(2) et

1 1 2
h=— — 1)+ =hy+ = hs.
(3) 12H(p )+2 2+3 3
pldu
14.2. Soit E une courbe elliptique définie sur un corps fini F, de

caractéristique p. Le groupe des points d’ordre p sur Fq est alors d’ordre
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p (cas ordinaire) ou est réduit a {0} (cas super-singulier). Dans le
premier cas, 'anneau des endomorphismes de E est un ordre d’un corps
quadratique imaginaire. Dans le second cas, c¢’est un ordre maximal
du corps de quaternions ramifié en p et 'infini. La formule du nombre
de classes donne alors le nombre de courbes super-singulieres. Une
démonstration directe de ce résultat a été donnée par Igusa.

14.3. Soit a nouveau H une algebre de quaternions totalement définie.
Le cardinal de ensemble des classes stables est égal & hj.. La formule
de masse montre que le nombre de classes tend vers l'infini avec le
produit 0 des places ramifiées dans H. Il en résulte que pour K donné,
les ensembles de classes et de classes stables ne sont égaux que pour
un nombre fini d’algébres de quaternions (autrement dit, en général, la
simplification n’est pas possible). M.-F. Vignéras a démontré beaucoup
plus :

Théoreme. La simplification n’est possible que pour un nombre fini
de corps de quaternions totalement définis.

La démonstration se fait en majorant les discriminants dx des corps K
pour lesquels la simplification est possible. En utilisant les minorations
des discriminants (issues de la géométrie des nombres) qui étaient con-
nues lors de la rédaction de son travail, elle a en particulier prouvé la
majoration [K : Q] < 33. Elle a également classé toutes les algebres
posibles de centre un corps quadratique ou cubique cyclique. (Nous
I'avons fait au § précédent dans le cas de Q.) Or, postérieurement a
la rédaction de son article, I'utilisation de méthodes analytiques a con-
duit a d’importants progres sur les minorations des discriminants. Il
serait intéressant de reprendre le probleme de la simplification en ten-
ant compte de ces nouvelles minorations. Peut-étre est-il méme possible
d’obtenir la classification complete des algebres a simplification.
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Quelques références

La référence fondamentale est 'ouvrage

[De] Max DEURING, Algebren, Julius Springer, 1935,

dont il existe une édition anglaise. Il traite de tous les points abordés
dans ce cours (y compris les fonctions zéta), a 1’exception de la rubrique
, dont les résultats sont postérieurs a 1935.

Le livre
[Re] Irving REINER, Maximal orders, Academic Press, 1975
contient tout ce qui est algébrique, mais laisse de coté le contenu des
8§ 12 et 13 (la partie analytique de la théorie) ainsi que la théorie des
modules.

Pour [a] on peut aussi consulter
[Bo] Nicolas BOURBAKI, Algébre, chapitre VIII, Hermann, Paris, 1972,
dont la notice historique donne une bonne idée de I’évolution de la
théorie, depuis les années 1900 aux Etats-Unis (Peirce, Wedderburn, ...)
juqu’a I’Allemagne des années 1930 (E. Artin, R. Brauer, H. Hasse,
E. Noether, ...), noms auxquels il convient d’adjoindre Th. Skolem et
A. Albert, et mieux (mai 2013), la nouvelle édition refondue et étendue
[Bo’], méme titre, 2012, chez Springer.

Les résultats de @ ont été développés entre les deux guerres par
H. Brandt, C. Chevalley et H. Hasse, et complétés en 1960 par M. Aus-
lander et O. Goldman.

La théorie de [c], essentiellement équivalente a la théorie du corps
de classes qui décrit les extensions abéliennes d'un corps de nombres
en termes du corps de base, est tres largement ’'ceuvre de Hasse. Pour
un exposé (tres) formel, voir
[We], André WEIL, Basic Number Theory, Springer, Heidelberg, 1967.

Les résultats de|d | sont essentiellement dus & Martin Eichler (travaux
de 1936-1938 et de 1955). Richard Swan et Marie-France Vigéras en ont
modernisé la présentation. On doit a Swan de nombreux résultats sur
les algebres des groupes finis (notamment, le fait remarquable que sur
un anneau de Dedekind A de caractéristique zéro, les modules projectifs
de type fini sont localement libres des lors que leur rang est défini, et
il I’est lorsque les diviseurs premiers de 1'ordre du groupe ne sont pas
inversibles), ainsi que divers compléments concernant les groupes de
type quaternioniens, et a Vignéras diverses variantes utiles des formules
d’Eichler.

Pour la théorie de , le livre de référence est
[Vi], Marie-France VIGNERAS, Arithmétique des Algébres de Quater-
nions, Springer, Lecture Notes n° 800, 1980.



