"READ ME" FOR THE NUMERICAL DATA OF GRAMINDEX.GP

WOLFGANG KELLER, JACQUES MARTINET AND ACHILL SCHÜRMANN

ABSTRACT. This note is a short user's guide to the PARI-GP-file Gramindex.gp. It contains Gram matrices for lattices of dimension $n \leq 9$, for each of the existing lattice types according to the classification in [KMS10].

1. According to the notation used in [KMS10], Λ is an *n*-dimensional lattice, Λ' is a sublattice of Λ equipped with a basis $\mathcal{B}_0 = (e_1, ..., e_n)$ of minimal vectors of Λ ,

i is the index $[\Lambda : \Lambda']$, d is the annihilator of Λ/Λ' .

a is the aminimator of M/M.

2. Annihilators d > 1 up to n = 9:

d = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12;

Indices > 1 up to n = 9; cyclic: see list of annihilators; non-cyclic:

 $2^2, 4 \cdot 2, 2^3, 3^2, 6 \cdot 2, 4 \cdot 2^2, 2^4,$

with the usual convention for finite Abelian groups.

3. With each code C over $\mathbb{Z}/d\mathbb{Z}$ we associate in [Mar01] and [KMS10] a well-defined minimal class C_C , characterized by the fact that the kissing number s of the class is minimal among all classes which admit the code C; we display only one Gram matrix per code.

4. The file Gramindex.gp can be read in a PARI-GP session; each matrix of the file has a name, the choice of which we explain below. The file can also be edited (under any editor, e.g., emacs, vi,...); one can then read the name of each matrix and also the code, on a line beginning with a "\\" mark.

Key words and phrases. Numerical data, Gram matrices, Minkowskian sublattices January, 2010. 5. A matrix name has the shape

anxn',

where $n \in \{4, 5, 6, 7, 8, 9\}$ is the dimension and the letter x is one of a,b,c,..., and n' indicates the structure of the quotient Λ/Λ' : 2,..., 10 and 12 in the cyclic case, otherwise 22 for 2^2 , 42 for $4 \cdot 2$,..., 422 for $4 \cdot 2^2$, and 2222 for 2^4 ; thus when n' > 12, $i(\Lambda)$ is the product of the figures which occur in n'. The choice for x depends on the specific code corresponding to a quotient of type n'.

6a. (General form.) The codewords are written in the form (a_1, \ldots, a_n) (or $(a_1, \ldots, a_n)_d$ if we wish to recall the annihilator) with $\frac{0}{\leq}a_i \leq \frac{d}{2}$. It is assumed that for each subscript $j \in [1, n]$, at least one codeword has a non zero component at j. (Otherwise, the pair (Λ, Λ') would trivially come from a lower dimension.)

6b. (Cyclic case). Set $d' = \lfloor \frac{d}{2} \rfloor$. Negating some e_i if needed, we may moreover assume that $1 \leq a_1 \leq \cdots \leq a_n \leq d'$. We then denote (as in [KMS10]) by m_i the number of coefficients a_j which are equal to i, and write down the code in the form $(m_1, m_2, \ldots, m_{d'})$ where the m_i are non-negative and add to n; for instance,

$$(3,4,2)_6$$
 reads $(1,1,1,2,2,2,2,3,3)$.

6c. (Averaging in the cyclic case.) The Gram matrices are then constructed using equal scalar products $e_k \cdot e_\ell = x_i$ for k, ℓ relative to a same m_i and $e_k \cdot e_\ell = y_{i,j}$ for k relative to m_i and $\ell > k$ relative to m_j ; moreover, if d is even, $x_{d'}$ and the $y_{i,d'}$ are zero. We need this way at most $\frac{n'(n'+1)}{2}$ parameters, and at most $\frac{n'(n'-1)}{2}$ if d' is even. Note that there is no x_i if $m_i = 0$ or 1, and no $y_{i,j}$ if m_i or m_j is zero.

7. (Equivalent codes.) The tables in Gramindex.gp show one code in every equivalence class of codes. The way this can be performed is standard for binary codes (i.e., codes with d = 2). For cyclic codes over $\mathbb{Z}/d\mathbb{Z}$, classes are obtained using the transformation $x \mapsto kx \mod d$ with (k, d) = 1, and re-ordering the new $|a_i| \mod d$, which induces an action of $(\mathbb{Z}/d\mathbb{Z})^{\times}/\pm 1$. This action is obtained by performing one of the three transformations below:

• A transposition, namely (m_1, m_2) if d = 5, (m_1, m_3) if d = 8, (m_1, m_5) if d = 12;

• A cycle of order 3, namely (m_1, m_2, m_3) if d = 7, (m_1, m_2, m_4) if d = 9;

• The double transposition $(m_1, m_3) \cdot (m_2, m_4)$ if d = 10.

8. (Construction of the Gram matrices.) We start with the Gram matrix M_0 of the basis $\mathcal{B}_0 = (e_1, \ldots, e_n)$ for Λ' , and replace in \mathcal{B}_0 some e_i by convenient vectors of Λ .

a. (Cyclic case.) We have $\Lambda = \langle \Lambda', e \rangle$ with e of the form

$$\frac{a_1e_1+\dots+a_ne_n}{d}$$

and the first m_1 coefficients equal to 1, the next m_2 equal to 2, etc. Within the range of our table, m_1 is never zero, so that (e, e_2, \ldots, e_n) is a basis for Λ . The displayed Gram matrix for Λ is then that of this basis. Its diagonal entries except the first one are equal to the minimum of Λ , and we have $e_1 = d(e - \sum_{i\geq 2} a_i e_i)$. **b.** (Quotient of rank 2.) In this case we may write $\Lambda = \langle \Lambda', e, f \rangle$

b. (Quotient of rank 2.) In this case we may write $\Lambda = \langle \Lambda', e, f \rangle$ with e, f defined by the corresponding code. In case the code is not symmetric, which occurs when Λ/Λ' is of type $4 \cdot 2$ or $6 \cdot 2$, e is relative to denominator d = 4 or 6 and f to denominator 2. We have chosen e and f in such a way that $\mathcal{B} = (e, e_2, \ldots, e_{n-1}, f)$ is a basis for Λ . The displayed Gram matrix for Λ is then that of this basis.

c. (Quotients of type 2^3 , $4 \cdot 2^2$ and 2^4 .) Here the construction of the Gram matrix is explained in each case. As above, for the quotient of type $4 \cdot 2^2$, *e* has denominator 4.

9. (Normalization). In dealing with the index theory in [KMS10], we used to scale all lattices to minimum 1. However, for practical reasons, the Gram matrices displayed in the file **Gramindex**.gp are scaled to the smallest minimum which make them integral. For instance, matrices with d = 2 will in general have minimum $\mu = 4$, except in the case of a doubly even code, where $\mu = 2$.

References

- [Mar01] J. Martinet, Sur l'indice d'un sous-réseau, in "Réseaux euclidiens, designs sphériques et formes modulaires", J. Martinet ed., Monographie Ens. Math. 37, Genève (2001), 165–213.
- [KMS10] W. Keller, J. Martinet nd A. Schürmann, On classifying Minkowskian sublattices, preprint at arXiv:0904.3110