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L’arithmétique des algèbres de quaternions.

Ce texte rend compte de trois cours que j’ai donnés les 12, 19, et 26 avril
2002 à l’École Polytechnique Fédérale de Lausanne à la demande d’Eva
Bayer. Il s’agissait d’expliquer en trois heures l’essentiel de ce que l’on sait
sur la structure et sur l’ensemble des classes d’idéaux (à gauche) des corps
de quaternions sur un corps de nombres.

Comme le lecteur le constatera à la lecture des paragraphes 11 et 13, seuls
certains corps de quaternions se distinguent dans la catégorie de toutes les
algèbres centrales simples. Mieux, on obtient des énoncés unifiés en associant
à un corps de quaternions H l’algèbreM2(H) des matrices 2×2 sur H. Pour
ces raisons, j’ai préféré ne pas me limiter aux algèbres de quaternions, qui
ne sont rien d’autre que les algèbres simples de rang 4 sur leur centre.

Vu le temps dont je disposais, il ne m’a pas été possible de donner des
démonstrations ; tout au plus ai-je pu en esquisser quelques unes. La bibli-
ographie commentée qui termine cette rédaction signale quelques ouvrages
dans lesquels le lecteur pourra les lire. L’exposé oral a été enrichi de quelques
exemples et du § 9’.

Je remercie Christian Maire pour ses remarques qui m’ont permis d’amélio-

rer ce texte au fur et à mesure de sa rédaction, et Boas Erez pour la relecture

détaillée qu’il en a faite.

Le texte présenté ici est une transcription en LATEX de mai 2013 de
la version d’origine en AmSTEX. J’ai profité de cette nouvelle édition
pour corriger quelques fautes de style et ajouter la référence [Bo’] en
dernière page.
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Arithmétique des algèbres de quaternions, I

§ 1. Quaternions. Soit K un corps de caractéristique différente de 2,
et soient a, b ∈ K∗. L’algèbre de quaternions d’invariants a et b est
l’unique algèbre associative sur K ayant une base (1, i, j, k) vérifiant
les relations

i2 = a, j2 = b, ij = −ji = k .

On a alors en particulier k2 = −ab. L’exemple historique, dû à Hamil-
ton, est celui où K = R et a = b = −1, d’où k2 = −1. On parle
alors de quaternions usuels, quel que soit le corps de base K considéré.
Hurwitz les a étudiés lorsque K = Q, et a introduit l’ordre de Hurwitz
O, anneau de base

(1, i, j, ω) où ω =
−1 + i+ j + k

2
sur Z, sur lequel nous reviendrons.
[Pour être complet, signalons la définition en caractéristique 2 : on prend

a ∈ K, b ∈ K∗, et les relations sont i2 = i + a, j2 = b, ij = k, ji = k + j,

d’où k2 = ab.]

§ 2. Algèbres simples et notions voisines. Soit K un corps. Une
K-algèbre L (associative, de dimension finie) est dite simple si ses
seuls idéaux bilatères sont {0} et L, semi-simple si elle ne contient pas
d’idéaux nilpotents non nuls, centrale si son centre est K. On montre
en considérant les idéaux (à gauche) minimaux qu’une algèbre simple
est isomorphe à une algèbreMm(D) où D est un corps gauche de centre
C ⊃ K, bien défini à isomorphisme près (ainsi que l’entier m) par L,
et qu’une algèbre semi-simple est produit direct d’algèbres simples :
L =

∏r
i=1 Li. Lorsque les centres Ci des Li sont des extensions sépa-

rables de K, on dit que L est une algèbre séparable.

L’arithmétique dans une telle algèbre s’étudie suivant quatre rubriques.
a Structures des algèbres (semi-) simples sur un corps K arbitraire.

b Arithmétique dans une algèbre séparable relativement à un anneau
de Dedekind A de corps des fractions K.
c Situation a lorsque K est un corps local ou global, en pratique

un corps de nombres ou l’un de ses complétés (théorie de Hasse).

d Situation b lorsque K est un corps global (théorie de Eichler).
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Compléments sur les algèbres simples.
• Si L est centrale simple sur K, quelle que soit l’extension K ′ de K, la
K ′-algèbre étendue LK′ = K ′⊗L est encore centrale simple. Le produit
tensoriel de deux algèbres centrales simples est encore central simple.
(Ces propriétés de stabilité entrâınent les propriétés analogues pour les
algèbres séparables.)
• SoitK une clôture algébrique de K. CommeK⊗L ne peut être qu’une
algèbre de matrices, le rang [L : K] d’une algèbre centrale simple est
un carré, soit m2.
• Soit D un corps gauche de centre K, de rang m2 sur K. Alors,
tout sous-corps (commutatif) de D est contenu dans un sous-corps
commutatif maximal de D, et un tel sous corps est de degré m sur K.
En outre, il en existe qui sont séparables sur K.
• Soit L/K centrale simple. Pour x ∈ L, le polynôme caractéristique
d’une matrice représentant x dansK⊗L est à coefficients dans K, et
ne dépend que de x. C’est le polynôme caractéristique réduit de x. Il
est lié au polynôme caractéristique non réduit de x (celui de y 7→ xy)
par la relation χx(X) = χred,x(X)m.

• Écrivons χred,x(X) = Xm−a1Xm−1+· · ·+(−1)mam. Le coefficient a1
(resp. am) est la trace réduite (resp. la norme réduite) de x. Notations :
Trd(x), Nrd(x).
• Dans une algèbre centrale simple, la forme bilinéaire (x, y) 7→ Trd(xy)
est non-dégénérée.
• Pour tout x ∈ D, et tout sous-corps commutatif maximal M de D
contenant x, on a χred,x = χM/K,x, et en particulier Trd(x) = TrM/K(x)
et Nrd(x) = NM/K(x).
• Théorème de Skolem-Noether. Soit L/K une algèbre centrale simple,
soit M une sous-algèbre simple de L, et soit σ : M → N ⊂ L un isomor-
phisme d’algèbres. Alors, σ est la restriction à M d’un automorphisme
intérieur de L.

§ 3. Application aux algèbres de quaternions. Les notations sont
celles du § 1.

D’abord, trace et norme réduites ont une interprétation simple en
termes d’involution. Décrivons-la dans le cas où CarK 6= 2. Pour
q = x+ yi+ zj + tk, on pose q̄ = x− yi− zj− tk. L’application q 7→ q̄
est une involution (i.e., on a q + q′ = q̄ + q̄′, qq′ = q̄′q̄, et λ̄ = λ pour
λ ∈ K). On a alors :

Trd(q) = q + q̄ = 2x , Nrd(q) = q q̄ = x2 − ay2 − bz2 + abt2 ,

χred,q(X) = (X − q) (X − q̄) = X2 − Trd(q)X + Nrd(q) .
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Remarque. La forme K-bilinéaire (q, q′) 7→ Trd(qq′) a pour forme
quadratique associée q 7→ 2 Nrd(q).

Le théorème de Skolem-Noether explique la raison d’être de la défini-
tion quelque peu artificielle d’une algèbre de quaternions. On vérifie
facilement qu’une algèbre de quaternions est centrale simple.
Réciproquement :

Théorème. Toute algèbre centrale simple de rang 4 est une algèbre de
quaternions.

Démonstration. Limitons-nous au cas d’un corps gauche H/K. Soit
M ⊂ H un sous-corps de degré 2, séparable sur K. Si CarK 6= 2 (resp.
si CarK = 2), on peut écrire M = K(i) où i est racine d’une équation
de Kummer X2 − a = 0 (resp. d’Artin-Schreier X2 −X − a = 0). La
conjugaison i 7→ −i (resp. i 7→ i + 1) de Gal(M/K) est de la forme
i 7→ jij−1. Mais b = j2 commute avec i et j, donc est dans K, et la fin
de la démonstration est alors immédiate.[
Le cas d’une algèbre de matrices relève d’un calcul explicite. Par

exemple, si CarK 6= 2, on peut prendre i = ( 1 0
0 −1 ) et j = ( 0 1

1 0 ) .
]

�

Les quaternions pour lesquels x = 0 (ceux qui sont dans le noyau
de la trace réduite) sont appelés quaternions purs. Ils constituent
un sous-espace vectoriel de dimension 3 de H, que nous notons V ,
supplémentaire orthogonal de K pour la forme Trd(qq′). On vérifie
sans peine que l’on a q2 ∈ K si et seulement si q ∈ K ou q est pur, et
que lorsque H est un corps , l’égalité q2 = q′2 avec q ∈ K et q′ pur n’est
possible que si q = q′ = 0.

§ 4. Considérations géométriques. SoitH un corps de quaternions,
muni ainsi que son sous-espace V des quaternions purs de la forme
Trd(qq̄′). Pour tout q ∈ H∗, l’application h 7→ qhq−1 est une isométrie
de H comme de V . On en déduit des homomorphismes de H∗/K∗ dans
les groupes orthogonaux SO(V ) et SO(H). Le premier est surjectif
(utiliser le fait que la réflexion le long de q est h 7→ −qh̄q̄−1).

Dans le cas des quaternions de Hamilton (sur R), c’est la construction
classique du revêtement universel Spin3(R) ' S3 → SO3(R).
[On peut de même construire Spin4(R) à partir de (q, r) 7→ (h 7→ qhr−1).]

On sait (voir par exemple H. Zassenhaus, The theory of groups) que
les sous-groupes finis de SO3(R) sont isomorphes à l’un des groupes
suivants (qui sont uniques à conjugaison près) : le groupe cyclique Cn
d’ordre n (∀n ≥ 1), le groupe diédral Dn d’ordre 2n (∀n ≥ 2), ou l’un
des trois groupes A4, S4, A5, d’ordres respectifs 12, 24, 60. (Ces trois
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groupes sont associés aux polyèdres réguliers ; les groupes diédraux
correspondent aux polygones réguliers.) Par relèvement dans la sphère
S3 identifiée au groupe des quaternions de norme 1, on obtient les
groupes cycliques C2n, les groupes quaternioniens H4n d’ordre 4n ≥ 8,

et trois groupes spéciaux Â4, Ŝ4, Â5, d’ordres respectifs 24, 48, 120.
• Dans R(i) ' C, une racine de l’unité ζ d’ordre m engendre un groupe
cyclique Cm.
• Soit ζ ∈ R(i) d’ordre 2m. Le groupe 〈ζ, j〉 est quaternionien d’ordre
4m. (On a jζj−1 = ζ̄ = ζ−1.) Le corps gauche Q(ζ, j) est un corps de
quaternions de centre Q(ζ + ζ−1), le sous-corps réel maximal de Q(ζ) ;
on obtient des quaternions sur Q si et seulement si m = 2 ou m = 3.

• À conjugaison près, on a les inclusions Â4 ⊃ H8, Ŝ4 ⊃ Â4, et Â5 ⊃ Â4.

• Le groupe Â4 s’obtient comme groupe des éléments inversibles de
l’ordre de Hurwitz ; ses 24 éléments sont 1, −1 (d’ordre 2), ±i,±j,±k
(d’ordre 4), −1±i±j±k

2
(d’ordre 3), et 1±i±j±k

2
(d’ordre 6).

• On construit Ŝ4 sur Q(
√

2) comme groupe des élément inversibles de
norme réduite 1 de l’anneau de base

(1,
1 + i√

2
,

1 + j√
2
, ω =

−1 + i+ j + k

2
)

sur Z[
√

2]. On a Ŝ4 = Â4 ∪ 1+i√
2
Â4, et Ŝ4rÂ4 contient 12 éléments de

chacun des ordres 4 et 8.
• Finalement, soit τ = 1+

√
5

2
. Le groupe Â5 est engendré par Â4 et

i+ τj + τ−1k. Les éléments de Â5rÂ4 sont d’ordre 5 ou 10.

§ 5. Ordres maximaux et discriminant. Étant donnés un an-
neau intègre, de corps des fractions K, et une K-algèbre L, un ordre
de A dans L est un sous-anneau O de L, qui est un A-module de
rang n = [L : K] dont les éléments sont entiers sur A. Si A est
noethérien et intégralement clos, il revient au même de dire que O
est un anneau qui est un A-module de type fini et de rang n. On
construit facilement des ordres par le procédé suivant : on part d’une
base (e1 = 1, e2, . . . , en) de L sur K, et l’on prouve l’existence d’un
d ∈ Ar{0} tel que (e1, de2, . . . , den) est une base d’un ordre.

Soit L =
∏r

i=1 Li semi-simple de facteurs simples Li ayant pour
centres Ci. La trace réduite est définie par

TrdL/K =
∑
i

TrCi/K ◦TrdLi/Ci
.

Si x ∈ L est entier sur A, alors Trd(x) ∈ K est aussi entier sur A.



7

À partir de maintenant, on suppose que L est séparable et que A est
un anneau de Dedekind.

La forme bilinéaire (x, y) 7→ Trd(xy) est non-dégénérée, ce qui permet
d’associer à tout sous-A-module M de L de rang n son dual

M ] = {x ∈ L | ∀ y ∈M, Trd(xy) ∈ A} .
Dans le cas d’un ordre O, on a O] ⊃ O, et

O ⊂ O′ =⇒ O ⊂ O′ ⊂ O′
] ⊂ O] ,

ce qui prouve que tout ordre est contenu dans un ordre maximal (pour
l’inclusion).

Étant donné un ordre O, son dual O] est un O-module à gauche et
à droite, la codifférente de O. Son inverse (dans un sens à définir, et
sous réserve d’existence) est un idéal bilatère de O, la différente, notée
DO.

Relativement à un ordre O, on a une notion naturelle d’idéal frac-
tionnaire à gauche, à droite, ou bilatère : c’est un sous-O-module de
L de type fini et de rang n ; un point de vue ne faisant pas référence à
un ordre particulier sera donné plus loin.
Exemple : la codifférente et la différente sont des idéaux fractionnaires
bilatères.

Du fait que la forme Trd(xy) est non-dégénérée, on a une notion
de discriminant réduit d’abord pour une base de L/K (le déterminant
det(Trd(eiej)), puis pour un module de rang n. Cela se fait en utilisant
des arguments locaux standards, ou en adaptant les méthodes utilisées
par Serre dans le chapitre III de Corps locaux .
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Arithmétique des algèbres de quaternions, II

§ 6. Idéaux inversibles. Les notations sont celles du § 5. Convenons
d’appeler idéal fractionnaire dans L tout sous-A-module I de L de
rang n. (Autrement dit, K⊗AI est libre de rang 1 sur L.) Un tel
module possède des ordres à gauche et à droite

Og(I) = {x ∈ L | xI ⊂ I} et Od(I) = {x ∈ L | Ix ⊂ I} .

Il est clair que I est un idéal fractionnaire à gauche au sens précédent
pour un ordre O si et seulement si Og(I) ⊃ O. Alors, tout élément
de Od(I) définit un O-endomorphisme de I, ce qui identifie EndO(I)
à Od(I)◦ (anneau opposé à Od(I)). On peut multiplier les idéaux
fractionnaires par I J = {

∑
xiyi | x ∈ I, y ∈ J}.

Toutefois, sauf mention expresse du contraire, on n’effectuera un tel
produit que lorsque Od(I) = Og(J).

Soit O un ordre, et soit I un idéal fractionnaire à gauche de O (i.e.,
on a O ⊂ Og(I)). On pose

I ′ = {x ∈ L | Ix ⊂ O} ;

c’est un idéal à droite pour O et à gauche pour Od(I), II ′ est un idéal
bilatère de O, et I ′I est un idéal bilatère de Od(I) (on a I (I ′I) =
(II ′) I ⊂ OI = I, donc I ′I ⊂ Od(I)). On dit que I est inversible si
I ′I = Od(I). Exemple: un idéal fractionnaire principal, c’est-à-dire de
la forme I = Ox, est inversible. En effet,

I ′ = x−1O , Od(I) = x−1Ox , et I ′I = x−1O ·Ox = x−1Ox .

On peut caractériser les idéaux inversibles comme étant les idéaux pro-
jectifs. Leur structure peut être très compliquée. Les choses se simpli-
fient dans le cas des ordres maximaux, dont de nombreuses propriétés
les rapprochent des anneaux de Dedekind.

§ 7. Le groupöıde Brandt. Une étude des corps gauches sur les
corps complets permet de montrer qu’un idéal fractionnaire à gauche
sur un ordre maximal O est localement libre, c’est-à-dire que Ap⊗I
est libre sur Ap⊗O pour tout idéal premier p de A ; en particulier, les
idéaux fractionnaires des ordres maximaux sont inversibles. (N.B. Ap

désigne l’anneau local de A en p, non son complété.)



9

Comme le fait pour un ordre d’être maximal est une propriété de
nature locale, cela entrâıne que l’ordre à gauche d’un idéal fractionnaire
est maximal si et seulement si son ordre à droite l’est (on parle alors
d’idéal normal), et que les ordres maximaux sont localement conjugués.

Définition. On dit que deux idéaux à gauche I et J sur un même
ordre maximal O sont équivalents s’il existe x ∈ L∗ tel que J = I x ;
il revient au même de dire que ce sont des O-modules isomorphes. On
dit que deux ordres maximaux sont du même type s’ils sont conjugués.
On note h le nombre de classes à gauche de O, et t le nombre de types
d’ordres maximaux de L. L’idéal de distance de deux ordres maximaux
O1 et O2 est δ(O1,O2) = (O2O1)

−1 (inverse par rapport à O1 ou à O2).
[N.B. La finitude de h est vraie lorsque K est un corps de nombres. On ne

s’en occupe pas ici. L’énoncé suivant a un sens même si la finitude n’est pas

assurée.]

Théorème. Le nombre h ne dépend pas de O. C’est aussi le nombre
de classes à droite de O, et l’on a t ≤ h.

Démonstration. Si O1 et O2 sont deux ordres maximaux d’idéal de
distance δ, l’application J 7→ δJ met en bijection les classes à gauche
de O2 avec celles de O1. En outre, pour tout ordre maximal O,
l’application I 7→ I ′ met en bijection la classe à gauche de I avec
la classe à droite de Od(I). Cela démontre les deux assertions relatives
à h.

Si O et O′ sont deux ordres maximaux, il existe des idéaux à gauche
I de O tels que Od(I) = O′, par exemple leur idéal de distance. Comme
Od(Ix) = x−1Od(I)x, l’ensemble des images des idéaux de la classe de I
est la classe de conjugaison de O′. On construit ainsi une surjection de
l’ensemble des classes à gauche de O sur l’ensemble des types d’ordres
de L. �

Voici un exemple avec deux types d’ordres. Soit H l’algèbre des quater-

nions usuels sur K = Q(
√

3). L’ordre de Hurwitz étendu à Z[
√

3] se plonge

dans un ordre maximal M1, dont le groupe U1 des unités de norme réduite 1

contient le groupe Â4, et lui est en fait égal, car on doit exclure les groupes

Ŝ4 et Â5, vu que ni 2 ni 5 ne sont des carrés dans K. Comme K est le

sous-corps réel maximal de Q(ζ12), il existe un ordre maximal M2 dont le

groupe des unités de norme 1 est H24. Il y a donc au moins deux types

d’ordres maximaux dans H. (On peut montrer que l’on a h = 2, donc aussi

t = 2, cf. partie III.)

La multiplication des idéaux normaux dans L est une loi associative,
mais non partout définie, pour laquelle les 〈〈éléments unités〉〉 sont les
ordres maximaux (un de chaque côté pour chaque idéal) et telle que
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tout élément a un inverse à gauche et un inverse à droite. C’est le
groupöıde Brandt.

Soit O un ordre maximal. On dit qu’un O-module à gauche M est de
rang r si K⊗AM est libre de rang r sur L. Un tel module est isomorphe
à une somme directe de r idéaux fractionnaires (M ' I1

⊕
. . .
⊕

Ir), et
l’on peut même réduire une telle somme sous la forme M ' Or−1⊕ I.
Toutefois, l’analogie avec la théorie des anneaux de Dedekind s’arrête
là : il existe des cas dans lesquels deux idéaux I, J non isomorphes
sont stablement isomorphes, c’est à dire tels que Or−1⊕ I et Or−1⊕ J
sont isomorphes pour un r > 1 (ou pour r = 1, cela revient au même,
cf. partie III). Autrement dit, on ne peut pas toujours simplifier.

Dans le cas d’un anneau de Dedekind, deux modules stablements
isomorphes sont isomorphes (et la classe de I tel que M ' Ar−1

⊕
I

est un invariant, appelé classe de Steinitz de M), mais cela se démontre
en utilisant la théorie des déterminants, qui n’existe que sur les anneaux
commutatifs.

§ 8. Corps gauches sur un corps complet. On suppose que A
possède un unique idéal premier p et qu’il est complet pour la valeur
absolue p-adique. Soit D un corps gauche de centre K. Muni de
n’importe quelle norme de K-espace vectoriel, D est complet.
Théorème. Soit m2 le rang de D sur son centre.

(1) Le corps gauche D possède un unique ordre maximal O.
(2) O contient un unique idéal maximal à gauche P, qui est bilatère

et aussi maximal en tant qu’idéal à droite.
(3) Les idéaux fractionnaires de D sont bilatères, et ce sont les

puissances Pk, k ∈ Z de P.
(4) O/P est un corps gauche.

En outre, si le corps résiduel A/p de K est fini, l’indice de ramification
de P et son degré résiduel sont tous deux égaux à m, i.e., on a

pO = Pm et [O/P : A/p] = m,

la différente de D est Pm−1 (〈〈une algèbre simple est modérément ramifiée

sur son centre〉〉), et son discriminant est donc égal à pm(m−1).

Revenons à la situation globale. Pour tout idéal p de A, considérons

les complétés Âp de A et K̂p de K. Si L est une K-algèbre centrale

simple, sa complétée L̂p en p est isomorphe à K̂p⊗KL. On a des iso-
morphismes

L 'Mr(D), L̂p 'Mrp(D(p)), et D̂p 'Msp(D(p))
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oùD(p) est un corps gauche de centre K̂p, les rangs des diverses algèbres
vérifiant (avec des notations évidentes) les relations m = spmp et
rm = rpmp. Il existe une notion d’idéal premier (bilatère) rendant
les services habituels. Dans ce cadre, la notion de ramification de p
dans L se traduit par le fait que l’on ait mp > 1. Comme dans le
cas commutatif, les idéaux premiers ramifiés sont exactement ceux qui
divisent le discriminant réduit.

À côté des corps locaux du type K̂p comme ci-dessus, on doit aussi

considérer les places v infinies, pour lesquelles K̂v est isomorphe à R ou
à C. Pour v complexe (resp. réelle), l’algèbre complétée est isomorphe
à une algèbre Mr(C) (resp. Mr(R) ou Mr(H)). Dans ce dernier cas,
on dit que v est ramifiée.

§ 9. Résultats locaux et globaux. Le but de ce § est de donner
la classification des corps gauches sur les extensions finies d’un corps
p-adique Qp (y compris sur Q∞ = R), puis sur un corps de nombres.

Les corps gauches de centre un corps K de degré fini sur Qp sont
décrits à isomorphisme près par un invariant dans le groupe de torsion
Q/Z. À un corps gauche D de rang m2 correspond α ∈ Q/Z d’ordre m,
de sorte qu’il y a exactement ϕ(m) corps gauches de centre K et de rang
m2 sur K, cf. infra, § 9’. Pour toute extension K ′/K finie, si K ′⊗KD
est une algèbre de matrices sur un corps gauche D′, l’invariant α′ de
D′ est [K ′ : K]α.

Sur R, l’invariant α est à valeurs dans le sous-groupe {0, 1
2
} de Q/Z

(0 pour R, 1
2

pour H) ; sur C, l’invariant α est nul.

Cas des corps de quaternions. Il y a dans chaque cas (sauf si
K = C) un unique corps de quaternions. La norme réduite correspond
à l’unique classe de formes quadratiques quaternaires qui ne représente
pas 0 sur K.

Lorsque p est impair, on peut le construire ainsi : on choisit un
générateur π de p et a ∈ Arp qui n’est pas un carré modulo p, et
l’algèbre Ha,π convient. En effet, l’équation Nrd(q) = 0 s’écrit x2 −
ay2 − πz2 + aπt2 = 0, et l’on peut supposer que x, y, z, t ne sont pas
tous divisibles par π. Elle entrâıne x2 − ay2 ≡ 0 mod p, donc x ≡
y ≡ 0 mod p, puis z ≡ t ≡ 0 mod p en raisonnant modulo p2, en
contradiction avec l’hypothèse.

Lorsque p = 2, il faut travailler modulo 4 p. Lorsque le degré [K : Q2]
est impair, le corps des quaternions usuels convient.
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Soit maintenant K un corps de nombres. À un corps gauche D, et
à tout complété Kv de K, on associe l’invariant αv de D(v) tel que

D̂v 'Mrv(D(v)).

Théorème. Les classes d’isomorphismes de corps gauches de centre
K sont en bijection avec les systèmes d’invariants locaux vérifiant les
conditions suivantes :

(1) αv = 0 pour presque tout v.
(2) αv = 0 si v est complexe.
(3) αv = 0 ou αv = 1

2
si v est réelle.

(4)
∑

v αv = 0

En outre, le corps gauche D correspondant à un système d’invariants
αv comme ci-dessus a pour rang m2, où m est le PPCM des ordres des
αv.
[La condition (4) est connue sous le nom de 〈〈loi de réciprocité de Hasse〉〉.

C’est une traduction dans le langage des algèbres simples de la loi de récipro-

cité d’Artin de la théorie du corps de classes.]

Cas des corps de quaternions. La loi de réciprocité de Hasse signi-
fie simplement que le nombre de places ramifiées (y compris les places
réelles ramifiées) doit être pair . Le discriminant est le carré d2 d’un
produit d’idéaux premiers distincts. Lorsque l’on se donne un tel pro-
duit, ainsi que le comportement des places réelles de façon que soit
respectée la règle de parité, écrire le corps de quaternions sous la forme
Ha,b n’a rien évident.

Par exemple, il existe pour tout p premier un unique corps de quater-
nions Hp de centre Q ramifié exactement en p et ∞. La dernière con-
dition équivaut à ce que Hp soit défini par des relations i2 = −a et
j2 = −b avec a, b > 0. Le discriminant de Hp est p2, celui de la base
(1, i, j, k) est (4ab)2. Il faut donc faire en sorte que p divise 2ab. Voici
une recette de construction de Hp :
• Si p = 2, prendre a = −1 et b = −1 (ou b = −2) ; H2 est le corps
〈〈usuel〉〉.
• Si p ≡ 3 mod 4, prendre a = −1 et b = −p.
• Si p ≡ 5 mod 8, prendre a = −2 et b = −p.
• Si p ≡ 1 mod 8, prendre a = q ≡ 7 mod 8 premier et b = −p tel
que

(
q
p

)
= −1.

[Justification dans le dernier cas : la forme x2 + pz2 (resp. x2 + qy2)

représente 0 sur Qq parce que
(−p
q

)
= +1 (resp. sur Q2 parce que −q ≡ +1

mod 8). L’ensemble des places ramifiées, que l’on sait être contenu dans

{2, p, q,∞}, est réduit à {p,∞} ou est vide, et ce dernier cas est exclu vu

que la place infinie se ramifie.]
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Pour être complet, il faudrait encore déterminer un ordre maximal,
en modifiant la base (1, i, j, k) par l’introduction de dénominateurs de
façon à obtenir la bonne valeur du discriminant. Voici une possibilité
pour chacun des trois premiers exemples :
• Dans le cas de H2, on remplace k par ω = −1+i+j+k

2
; on obtient

l’ordre de Hurwitz.
• Dans le cas de Hp, p ≡ 3 mod 4, on remplace j par ω = −1+j

2
et k

par ω′ = iω. (On a ω′2 = −1.)
• Dans le cas de Hp, p ≡ 5 mod 8, on remplace i par ω = i+k

2
et j par

ω′ = 1+i+j
2

.
On vérifie dans chaque cas que les produits deux à deux des éléments

des nouvelles bases s’expriment sur ces bases, ce qui montre que l’on a
bien défini des ordres. Le fait qu’ils soient maximaux résulte du calcul
de leur discriminant, évident à partir de l’indice de l’ordre de base
(1, i, j, k).

Voici un exemple concernant les corps quadratiques réels. Il existe un
unique corps de quaternions H ramifié aux deux places infinies de K et
à aucune place finie. On peut le construire ainsi : on choisit un nombre
premier p qui est inerte ou ramifié dans K ; alors, H = K⊗QHp. [En

effet, le degré local en p est égal à 2, donc l’extension des scalaires de Q à K
〈〈tue〉〉 la ramification en p ; variante globale : H n’est pas ramifié en-dehors

de p, ∞1, ∞2 et l’est aux places infinies.]

§ 9’. Construction de l’invariant local. Avant d’entrer dans le
vif du sujet, signalons que le fait que Q/Z soit un groupe s’interprète
en termes de groupe de Brauer . En fait, quel que soit le corps K,
on multiplie les classes d’isomorphismes de corps gauches de centre K
en posant [D1] [D2] = [D′] si D1⊗KD2 ' Mr(D

′). C’est là une loi
commutative et associative, pour laquelle [K] est élément neutre, et
l’inverse de [D] est la classe du corps gauche opposé D◦. Le groupe
ainsi construit est le groupe de Brauer de K, noté Br(K).

Étant donnée une extension L/K, on note Br(L/K) le sous-groupe
de Br(K) formé des classes de corps gauches neutralisés par L (c’est-
à-dire tels que L⊗KD soit une algèbre de matrices). Lorsque L/K est
galoisienne finie de groupe G, on peut identifier Br(L/K) au groupe de
cohomologie H2(G,L∗). Lorsque G est cyclique, les calculs sont très
simples. C’est cette remarque que l’on va utiliser dans le cas local.

Soit doncK un corps complet pour une valuation discrète v, d’anneau
de valuation A et d’idéal maximal p, à corps résiduel k fini avec q
éléments. Rappelons qu’une clôture algébriqueK de K contient pour
tout n une unique extension non ramifiée L de degré n de K. Soit π un
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générateur de p. C’est aussi un générateur de l’idéal maximal P de L.
Le choix de π identifie K∗ au produit direct Z × UK (tout x ∈ K∗

s’écrit x = πv(x) u avec u ∈ UK = Arp), et de même L∗ à Z × UL.
Le groupe Gal(L/K) s’identifie canoniquement au groupe de Galois de
l’extension résiduelle `/k, lequel possède un générateur canonique, la
substitution de Frobenius x 7→ xq. On note σ l’élément correspondant
de G = Gal(L/K).

Soit D un corps gauche de centre K, de rang m2 sur K. On com-
mence par montrer que D contient un sous-corps commutatif maxi-
mal L non ramifié sur K (voir par exemple Corps Locaux , ch. XII).
Le théorème de Skolem-Noether montre qu’il existe e ∈ D∗ tel que
quel ∀x ∈ L, σ x = exe−1. L’indépendance linéaire des éléments
1, σ, . . . , σm−1 de G montre que 1, e, . . . , em−1 sont indépendants sur L,
et forment donc une base d’espace vectoriel de D sur L (opérant sur D
par multiplication à gauche). Soit a = em. Comme a commute avec les
éléments de L et les puissances de e, c’est un élément de K∗ (et m est
le plus petit entier tel que em soit dans K). Le choix de e est unique au
produit près par un élément x ∈ L. On a (xe)2 = xexe−1e2 = (xσx) e2,
(xe)3 = (xσxσ2x) e3, . . . , et finalement

(xe)m = (xσx . . . σm−1x)em = NL/K(x) a .

Ainsi, on a associé à L un élément canonique ā ∈ K∗/N(L∗), et le
théorème de Skolem-Noether montre que le résultat ne dépend pas du
choix de L ⊂ D.

Il n’y a plus qu’à calculer des normes dans L/K. On a N(π) = πm

et N(UL) = UK (parce que L/K est non ramifiée ; c’est essentiellement
une application du lemme de Hensel), et l’on peut ainsi identifier la
norme à l’application z 7→ mz de Z dans Z par une identification
indépendante du choix de π. On termine en identifiant Z/mZ au sous-
groupe ( 1

m
Z)/Z de Q/Z, quod erat demonstrandum. (Et pour être tout

à fait complet, on passe à la limite sur les extensions non ramifiées,
obtenant Q/Z comme réunion de ses sous-groupe ( 1

m
Z)/Z.)

La méthode de Hasse pour traiter le cas global repose aussi sur le fait

qu’un corps gauche de centre un corps de nombres K possède un sous-

corps commutatif maximal L qui est une extension cyclique de K, et sur le
〈〈théorème des normes de Hasse〉〉, qui affirme que dans une extension L/K

cyclique, tout x ∈ K∗ qui est une norme dans toutes les extensions locales

L̂P/K̂p est une norme dans L/K.
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Arithmétique des algèbres de quaternions, III

§ 10. Compléments sur la norme réduite. Soit L une algèbre cen-
trale simple sur un corps K et soit O un ordre maximal de L relative-
ment à un anneau de DedekindA de corps des fractionsK. On définit la
norme réduite d’un idéal fractionnaire (à gauche) I de O comme étant
l’idéal engendré par les normes réduites de ses éléments. C’est un idéal
fractionnaire de K. Ses composantes locales sont les normes réduites
des générateurs de ses localisés. La formule Nrd(IJ) = Nrd(I) Nrd(J)
est vraie chaque fois que Od(I) = Og(J). Par passages aux quotients,
on obtient une application de l’ensemble des classes à gauche de O dans
le groupe des classes de A.

Étant donnés des idéaux fractionnaires I1, . . . , Ir, on associe à leur
somme directe l’idéal I de Mr(L) formé des matrices dont la k-ième
colonne est constituée d’éléments arbitraires de Ik. Dans l’algèbre
Mr(L), on a Nrd(I) =

∏r
k=1 Nrd(Ik).

Soit K un corps local. Si K est une extension finie d’un corps Qp ou
si K = C, on a Nrd(L∗) = K∗. Si K = R, il y a deux possibilités : on a
Nrd(L∗) = R∗ si L est une algèbre de matrices sur R, et Nrd(L∗) = R∗>0

si L est une algèbre de matrices sur H. (Observer que Mr(H) est
connexe par arcs.)

Soit maintenant K un corps de nombres. Rappelons qu’une place
infinie v : K → C est ramifiée dans L si elle est réelle, et si la norme

réduite est positive en v. Il revient au même de dire que L̂v est de
type Mr(H). On dit que l’algèbre L est totalement définie si toutes
les places infinies de K se ramifient dans L.

Nous allons maintenant préciser la notion de norme réduite sur les
classes. Rappelons qu’étant donné un ensemble S de places infinies de
K, on définit le groupe ClSA des classes d’idéaux de K (relativement
à A) au sens restreint pour S comme le quotient du groupe IA des
idéaux fractionnaires de A par son sous-groupe P S

A des idéaux princi-
paux possédant un générateur positif à toutes les places réelles de S.
On écrit Cl+A (ou Cl+K) si S = S∞. À l’algèbre L, on associe le groupe
ClSA où S est l’ensemble des places infinies de K qui sont ramifiées
dans L. La norme réduite induit une application de l’ensemble des
classes de O dans ClSA.
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§ 11. La condition d’Eichler. Sous forme restreinte, il s’agit d’une
notion relative à une algèbre centrale simple sur un corps de nombresK,
utilisée lorsque A = ZK :

L n’est pas un corps de quaternions totalement défini.

Soit S un ensemble fini de places de K contenant S∞. À chaque place
finie v de K, on associe la valuation vp de l’idéal premier correspondant.
Soit alors

AS = {x ∈ K | ∀ v /∈ S, vp(x) ≥ 0} .

(L’anneau des entiers ZK de K correspond au cas où S = S∞.) La
condition d’Eichler relative à L et à un sous-anneau A de K de la
forme AS est :

(CE) [L : K] > 4, ou S contient une place qui ne se ramifie pas dans L.

Il est clair que (CE) se réduit à la première condition lorsque A = ZK .

Théorème. Soit O un ordre maximal. Si (CE) est satisfaite, la norme
réduite induit une bijection de l’ensemble des classes à gauche de O
sur l’ensemble ClSA. En outre, le nombre t de types d’ordres divise h, le
quotient étant le nombre de classes de O représentées par des idéaux
bilatères.

La démonstration repose sur un théorème d’approximation forte, cas
particulier d’un énoncé de Kneser s’appliquant à tous les groupes algé-
briques semi-simples simplement connexes, découvert par Eichler dans
le cas des algèbres simples (avec A = ZK), qui l’a énoncé sous la forme
suivante :
Si (CE) est satisfaite, tout élément de A est norme réduite d’un quater-
nion entier sur A.

Voici une première application du théorème d’Eichler. Disons que
deux O-modules M et M ′ de type fini sans A-torsion sont stablement
isomorphes s’il existe k > 0 tel que Ok

⊕
M ' Ok

⊕
M ′.

Théorème. Deux O-modules M et M ′ sont stablement isomorphes si
et seulement si O

⊕
M ' O

⊕
M ′. Si M et M ′ sont de rang r ≥

2, ou si le couple (L,A) vérifie (CE), deux sous-modules stablement
isomorphes sont isomorphes.

Démonstration. On écrit M et M ′ comme sommes directes Or−1⊕ I
et Or−1⊕ I ′ où I et I ′ sont des idéaux fractionnaires. Par hypothèse,
il existe t ≥ r tel que Ot−1⊕ I ' Ot−1⊕ I ′. Comme la norme réduite
sur les classes est la même pour toutes les algèbresMt(L), et que (CE)
est vérifiée pour tout t ≥ 2, on a O

⊕
I ' O

⊕
I ′, et même I ' I ′ si

L elle-même vérifie (CE). �
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Lorsque L vérifie la condition d’Eichler, on peut transporter la struc-
ture de groupe de ClSA à l’ensemble des classes de O. Le théorème ci-
dessous va nous permettre en particulier d’expliciter cette structure de
groupe.

Appelons classes stables les classes d’équivalence pour la relation
suivante entre idéaux fractionnaires :

I ∼s I ′ ⇐⇒ ∃ k > 0, Ok
⊕

I ' Ok
⊕

I ′ ⇐⇒ O
⊕

I ' O
⊕

I ′ .

Étant donnés I1 et I2, la classe stable d’un idéal J tel que I1
⊕

I2 '
O
⊕

J est bien définie. On munit ainsi l’ensemble des classes stables
d’une structure de groupe, dont l’élément neutre est la classe des idéaux
I stablement libres, c’est-à-dire tels que O

⊕
I ' O

⊕
O. Ce groupe

s’appelle le groupe des classes de O ou de L, et se note ClL lorsqu’il
n’y a pas d’ambiguité sur A. Le théorème précédent entrâıne tout de
suite :
Théorème. Pour toute algèbre centrale simple L, la norme réduite
induit un isomorphisme de ClL sur ClSA, S désignant l’ensemble des
places réelles de K ramifiées dans L.

Il reste à calculer le nombre de classes des algèbres qui ne vérifient
pas la condition d’Eichler. Des méthodes analytiques vont permettre
d’effectuer ce calcul.

§ 12. Fonctions zêta. On définit la fonction zêta d’une algèbre simple
L par la formule habituelle

ζL(s) =
∑
I⊂O

1

Nrd(I)s
,

la somme étant étendue aux idéaux fractionnaires entier d’un ordre O
donné. La série converge pour <(s) > 1, et l’on a un produit eulérien
ζL(s) =

∏
p ζL,p(s) étendu aux idéaux premiers du centre. Posons [L :

K] = m2. Alors, la fonction zêta de L s’exprime en fonction de celle
du centre par une formule de la forme

ζL(s) =
m−1∏
i=0

ζK(ns− i)
∏

p|d(L/K)

ϕp(s) ,

les termes ϕp étant eux-mêmes des produits
∏

p

(
1− NK/Q(p)αs+β

)±1
.

Dans le cas où L est une algèbre de quaternions H, notons d le
produit des idéaux premiers de K ramifiés dans H. La fonction zêta
s’écrit alors simplement

ζH(s) = ζK(2s) ζK(2s− 1)
∏

p|d(H/K)

(1− NK/Q(p)s)
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(on 〈〈débarasse〉〉 partiellement ζK de ses facteurs locaux aux places ram-
ifiées).

On a besoin de considérer plus généralement les fonctions zêta par-
tielles ζL,c obtenues en sommant sur les idéaux d’une classe c. On a
ζL =

∑
c ζL,c. Contrairement à ce qui se passe dans le cas commutatif,

le résidu de ζL,c en s = 1 peut maintenant dépendre de c. Ce résidu se
calcule à l’aide d’un résidu en s = 1 et de valeurs en 2. En utilisant
l’équation fonctionnelle de Hecke, qui relie ζK(s) et ζK(1 − s), on se
ramène à considérer des valeurs en 0 et −1.

§ 13. Une formule de masse. On considère maintenant une algèbre
de quaternions totalement définie, de centre K (totalement réel). Les
ordres maximaux que l’on considère sont relatifs à la clôture intégrale
ZK de Z dans K. L’énoncé ci-dessous, facile à démontrer, met en
évidence une analogie entre corps de quaternions totalement définis et
corps de type C.M. (extensions quadratiques totalement imaginaires
d’un corps de nombres totalement réel). Les notations sont les sui-
vantes : n est le degré de K, UK est le groupe Z∗K des unités de K
(isomorphe à {±1} × Zn−1), O est un ordre maximal de H, UO est
le groupe des unités de O, et µO le sous-groupe de UO des unités de
norme réduite 1. C’est un groupe fini, isomorphe à un sous-groupe fini
de la sphère S3 ⊂ H∗.
Proposition. UK est d’indice fini dans UO. Plus précisément,

[UO : µO UK ] = 1, 2, ou 4 .

[Dans le cas C.M., cet 〈〈indice de Hasse〉〉 vaut 1 ou 2.]

On considère maintenant des représentants I1, . . . , Ih des idéaux
à gauche de O, et l’on pose

Ok = Od(Ik) et wk = [UOk
: µOk

UK ] .
En évaluant les résidus des fonctions zêta partielles, on montre la

formule suivante (comme dans le cas des corps abéliens de type C.M.,
les régulateurs disparaissent des formules) :

Théorème. (Eichler)

h∑
k=1

1

wk
=

1

2n−1
hK ζK(−1)

∏
p|d

(
1− N(p)

)
.

[Noter que cette formule prouve que la fonction zêta au point −1 d’un corps

de nombres totalement réel est un nombre rationnel non nul ; Siegel a montré

que ce résultat s’étend à tous les entiers négatifs impairs.]
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Examinons de plus près le cas où K = Q, en notant dH le produit des
nombres premiers (en nombre impair) ramifiés dans H. On a n = 1,

UK = {±1}, donc wk =
|UfOk

|
2

, ζQ(−1) = − 1
12

(Euler !?), hQ = 1, et la
formule se réduit à ∑

O

1

|UO|
=

1

24

∏
p|dH

(p− 1) .

On en déduit que h = 1 n’est possible que pour d ≤ 13, donc d ∈
{2, 3, 5, 7, 11, 13}, et l’on doit exclure d = 11, valeur pour laquelle le
membre de droite n’est pas l’inverse d’un entier. On vérifie en exam-
inant les groupes susceptibles d’être des groupes d’unités que l’on a
h = 1 si p = 2, 3, 5, 7 ou 13, les groupes UO étant isomorphes respec-

tivement à Â4, H12, C6, C4 et C2. En revanche, la formule pour p = 11

ne peut être que
1

|UO1|
+

1

|UO2|
=

5

12
, mettant en évidence deux classes,

associées aux groupes C6 et C4, et donc aussi deux types d’ordres.

Pour K quadratique de discriminant d = 5, 8 et 12, les valeurs re-
spectives de ζK(−1) sont 1

30
, 1

12
et 1

6
. Pour les algèbres non ramifiées

en-dehors de l’infini, on trouve une classe dans chacun des deux pre-

miers cas, avec groupe d’unité de norme réduite 1 isomorphe à Â5 (resp.

à Ŝ4). Dans le cas d = 12, on a vu qu’il y a au moins deux classes et
deux types d’ordres. En fait, on a hK = 1, mais h+K = 2 (l’unité fonda-

mentale est ε = 2 +
√

3, de norme +1), ce qui donne une autre preuve
de la minoration h ≥ 2. La formule de masse se réduit à 1

12
+ 1

12
= 1

6
,

d’où h = t = 2.

§ 14. Compléments.
14.1. Eichler a donné en 1955 des formules explicites pour le nombre de
classes. Voici son résultat lorsque K = Q, en écartant les cas singuliers
dH = 2 et dH = 3. Les groupes d’unités sont alors cycliques d’ordre
2i = 2, 4 ou 6, ce qui permet d’écrire h = h1 + h2 + h3, hi désignant le
nombre de classes dont l’ordre à droite possède 2i unités. On a alors

h2 =
1

2

∏
p|dH

(
1−

(−4
p

))
, h3 =

1

2

∏
p|dH

(
1−

(−3
p

))
,(1)

et(2)

h =
1

12

∏
p|dH

(p− 1) +
1

2
h2 +

2

3
h3 .(3)

14.2. Soit E une courbe elliptique définie sur un corps fini Fq de

caractéristique p. Le groupe des points d’ordre p sur Fq est alors d’ordre
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p (cas ordinaire) ou est réduit à {0} (cas super-singulier). Dans le
premier cas, l’anneau des endomorphismes de E est un ordre d’un corps
quadratique imaginaire. Dans le second cas, c’est un ordre maximal
du corps de quaternions ramifié en p et l’infini. La formule du nombre
de classes donne alors le nombre de courbes super-singulières. Une
démonstration directe de ce résultat a été donnée par Igusa.

14.3. Soit à nouveau H une algèbre de quaternions totalement définie.
Le cardinal de l’ensemble des classes stables est égal à h+K . La formule
de masse montre que le nombre de classes tend vers l’infini avec le
produit d des places ramifiées dans H. Il en résulte que pour K donné,
les ensembles de classes et de classes stables ne sont égaux que pour
un nombre fini d’algèbres de quaternions (autrement dit, en général, la
simplification n’est pas possible). M.-F. Vignéras a démontré beaucoup
plus :

Théorème. La simplification n’est possible que pour un nombre fini
de corps de quaternions totalement définis.

La démonstration se fait en majorant les discriminants dK des corps K
pour lesquels la simplification est possible. En utilisant les minorations
des discriminants (issues de la géométrie des nombres) qui étaient con-
nues lors de la rédaction de son travail, elle a en particulier prouvé la
majoration [K : Q] ≤ 33. Elle a également classé toutes les algèbres
posibles de centre un corps quadratique ou cubique cyclique. (Nous
l’avons fait au § précédent dans le cas de Q.) Or, postérieurement à
la rédaction de son article, l’utilisation de méthodes analytiques a con-
duit à d’importants progrès sur les minorations des discriminants. Il
serait intéressant de reprendre le problème de la simplification en ten-
ant compte de ces nouvelles minorations. Peut-être est-il même possible
d’obtenir la classification complète des algèbres à simplification.

.../...
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juqu’à l’Allemagne des années 1930 (E. Artin, R. Brauer, H. Hasse,
E. Noether, ...), noms auxquels il convient d’adjoindre Th. Skolem et
A. Albert, et mieux (mai 2013), la nouvelle édition refondue et étendue
[Bo’], même titre, 2012, chez Springer.

Les résultats de b ont été développés entre les deux guerres par
H. Brandt, C. Chevalley et H. Hasse, et complétés en 1960 par M. Aus-
lander et O. Goldman.

La théorie de c , essentiellement équivalente à la théorie du corps
de classes qui décrit les extensions abéliennes d’un corps de nombres
en termes du corps de base, est très largement l’œuvre de Hasse. Pour
un exposé (très) formel, voir

[We], André Weil, Basic Number Theory , Springer, Heidelberg, 1967.

Les résultats de d sont essentiellement dus à Martin Eichler (travaux
de 1936–1938 et de 1955). Richard Swan et Marie-France Vigéras en ont
modernisé la présentation. On doit à Swan de nombreux résultats sur
les algèbres des groupes finis (notamment, le fait remarquable que sur
un anneau de Dedekind A de caractéristique zéro, les modules projectifs
de type fini sont localement libres dès lors que leur rang est défini, et
il l’est lorsque les diviseurs premiers de l’ordre du groupe ne sont pas
inversibles), ainsi que divers compléments concernant les groupes de
type quaternioniens, et à Vignéras diverses variantes utiles des formules
d’Eichler.

Pour la théorie de d , le livre de référence est
[Vi], Marie-France Vignéras, Arithmétique des Algèbres de Quater-
nions, Springer, Lecture Notes n◦ 800, 1980.


