REDUCTION MODULO 2 AND 3
OF EUCLIDEAN LATTICES

by JACQUES MARTINET

ABSTRACT. Let A be a Euclidean lattice, We study upper bounds for the norm of
shortest representatives of A modulo dA, d = 2 or 3, as well as the structure of the
sets of such vectors with the same norm and the same image modulo d. Root systems
appear in connection with this last problem.

RESUME. Soit A un réseau euclidien. Nous étudions des majorations de la norme
des représentants les plus courts des classes de A modulo dA, d = 2 ou 3, ainsi
que la structure des ensembles de tels vecteurs qui ont méme norme et méme image
modulo d. Les systemes de racines interviennent en liaison avec ce dernier probleme.
TITRE FRANGAIS : Réduction modulo 2 et 3 des réseaux euclidiens.

In this paper, we prove some results which are useful for the determination of the
classes A/dA where A is a lattice in some real vector space E and d > 2 an integer.
For any A > 0, we denote by Sy = Sx(A) (resp. S} = S3(A)) the set of vectors
(resp. of primitive vectors) of norm A in A and we set sy = 3 |Sx| and s} = 1 |S}|.
We write simply S and s when A is the norm (or minimum) N(A) of A. We denote
by m this norm and by m’ the norm of the second layer of A.

Our aim is to study congruences modulo d among vectors of A and deduce from
this a system of representatives of A/dA ~\ {0} up to the sign. We wish to find
vectors which are as short as possible. To this end, we may choose in each class
modulo dA one of the shortest possible vectors. The results to be proved below
assert in particular that for d = 2 (resp. for d = 3), one must consider vectors
of norm up to the greatest number » < 2m (resp. r < 2m + m') such that the
layer S,.(A) is not empty. We also give conditions under which two vectors of norm
N < 2m (resp. N < 2m+m') may be congruent modulo 2 (resp. modulo 3). Once
more, root systems play an important role.

We develop some general results in section 1, then turn to results modulo 2 in
section 2 and modulo 3 in section 3. Section 4 is devoted to the study of the Leech
lattice modulo 3. We describe briefly some applications (mainly to Eg and Agy) in
section 5.

I thank Christine Bachoc, Heinz-Georg Quebbemann, and Nils Skoruppa for
various comments on this paper.
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§ 1. Basic results. We shall only consider non-zero vectors x, y such that y # +=.
Moreover, we shall enumerate classes of A mod dA in pairs ¢, —c. They reduce to
a single element if and only if d = 2 (or if ¢ = {0}).

1.1. Proposition. Let x and y # +x be two non-zero vectors of A, such that
y —x = dz for some z € A. Then, the following three identities hold:

(1) N(y) + (d—1)N(z) =d((d — 1)N(2) + N(z + 2)).

(1) N(z)+ (d—1)N(y) = d((d —1)N(z)+ N(y — z))

(2) N(y)+ N(z) =2(d—1)N(2) + N(z + z) + N(y — 2).
Moreover, if A is integral, we have N(y) = N(z) mod d, and even N(y) = N(x)
mod 4 if d = 2.

Proof. We have
N(y)=N(z)+2dz -2+ d’N(z) = N(z) + d(d — 1) N(z) + d(N(z + z) — N(z)),

which proves (1). We then derive (1’) from (1) by using the double exchange y <>
and z <> —z and finally prove (2) by adding (1) and (1’) and dividing out both sides
by d. The last two assertions are consequences of the formula displayed above. [

1.2. Proposition. We keep the hypotheses of Proposition 1.1. Let a = N(z),
b=N(zx+z) andc= N(y — z).

(1) Ifd =2, then c = b.

(2) Ifd > 2, then

b—c b—c
N(:c)—(d—l)a—l—b-l-m and N(y)—(d—l)a—kc—m,
_ b—c _d(c—1b)
Moreover, 2z - z = —da — Pt N(y) = N(z) = i and

2x-y=—(d®>—-2d+2)a+b+ec.

Proof. Wehave y —z=x+ (d— 1)z hence y —z=xz+zif d =2. If d > 2, the
calculation of the norms of x 4+ z and of z + (d — 1)z yields N(z) +2z-z2=b—a
and N(z) +2(d—2)z- 2= —(d — 1)%a + ¢, which gives us first the values of N(x)
and z - z, then that of N(y) by Proposition 1.1, and finally the other values we
need. [

1.3. Theorem. Letx,y € A such thaty = x+dz for some z € A and that none of
the vectors z,y,y+ x is zero. If d = 3, suppose moreover that none of the equalities
x = —2y and y = —2x hold. Then, we have N(y) + N(z) > 2dm, and equality
holds if and only if d =2 or d = 3 and if moreover:
(1) Whend =2, z and y are of the form x =e — f and y = e + f where e and
f are orthogonal minimal vectors.
(2) When d =3, z and y are of the form x = e — f and y = e+ 2f wheree, f
and e + [ are minimal vectors.
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Ifd =2, z and y, of norm 2m, are orthogonal, and {+x,+y} is the second layer
of the square lattice generated by e and f. If d = 3, £z, +y and £(z + y), of
norm 3m, constitute the second layer of the hexagonal lattice of minimum m whose
minimal vectors are e, £f and £(e + f).

Proof. By Proposition 1.1, (2), since z # 0, we have N(z) + N(y) > 2(d — 1)m +
Nxz+2)+Ny—=2). fx+2z=0,theny =22z =22, y—2=2+2z=—=x
and N(z) + N(y) = 5m whereas 2(d — 1)N(z) + N(y — z) = (2d — 1)m. By
Proposition 1.1, we must have d = 3. Similarly, ¥y — z = 0 implies z = —2y and
again d = 3. Consequently, x + z and y — z are non-zero, which implies the required
inequality.

Suppose now that equality holds, i.e. that N(x) + N(y) = 2dm. Then, z, z + z
and y —z = £+ 2z are minimal. Now, £+ z and z are not proportional, for z+2z = z
implies = 0 and = 4+ z = —z implies y — z = 0. We thus have |(z +2) - 2| < T,
whence

NZ)<N(@x+2z)+N(z)+2|z-(z+2) <3m

and similarly N(y) < 3m. Since N(z) + N(y) > 2dm, we have d < 3.

Set e =z + z and f = z.

Ifd=2,wehavee—f =z, e+ f = z+2z =y. Thisimpliesz-y = N(e)—N(f) =
0 and also e- f = 0 since N(e+ f) = 2m = N(e) + N(f).

Ifd=3,weagainhavee— f =z,but nowy =z +3z=e+2f,ande+ f=y—=z
is minimal. This last property implies e - f = —%, hence N(z) = N(e) + N(f) —
2¢e- f =3m, N(y) = N(e) +4N(f) + 4e - f = m + 4m — 2m = 3m and similarly
N(z+y)=N(2e+ f) =3m.

Conversely, if z and y have the form given in the theorem above, it is easily seen
that the equality N(z)+ N(y) = 2d m holds in both the cases d =2 and d=3. O

1.4. Remark. If A is integral, more restrictions can be derived from the proof of
Theorem 1.3. For instance, if d = 3 and if N(z) + N(y) = 6m, then the norm m
of A must be even, since —2e - f = m.

Since vectors which are independent modulo dA are a fortiori independent in A, a sequence
€1, ..., €y, of representatives of the successive minima m1; = m < mg < -+ < m,, of A must

occur among a set of short representatives of L / dL.

For the applications to the classification up to isometry of sublattices with cyclic
quotients of order d, it suffices to consider the classes of A* mod dA* up to an
automorphism of A. Exchanging A and A*, we go back to A itself. Let us say that
two orbits 0o and o' in A are d-equivalent (denoted o ~4 o) if there exist z € o
and ' € o' such that 2’ = r mod dA. We denote by T a set of representatives
of the non-zero orbits modulo d-equivalence. (We represent the null class by {0}.)
To an orbit o, we attach its (d-)weight wt(o), which is the number of elements

" o= —— o
o = (0]
wt(o) wt(o')

within a class modulo d of 0. Of course, we have the relation
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whenever o' ~4 0. (Even if we choose the orbits so as to minimize the norm, we
cannot exclude the possibility that two orbits of vectors having the same norm be
d-equivalent.)

Now, a description of A/dA corresponds to a weighted formula

(1.5) > ! o] =d™ —1.

Examples for d = 2 and d = 3 will be given in the forthcoming sections.

§2. Reduction modulo 2. It results from Theorem 1.3 that vectors of norm
N < 2m represent distinct classes in A/dA except for pairs (z,—2) and possibly
for orthogonal vectors z,y of norm 2m. For z € Si,,, assuming Ss,, # 0, let
£3(x) = £(x) be the number of lines containing a vector y € Sa,, with y = =
mod 2A (or y = z mod 2S,,, this amounts to the same). Note that ¢(z) in an
invariant of the class C of z in A/2A, which allows us to define £(C) for any class
C mod 2A which contains elements of Ss5,,. We have for ¢ the obvious bounds
1 < £(z) < n. The following statement is now clear:

2.1. Theorem. Any complete set of representatives of A/2A whose elements are
vectors whose norms are minimal in their class modulo 2A contains elements of all
the spheres Sy with k < 2m. Moreover, we have

Z Sk + Z Tlx)gﬂ—l,

0<k<2m r€S2,, mod 2A

and equality holds if and only if all classes modulo 2A possess representatives of
norm at most 2m. [

When £(z) is constant on Sa,,, for instance when Aut(A) acts transitively on
Som, the formula of Theorem 2.1 can be written in the simplified form

1
2.2 — <2m 1.
(2.2) E Sk + 7 Sok <
0<k<2m

Taking into account the upper bound £(z) < n, we immediately obtain:

2.3. Theorem. We have

]' n
Yoosk A+ —sm <201
0<k<2m n

If equality holds, vectors of norm 2m in A appear in systems of 2n vectors lying onn
pairwise orthogonal lines, and one obtains a system of representatives of A/dA~{0}
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by taking one vector out of each such system and one vector in each pair £x of non-
zero vectors of norm N < 2m. 0O

The formula above plays a crucial role in Conway’s characterization of the Leech
lattice, see [C-S], chapter 12. Computing s4, S, sg by means of Theta series,
Conway obtains the formula

1 199017000
sa+ 56 + 57 55 = 98280 + 8386560 + —— — = 16777215 = 224 — 1,

valid a priori for any even 24-dimensional unimodular lattice without roots.

Suppose that there exists an orthogonal frame of n vectors of norm 2m, and let
(2m)"
det(A)
namely of the index [A : L]; in particular, if A is integral and if n is even, det(A)
must be a square. When this condition is not satisfied, there may be at most n — 1
directions of pairwise orthogonal vectors defining the same class modulo 2. Thus:

L be the lattice they generate. Then, the ratio is the square of an integer,

2.4. Theorem. Suppose that there does not exrist in A any orthogonal frame of
vectors of norm 2m. We then have

1
E S + Som S 2" —1.
n—1
0<k<2m

If equality holds, vectors of norm 2m in A appear in systems of 2(n — 1) vectors
lying on n—1 pairwise orthogonal lines, and one obtains a system of representatives
of A/dA ~ {0} by taking one vector out of each such system and one vector in each
pair £z of non-zero vectors of norm N < 2m. U

As was pointed out to me by Quebbemann on the example of K, it is interesting
to consider examples with constant £(z) < n — 2. Indeed, some examples can be
easily handled via Theorem 2.1, by first proving sharper bounds for ¢ other that
L(z) < norf(z) <mn—1. The following proposition can be used to derive such
bounds. We denote by A, (n > 1), D, (n > 2) , E,, (n = 6,7,8) the irreducible
root, systems whose vectors all have norm 2 and by A,,, D,, E, the corresponding
root lattices. Recall that Dy ~ A; | A; and A3 ~ Ds.

2.5. Theorem. A setT, = {xz1,...,LTx,.} of r > 2 vectors of Sap, is contained in
a single class modulo 2A if and only if the set {%} is a (rescaled) root system
R of type D, contained in S,,, and the map T, — R is one-to-one if r # 4, and

three-to-one if r = 4.

Proof. Given pairwise non-proportional vectors x1,...,z, € Sy, set
X 1 d +_.’L‘¢+$j - T, 1< <
ei—E,(z— y...,T) an €= g i = g 1<i<j<r).
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If z1,...,x, represent the same class modulo 2, they are pairwise orthogonal.
Then, the system of vectors +¢;, all of norm 7, is an orthogonal frame in some
r-dimensional subspace of F, and the vectors e;"'j and e, j belong to A if and only if
x1 = --- =z, mod 2A. If it is the case, they lie in S,,, and the set {ie:j, +e; ;}
is a root system of type D,., since eii,j = g; = ;. The converse is clear, since e;',’j
belongs to A if and only if z; = ; mod A.

The map 7, — R is clearly onto by the proof of the first assertion. Now,
consider the lattice I, scaled to its natural norm 2; it is the even sublattice of
Z", whose canonical basis we denote by (e1,...,&.). If another orthogonal frame
(£el,...,Lel) generates a lattice L isometric to Z" containing D,., we have D, C
L C D¥. The quotient ). /D is cyclic if 7 is odd and of type (2,2) if r is even, and
in this last case, the other two lattices are lD)Ti =D, U % (Xey +e2+ -+ &), of
norm min(2, 7). Hence, 7, — R is injective if r # 4. If r = 4, both lattices D} and
D, are isometric to Z*%, so that there are two more systems 7, = {+z,..., 2.}
and 7" = {xzf,..., £z} which define the same class modulo 2, namely the
sets {1 (21 = x2 = x3 + z4)} with an even and and odd number of minus signs
respectively. It is easily verified that they define distinct elements of A/2A: for

instance, if {3 (z1 £ 22 = 3 £ 24)} — 21 = 22, then N(z) = 2, so that z cannot
belong to A. [

2.6. Corollary. If A is an integral lattice of odd norm, one has £(x) < 2 for all
x € Som, and even £(z) =1 if no two minimal vectors of A are orthogonal.

Proof. The lattice I, scaled to norm m contains minimal vectors with scalar
product 3 for all r > 3 and orthogonal minimal vectors for all r > 2. [

2.7. Remark. Given a root system R of type D,, r > 2 inside S(A), we
recover the orthogonal frame(s) 7, C Som(A) in the following way: let r € R; let
R' = RNrt; one selects an r’ € R’ such that cR” = (r,r')L NR is a root system of
type D,._5 (it could be of type 2A; + D,._4; this amounts to the same only if r = 4);
then, 7, is the union of the set 7._o attached to R” with {£r, £r'}. We reduce
ourselves in this way to the easy cases of dimensions 2 and 3.

We shall come back later on properties of classes of A modulo 2A related to root
systems contained in A. For the while, we give an application of Theorem 2.5:

2.8. Theorem. Suppose that A is integral. Let p be a prime number and let t be
the number of elementary divisors of (A*, ) which are divisible by p. Let x € So,.

(1) If p is odd and does not divide m, we have £(z) < max(2,n — t).
(2) If p=2 and if m =2 mod 4, we have £(z) < max(2,n+ 2 —t).

Proof. Let z € Sa,, with ¢(xz) > 3 and let » = ¢(x). By Theorem 2.5 and Corol-
lary 2.6, the norm m of A is even and there exists inside S(A) a root system R of
type D,.. Let L ~ D, be the lattice generated by R and let F' be the subspace of E
spanned by R. Then, F N A* is an (n — r)-dimensional lattice contained in A*.
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Since A is integral, L' = FN A is an (n —r)-dimensional lattice contained in A. We
have the inclusions
L1LCcCACACL*LL”

which induce an injective homomorphism A*/A — L*/LE L' /L .

Let u and u’ be the number of elementary divisors divisible by p in L and in L’
respectively. One has t < u + u'. Since L is isometric to \/? D, and p does not
divide %, the value of u is 0 if p is odd, 1 if p =2 and r is odd, and 2 if p = 2 and
r is even. Using the trivial upper bound u’ < n —r, we see that r is bounded above
by n 4+ u — t.

If p is odd, this is precisely the bound of the proposition.

If p is even, we have u = 2 if r is even and u = 1 if r is odd, whence the bound
r<n4+2-t. O

For some small values of n (certainly for all n < 6, see below, table 2.10), it may
happen that representatives of norm N < 2m exist on an open set in the set of n-
dimensional lattices. Examples are easily obtained using the following proposition:

2.9. Proposition. Suppose that there exists for some n an n-dimensional lattice
A such that all classes in AJ2A possess representatives of norm N < 2m (strict
inequality). Then, there exists a neighbourhood of A on which all lattices satisfy
this condition.

Sketch of proof. Let

ma(A) = melz?i]%o} N(z) and  ma(A) = xEA,JI\Ifl(i))(S%n,l N(),

and let ¢ > 0. Since the set T of vectors in A of norm N < 2m is finite, we can find
a neighbourhood N; of the identity in GL(FE) such that

Vue N, and Vz € u(T), m1 —e < N(u(z)) < ma +¢,

and moreover that all vectors z with N(z) < mq + € belong to u(T). (Compare
[M], Chapter III, proof of Lemma 4.2.) Since u is injective, u(T) and T have the
same cardinality, indeed 2" — 1. Choosing € < 2m; — mg, we obtain 2™ — 1 vectors
in u(A) of norm N < 2 N(A). The proposition to be proved is now a consequence
of Theorem 2.1. [

We now give some examples, beginning with irreducible root lattices.

We define as usual A, and D),, n > 4 using orthogonal bases (g, €1, ...,e,) and
(€1,-..,€n) of Z™, by the respective conditions ) "y .., z; =0and > ;. ;i =0
mod 2. For L = A, (resp. L = D,, n > 5), we then consider for every k with
0<k< "TH (resp. with 0 < k < %) the orbit oz of sums of 2k distinct vectors
+e;, and moreover in case L = D), the orbit of = {£2¢;}. (For Dy, there is a
single orbit of vectors of norm 4.) Then, shortest representatives of L/2L need the
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consideration of all orbits o9, if L = A,, and of moreover o if L =D,,n > 5. In
particular, L /2L possesses representatives of norm N < 2m = 4 if and only if L is
one of the lattices A,,, n < 4, D,, n <5, Eg or Eg.

The cases of Eg and Eg are easily dealt with, using Theorems 2.4 and 2.3 re-
spectively. For E;, vectors of norm N < 4 represent all classes but one, which is
represented by any vector of one among two orbits of norm 6 vectors.

As for the duals of irreducible root lattices which are not similar to a root lattice,
it can be verified that all classes modulo 2 possess representatives of norm N < 2m
exactly for the lattices A} (3 <n <6), Df, and E¢. (For Ef scaled to norm 3, one
must make use of vectors of norm 3,4,7.)

The following three tables contain some classical lattices. We do not define them
here, referring to [C-S], Chapter 6 for the laminated lattices A,,, to [M], chapter VIII,
for Barnes’s series L! (section 4) and for both the series K, K|, contained in the
Leech lattice Agg (sections 5 and 7; in particular, Proposition 7.9), and to [C-S],

Chapter 8, section 6 or [M], Chapter V, section 4 for the Craig lattices AS"). The
lattices which are displayed are rescaled to the smallest norm which makes them
integral. Indeed, A stands for v/n + 1A} and Df for 2D5.

Table 2.10. Some lattices with representatives of norm N < 2m.

n=1 Z S1 = 1
n=2 Az S9 = 3
n=3 3 s3=4 sS4 =3
n=3 Ki s1=5 s =2
n=4 A} s4=5 s =10
n=4 Kfl s4 =9 Sg — 6
n=>5 Af s5 =06 sg =15 sg = 10
n=6 K§ s4=27 s6=236
[K5 is the 3-dimensional eutactic lattice with s = 5; one has Kj ~ Ay @ Ay and
K ~ E§.]
I do not know of any lattice of dimension n > 7 possessing representatives of
norm N < 2m.

In the following table, we consider lattices possessing representatives of norm
N < 2m for which the equality N = 2m is needed, and for which the function £(x)
(defined at the beginning of this section) is constant. The value of £ is always an
easy consequence of one of the statements 2.3, 2.4, 2.6, or 2.8.

Table 2.11. Some lattices with representatives of norm N < 2m and constant Z£.

n=2 £=2 Z2 81:2 82:2
n=3 £=3 Ag 82:6 84:3
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n=4 (=4 1Dy S9 =12 s4 = 12
n=4 (=3 A s9 =10 s4 =15
n=4 £=2 Ay? s5,=6 54 =18

n=>5 ¢£=2 Di S4=5 s5 =16 sg = 20

n=6 £=5 [ S9 = 36 s4 =135

n=6 (=3 AP s,=21  s,=28 sg = 42

n=6 (=1 AZ 86:7 810:21 812:35

n=8 (=28 ]Eg 82:120 84:1080

n=8 (=3 L s4=0>54 sg = 120 sg = 243

n=10 £ =4 KiO* 86:120 88:135 810:648 812:480

n=12 /=6 Kjy 54 =378 sg=2016 sg = 10206
n=24£=24 Aoy s4=98280 sg = 8386560 sg = 199017000

When Aut(A) does not act transitively on Sa,,, the function £(z) need not be
constant. For instance, the orbits named above o4 and 0} of norm 4 vectors in D),
n > 5, contain s41 = 8 (Z) and s42 = m pairs of vectors, with £ = 4 and £ = n
respectively. The left hand side of the weighted formula of Theorem 2.1 for D, is
then of the form

1 1 nn—1)(n—-2)(n—-3
82+—84,1+534,2:n(n—1)+ ( ) ) )+1;

4 12

For n =5, it is 204+ 10+ 1 = 25 — 1; from n = 6 onwards, it is strictly smaller than
2" — 1.

Table 2.12. Some other lattices with representatives of norm N < 2m.

n=>5 ]D)5 82:20 84:40

n=7 K; s4=46 56 = 32 sg = 218

n=" AP 5, =36  s¢=48 s5 = 142

n=3~§ Kg s4 = 66 86:96 88:414

n=9 Ag s4 =136 s =128 sg = 1529
n =10 A10 S4 = 168 S — 384 Sg = 2475

Exactly 12 lattices among the 48 perfect lattices of dimension n < 7 possess
mod 2 representatives of norm N < 2m, that we list using Conway—Sloane’s nota-
tion in [C-S1]; see also the tables in [M], chapitre VI: the 5 lattices with n < 4, 1 out
of 3 for n =5 (P} ~Ds), 3 out of 7 for n = 6 (P! ~Eg, P2 ~ E:, and PP ~ AP,
and 3 out of 33 for n = 7 (P? ~ A, P20 and P2%). Similarly, exactly 5 lattices
among the 10916 known perfect lattices of dimension n = 8 possess mod 2 represen-
tatives of norm N < 2m. In the notation of [Bt-M], they are [h(2) ~ Lg, [h(179),
lh(1172) ~ Fg, np(160), and bt(5). These “no-name lattices” are not displayed in
the previous tables.

Lattices belonging to one of the series A,, K,,, K], contained in the Leech lattice
and their duals have been tested for n < 12. Only lattices which occur in one of
the tables 2.10 to 2.12 do have mod 2 representatives of norm N < 2m.
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§3. Reduction modulo 3. We must first make more precise the statement in
Theorem 1.3 about congruent vectors of norm 3m.

3.1. Proposition. Let x € A of norm 3m. Then, the set of vectors of norm 3m
which are congruent to x modulo 3\ reduces to {x} or is of the form {z,y, —x —y}.

Proof. If there exists y = x mod 3A with N(y) = N(z) = 3m, then we know by
Theorem 1.3 that there exist e, f minimal in A such that z =e— f and y = e+ 2f
(and —z —y = —(2e + f)). If there exists y' # z,y, —x — y also congruent to z
mod 3A, there exist minimal vectors e/, f/ in A such that x = ¢’—f' and ' = &' +2f’
and that e’ + f’ is also minimal. We have 4’ =y mod 3A, hence N(y —y') = 9m,
since 1 (y—y’) is minimal by Theorem 1.3. We also have y—y' = (z+3f)—(z+3f') =
3(f — f), hence N(f — f') = m. But this is not possible, for the 3-dimensional
lattice generated by e, f, e’ would then contain the seven pairs of minimal vectors
represented by e, f,e+ f, e/, fl, e+ f,f—f. O

In analogy with Theorem 2.3, we deduce from the proposition above the following
inequality

1 1,
0<k<3m

and the fact that representatives of A/3A can be found among vectors of norm
N < 3m when equality holds. However, in practice, we must consider vectors
of norm greater than 3m (e.g., 4m = 8 for Eg, giving the sum N(x) + N(y) the
value 8m = 16).

We shall now use the notation m’ for m® and m" for m® (the norms of the
second and third layers of A). Proposition 1.1 shows that if N(z) + N(y) > 6m,
then y = x mod 3A implies N(z) + N(y) > 5m + m/, with equality if and only
if N(z) = m and (N(z + 2),N(y — 2z)) = (m,m’) or (m’,m). (Note that the
transformation (z, z) — (y, —z) exchanges these two possibilities.)

The next possible value of N(z)+ N(y) is either 4m + 2m/, with equality if and
only if N(z) =m and N(z+2) = N(y — z) = m/, or 5m + m/" with equality if and
only if N(z) =m and (N(z + 2), N(y — 2)) = (m,m") or (m”,m). (As above, we
can exchange (m, m”) and (m'',m).) We remark that

(3.3) Sm+m’" =dm+2m' <= m" —m' =m' —m,

a possibility which often occurs, for instance if A is integral and if its first three
layers have norm m, m + h,m + 2h (h = 1 or 2 according to whether A is odd or
even).

If the equality N(x) + N(y) = 5m + m’ holds for y = z mod 3A with N(z) =
N(z + z) = m, whence N(y — z) = m’, Proposition 1.2 shows that

(3.4) N(z)=4m—m' and N(y)=m+2m’ .
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a congruence which does not occur among vectors of norm N < 2m + m/.
The next possible value of N(z) + N(y) is 4m + 2m/, attained for

(3.5) N(z)=N(y)=2m+m',

or bm + m', attained (assuming the inequality N(y) > N(x)) for

(3.6) N(z)=4m—-m" and N(y)=m+2m"

(or in both cases when relation 3.3 holds). Now, under conditions 3.5 (resp. 3.4,
resp. 3.6), max(N(z), N(y)) has value 2m + m' (resp. m + 2m’ > 2m + m/, resp.
m+ 2m” > m + 2m’). We have thus proved:

3.7. Proposition. Primitive vectors x,y € A of norm N < 2m + m’ which are
congruent modulo 3A have the same norm, equal to 3m or to 2m +m/. O

To go further, we must now study how many vectors of norm 2m + m' may
represent the same class modulo 3A, as we previously did for vectors of norm 3m.

3.8. Proposition. Suppose that m’ < Tm. Let x € Sopmim:, and let yo =

Ty Y1y...,Yr be distinct elements of Somym' which are congruent to x modulo 3A.
Then, S(A) contains a root system of type A, and the lattice L generated by
Yo, - - - Y has minimum 2m +m’ and rank r or r + 1.

Proof. For ¢ = 1,...,r, let z; such that y; = = + 3z;. We know that the z; are
minimal vectors of A. Because of the congruence y; = y, mod 3A, the differences
Zj— 2k, J < k also belong to S(A). Hence, the set R = {£z;, £(2j—2x)} (1 <i <,
1 <j <k <r)isaroot system of type A, (scaled to norm m). We have of course
rk L < r+1, and also rk L > r since L contains v3R. Let u = apYo + -+ + ar Yy
be a non-zero element of L and let a = a9 + --- + a, € Z. We have u = ax
mod 3A. If a = £1 mod 3, then u = 2 mod 3A has a norm N > 2m + m' by
Proposition 3.7. If a = 0 mod 3, then u = 3v for some v € L \ {0} and we have
N(u) =9N(v) > 9m > 2m+m/. O

From the obvious inequality » < n, we obtain:

3.9. Corollary. Under the assumption m' < Tm, the number of elements of
Som+m' which are congruent to a given x € Sap+m' modulo 3A is at most n+1. O

This corollary suffices to obtain representatives of Eg modulo 3. We shall prove
this later, and we now look more precisely at the lattice L in Proposition 3.8. Note
that the condition m’ < 7m is scarcely a restriction: in practice, m' is much smaller
than 7m.

3.10. Proposition. We keep the hypotheses and notation of Proposition 3.8.
Then, L is of rank r if and only if one has
, _bm 4dm + 2m’

L and r=——
m < 9 an T 5 — 2m/
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Under these conditions, one has moreover r = —1 mod 3 and L is similar to A;.

Proof. Without any hypothesis on the rank of L, we have z-z; = —37"‘ for1 <:i<r

(a consequence of the equalities N(y;) = N(z)), from which we easily deduce the
5m—m’
2

relations y;-z; = +22 and y;-2; =0 (1 < 4,5 <r, j # i) and also y; - y; = —
for0<i<jg<r.

Suppose now that rk L = r. There is a relation z = Z;zl Ajzj. Taking the r
scalar products of the two sides with z; and setting A = ) j Aj, we obtain the r
equations A; + A = —3, whose sum reads (r + 1)\ = —3r, whence \; = —% for all
1 > 1 and finally

3 T
(%) $=—T+1;Zj.

This relation first shows that (r + 1)z € 3A; since = does not belong to 3A
(because N(z) = 2m +m' < 9m = N(3A)), r + 1 must be divisible by 3. Taking
the norms of both sides, we obtain the equation

9 r(r+1)
(r+1)2 2

2m +m' =

which is equivalent to r(5m — 2m’) = (4m + 2m'). Using (x), we see that z =
—(y1+ -+ -+ yr), so that (y1,...,¥,) is a basis of L whose Gram matrix is easily
seen to be proportional to the matrix M whose entries are m; ; = r and m; ; = —1
for ¢ # j, which is itself proportional to a standard Gram matrix for A} .

Conversely, using the value above for r, we prove first that

1
(zl++zr):—(y0++y7‘)

v r+1

r+1

and then that N(yo+---+y,) = 0 by making use of the known values of the scalar
products y; - y;, which implies that L is of rank at most r. [

To study the case when L has rank r 4+ 1, we need the following lemma:

3.11. Lemma. Let a > 0 and 3 be real numbers and let q be the quadratic form

q(z) = afo +2p Z Ti%j .
i=1

1<i<j<r

Then, q 1s positive definite with minimum « if and only if the two inequalities — 7 <
B < +5 hold. When these inequalities are satisfied, the minimal vectors of q (up to
the sign) are the r vectors of the canonical basis of Z", except if f = —% orif f = §
where extra minimal vectors exist: the vectors £(e1+---+e€,) in the first case (and



LATTICES MODULO 2 AND 3 13

q then corresponds to a scaled copy of Ay ) and the vectors £(e; —¢;), 1 <i<j<r
in the second case (and q then corresponds to a scaled copy of A, ).

Proof. See [M1], where one makes use of a Voronoi like interpretation involving the
symmetric group S,., or use according to the sign of 3 one of the identities

g(z) = (a—pB)) z}+8 (inf =(a+(r—DB)> a-BY (zi—z;?* O

i<j

3.12. Proposition. With the hypotheses and notation of Proposition 3.8, if L has

5m bm 4m + 2m/
rank r, then we have either m’ > — orm’ < — andr < L
2 2 om — 2m/
Proof. Applying lemma 3.11 with « = 2m + m' and g = m/ — 577”, we obtain the
double inequality
2 !/ /
_mAm o, Smo o om
T 2 2
The second inequality is always satisfied, and so is the first one if m’ > 577" Other-
wise, the first inequality is equivalent to r < ggfgz:, and Proposition 3.11 shows

that this inequality must be strict. [

I do not see how one could obtain more restrictive conditions without a detailed
investigation of the root systems contained in S(A). For particular lattices (e.g.,
for the Leech lattice), we can find the exact value of 7, see below.

Recall that s) is the number of primitive pairs of vectors of norm A; obviously,
one has s) = sy unless % is the square of an integer. Corollary 3.9 immediately
yields the following weighted formula, that we only state when the number of vectors
in Som4+m congruent to a given one of the same layer attains its maximal possible

value:

3.13. Theorem. One has the inequality

1 1 1
E: S;c_'_ E: 8;c+_sgm+—sl2m+m’g_(3n_1)'
3 n+1 2
0<k<3m 3Im<k<2m+m’

If equality holds, vectors of morm 3m (resp. 2m + m') appear in systems of 3
(resp. n + 1) vectors with configuration S(Ay) ~ S(A%) (resp. S(AY)), and one
obtains a system of representatives of A/3A~{0} by taking all vectors of norm N <
2m +m', N # 3m, and one vector out of 3 (resp. out of n+ 1) in each system of
3 vectors of norm 3m (resp. of n+ 1 vectors of norm 2m+m'). O

For root lattices, one has m = 2 and m’ = 4, and to apply Theorem 3.13, it
suffices to consider s; = s, s4, S¢ and sy = sg — S3. Theorem 3.13 applies with
equality to Ay (so = s¢ = 3,54 = 55 =0), to Dy (s2 = s4 = 12,56 = 48, s5 = 0) and
to Eg. For Eg one can use the identification of O, with the Eisenstein series Ey,
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which implies the formulae s; = 120 qlt g3 for all even t > 0, whence sy = 120,
54 = 120 (13 +23) = 1080, sg = 120 (13 + 33) = 3360 and sg = 120 (13 + 23 +43) =
8760, thus sg = sg — s2 = 8640, and it is easy to check the equalities

1 1 1
120 + 1080 + §3360 + 58640 =120+ 1080 + 1120 4 960 = 3280 = 5(38 -1).

We can be more precise: in the three examples above, there is zero or one orbit of
primitive vectors of norm N < 8. Only the case of Eg deserves a proof, which can
be done along the following line: we first consider the Weyl group W (Dg), which
stabilizes Eg and is easy to handle; one finds that the number of pairs of vectors in
orbits of primitive vectors are

Norm 2 : 56 + 64 = 120;

Norm 4 : 8 + 560 + 512 = 1080;

Norm 6 : 672 + 896 + 1792 = 3360;
Norm 8 : 4480 + 64 + 3584 + 512 = 8640;

one moreover proves that the orbit of an element not in 2Eg under Aut(Eg) = W (Esg)
cuts both Dg and Eg \ Dg; consideration of reflections defined by minimal vectors
e € Eg \ Dg quickly shows the required properties of transitivity.

A complete discussion of congruences modulo 3A between vectors of norm N >
2m + m’ involves the description of many possibilities. We shall nevertheless look
closely at one of them, which on the one hand will be useful in the sequel, and on
the other hand involves root systems of type Eg.

We shall indeed consider congruences involving vectors x, y # x and z such
that N(z) = N(y) = 2m +m", y = x4+ 3z and N(z) = m. We thus have
N(z+ z) = N(y — z) = m"". We first state an identity, which properly belongs to
the general theory of quadratic forms, and that we are going to use several times:

3.14. Lemma. Letx,z,...,2k (k > 1) be r+1 vectors of E. Then, the following
identity holds:

k k

N(z+) z)=—(k=1)N(z)+>  N(z+z)+(k- 1ZN<ZZ Y N(zi—2z)

i—1 i=1 1<i<j<k
Proof. Just develop both sides. [

3.15. Theorem. Consider a system of r + 1 vectors yo = x,y1,...,Yr of norm
2m + m" such that N(23%) = m for all i,j with 0 < i < j < r. Sety; =
x+ 3z fori =1,...,r. Then, one has r < 8, and equality holds if and only if
T+ 21+ 29,21,...,28 generate a lattice isometric to \/?Eg. Moreover, we then
have m" = 2m, the 9 vectors yo,y1, ..., ys add to zero, and the set {+yo,..., tys}
s a configuration of type Ag.

Proof. One has y; — y; = 3(z; — 2;). Thus, the set {+z;, £(2; — z;)} is a system
of type A, (scaled to the norm m), whose corresponding Coxeter-Dynkin diagram
may be obtained from the vectors —z1,20 — 21,..., 2,1 — 2.
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By lemma 3.14, the vector v = z + 21 + 22 is of norm 4. Calculating the norm of
Y; — T, we obtain successively equalities z-y; = —5Tm+m’ "and z-z; = — 377”, and then
v-(=21)=0,v- (2 —2i41) =0if i =1 orifi > 3 and v- (22 — z3) = = (because
zi - z; = 5 for i # j). Thus, extending with v the previous diagram, we obtain
a diagram of type E, ;. This is impossible if » +1 > 9, for the corresponding
quadratic form is then of signature (r,1), and may occur for r + 1 = 9 only if
v, 21, ..., 2g are linearly dependent, for the quadratic form attached to Eg is positive
semi-definite of rank 8. When this is the case, the lattice generated by v, 21, ..., 28
is also generated by v, z1, ..., z7, whose Coxeter-Dynkin diagram is of type Es.

Consider now a linear relation A\;z1+- - -+ A2z, = Az. Taking the scalar products
with zq1,..., 2z, yields the linear system

20 + Z)\j = —3A

JFi
3
whose unique solution is A\{ = --- = A\, = e A. We thus must have z =
3
T (21 + - - -+ 2,). Taking the norm of both sides, we first obtain the relation
r
9r
2 " - v
mEm =iy ™

whence m’ = 2m if r = 8, and then

yotuyit+-+y=>0C+he+3(zn+---+2)=0.

Finally, we saw above that yo - y; = = - y; = =2 + m”’, which implies the further
equalities y; - y; = (z + 3z) - (z + 3z;) = —22* + m/. The Gram matrix M of the
system (y1,...,yr) has entries 2m + m/ on the diagonal and —37=27" oytside.

When m'” = 2m’, M is proportional to the matrix with entries 8 on the diagonal
and —1 outside, which is a standard Gram matrix for Ag. 0O

[Here is an alternative argument to the use of Coxeter-Dynkin diagrams. By lemma 3.14, the
vectors & + z; + 2j and T + 2; + 2 + 2k have norm m. Together with the z; and 2; — 2j,
we obtain S, = (g) + 2(5) +r= L&(H‘@
X,21,...,2p. But it is easily checked that S, is strictly larger that S(L) for any root lattice L
of rank 7 if 7 > 8. We must thus have 7 < 8, and L ~ Eg when 7 = 8 since sg = 120.]

vectors of norm MM in the lattice generated by

§4. Orbits and congruences in the Leech lattice. We find in [ATLAS] a
description of the orbits in the Leech lattice A = Aoy of all vectors of norm N < 32.
(In the notation of [ATLAS], & is the type.) We shall make use of it up to N = 18.
Each orbit is written either as a Z-linear combination au; + a’vy where the indices
t,t" are the types of us, vy and uy + vy is a vector wyn of type t”, or on the standard
orthogonal frame made of vectors of norm 8. The first (resp. second) case occurs
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for vectors which are congruent modulo 2 to a vector of norm 0, 4 or 6 (resp. to a
vector of norm 8). In this last case, we shall provide a description in terms of short
vectors. For instance, vectors of norm 8, since they constitute a single orbit, are
the sums e + f where e and f are orthogonal minimal vectors.

As we know, an exact system of representatives of non-zero classes modulo 2 is
provided by one vector of norm 4 or 6 out of each pair &z and one vector of norm 8
out of systems of 48 vectors lying on 24 pairwise orthogonal lines. Proposition 1.1
shows that vectors which are congruent modulo 2A have norms which are congruent
modulo 4. Hence, a vector of A \ 2A is congruent to a vector of norm 6 (resp. of
norm 4 or 8) if its norm is congruent to 2 mod 4 (resp. to 0 mod 4).

We shall denote the orbits of vectors of norm m by a,,, b, etc., choosing the
letter a,b,... in the order of the ATLAS. Thus, the first non-zero orbits are aq4,
ae, ag, ai10, A12, 612, a14, A16, b16, Ci16, Q18, b18; a0, 620, (The orbit 16 18
the imprimitive orbit 2a4; for m > 16, there are at least two orbits of vectors of
norm m.)

We are going to prove the following theorem:

4.1. Theorem. Representatives of A/3A may be found among vectors of norms
up to 18, according to the weighted equality

bia| | [a1a| | |big| | |big]
3 + 2 9 * 36

=3%_1.

\as| + |as| + |ag| + |aio0] + |a12| +

The cardinality of any orbit in A is actually divisible by 65520 (JATLAS], p. 181).

241 38795266
One has 365520 = . Dividing out by 65520 both sides of the formula in

Theorem 4.1, we obtain the following explicit weighted formula:

6900 2861568 12295800 32972800
3+ 256 + 6075 + 70656 + 518400 + 3 + 5 + 9 + 3 =

38795266
9 9

(4.2)

the denominators 3, 9 and 36 in the left hand side correspond to configurations
Ay ~ As, Af and A3'2 ~ A;lw respectively, the second one being related to an
Eg configuration contained in S(A).

To prove Theorem 4.1, we shall examine which orbits are to be used to find
representatives of A/3A of minimal length, prove upper bounds for their weights,
and verify that the left hand side of 4.2, which is a priori known not to be greater
than the right hand side, is indeed equal to the right hand side.

No problem arises with vectors of norm 4, 6, 8, 10 which all represent distinct
classes by Proposition 3.7. The first difficulty occurs for norm 12, where (Propo-
sition 3.1) a vector may be congruent to 1 or 3 vectors having the same norm.
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Now, by Theorem 1.3, a system (x, y, z) of vectors of norm 12 which are congruent
modulo 3A is of the form (e — f,e + 2f,—2e — f) where e, f,e + f are minimal.
Modulo 2A, these vectors are congruent to a vector of norm 4 (respectively, e + f,
e, f). They thus belong to the orbit b15. Conversely, given x = uy + 2vy € bya,
Yy = ug — v and z = —2uy — v9 belong to by and are congruent to x modulo 3A.

Hence, the orbits a2 and b1 must be considered with the respective weights 1
and 3.

Let e, f, g be minimal vectors withe-f =e-g=—1and f-g =2, e.g. e3, —e1, €9
in the notation of 5.1 below. Set x =e+ f+g,y=e—f+gand z=e+ f — 2g.
We have N(z) = 12, x = y mod 2A, and N(y) = 8. Hence, x belongs to ais.
Moreover, we have x = z mod 3A and N(z) = 18. Writing z = ug + 2vy with
uz = e+ f and vy = —g, we see that z belongs to a;g. Otherwise stated, with the
notation of section 1, we have a1s ~3 a13. Hence, we need not consider aig. (This

lass| _ oy
a12]

Similarly, ug + 2vs € aj¢ is congruent to uz — vo of norm 16. Since

bis| 22275

lato] 128
c16 which are congruent to uz + 2v2 modulo 3A are uz — vy and —2ug — vs).

shows that |aq12| divides |a1g|; indeed,

c16] _ 9
a0

whereas is not integral, we have c16 ~3 a19 (and the two vectors of

Applying Propositions 3.10 and 3.12, we see that the number r of vectors y €
Som+m’ = S14 which are congruent modulo 3A to a given z € S14 cannot exceed
2(2m+m')
om — 2m/’
Now, this representation of z is unique:

J = 3. Any element of S14 may be written in the form z = ug + 2vs.

ug + 209 = uj + 205 => uy = uz mod 2A <= uj = tug;

then uf = uz = (uh,v)) = (u3,v2) and ufy = —uz = v = uz + v2 = N(v}) = 6.
We have = uz + 2vy = y = ug — v2 = (u3 + v2) + (—2v3) mod 3A. The map
x — y defined by (ug,vs) — (ug + vg, —v2) is an involution without fixed points of
S14 which preserves congruences modulo 3A. Hence, r is even. Since r is at most 3,
we have r = 2. Consequently, the orbit a;4 must be considered with the weight 2.

4.3. Lemma. The only vectors of norm N < 18 which are congruent modulo 3A
to a shorter vector are those of the orbits aig, c16, a18-

Proof. 'We know by Proposition 3.7 that such a congruence may occur only for
vectors of norm N > 2m + m/ = 14, and we have previously proved equivalences
a16 ~3 0, c16 ~3 a14 and a1g ~3 ai;z. We shall now prove that given y of norm
N =16 or N = 18, a congruence y = z mod 3A with N(z) < N(y) cannot hold
unless y belongs to aig, 16, @1s-

By Proposition 1.1, we have N(z) = N(y) mod 6. Define § by N(y) — N(z) =
60. We have N(z) > 4, hence 6 = 1 or 6 = 2. By Proposition 1.1, for primitive y,
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18 — 12

we have N — 4§ = 2N (z) + N(z + y) > 12, hence § <
are left with the two possibilities:

(1) N(y) =16, N(z) =10, N(z) = N(z+2) =4, N(y — z) = 6;

(2) N(y) =18, N(z) =12, N(2) =4, N(z +2) =6, N(y — 2) = 8.

Now, if N(y) = 16 (resp. if N(y) = 18), y = (z + 2) + 2z is of the form us + 2v,
(resp. uz + 2vq) with ug = z + z (resp. ug = x + z) and vy = 2, which proves that
y € c16 (resp. that y € a15). O

,i.e. 6 =1, and we

We are now faced with the problem of calculating the number of vectors in b1 and
in b;g which are congruent modulo 3A to a vector of the same orbit. Evaluating
the weighted sum of Theorem 4.1 on vectors of norm up to 14, we see that the
complement to 324 — 1 is the sum @ + “315'. It thus suffices now to prove the
bounds wt(bi1) < 9 and wt(big) < 36.

For a pair (z,y) with N(y) = N(x) = N € {16,18}, we have by Proposition 1.1
N(z+z2) = N(y — z) and 2N (z) + N(z + z) = N, which leaves a priori the four
possibilities

(1) N=16,N(z) =6, N(z + z) =4
(2) N=16,N(z) =4, N(z + 2z) = 8;
(3) N=18, N(2) =6, N(x +2) =6

(4) N=18,N(z) =4, N(z + z) = 10;

the first one must be rejected, since we have y = x + z mod 2A and the vectors of
b1 are not congruent modulo 2A to a vector of norm 4.

Because of the congruence modulo 2 above, all the hypotheses of Theorem 3.15
are fulfiled. This proves the first upper bound wt(b16) < 9, from which the structure
of the sets of vectors which are congruent modulo 3A will follow once the equality
wt(big) = 9 is proved.

The proofs of Theorem 4.1 and formula 4.2 now reduce to the inequality
wt(b1g) < 36. We thus finally consider a vector z € byg and look for systems
of vectors y1,...,y, = x mod 3A, writing as above y; = z + 3z; and yy = x; we
must prove that r» 4+ 1 is bounded above by 36.

We consider now more generally a lattice of dimension n whose first three non-
zero norms are m = 4, m' = 6 and then some number m” > 7, and a vector z
of norm 18 in A such that any y = x mod 3A is of norm N > 18, and we look
for systems of vectors y1,...,y, = x mod 3A of norm 18, writing as previously
y; =« + 3z; and yo = .

4.4. Theorem. Under the hypotheses above, the set T(x) of vectors of norm 18
which lie in the class of © in A/3A contains at most |22] pairs £z, and if equality
holds, £T (x) contains a root system of type 5 As when n is even, and "T_l A+ A,
when n is odd. Moreover, Sg(A) then contains a root system of the same type, and
the set =T (x) is the second layer of the lattice they generate.
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Proof. The result is obvious if n < 2. We shall prove the general statement by
induction.

By Proposition 1.1, we have N(z + z;) = N(y — z;) and 2N (z;) + N(z + z;) =
N(z) = 18 for all i. Given an index 3, we are left with the following two possibilities:

(1) N(zi) =4, N(z + z;) = 10, or

(2) N(z;) =N(z+ z) =6,
for N(z;) > m/ implies N(z + z;) < 18 —2m/ <2 < m.

The transposition z = yo «+ y; transforms z; into —z; and z; into z; — z; for
j # 4. This proves that all vectors of the set & = {%z;, £(2; — 2x)} are of norm 4
or 6 and that S is invariant under the permutations of yg, y1, - - ., ¥r-

If all vectors of S are of norm 4, S is a root system of type A,, hence of rank r.
There are thus at most »+ 1 < n+ 1 elements in the class of z modulo 3A, whence
the result in this case, since n + 1 < 37” for n > 2.

We now suppose that S contains at least one vector of norm 6. Under a con-

venient permutation of yg,...,¥,, this vector can be transformed into z;. We
have y; = z + 321 and N(y1) = N(z), hence z - 21 = —2 N(21) = —9, whence
T-y1 = x-x+ 3x -2 = —9. This shows that z, y; and y' = —z — y; are three

minimal vectors with sum 0 in a hexagonal lattice of norm 18. But we have

y' = —2x — 3z, =2 mod 3A,
which implies that v’ is some y;, say vy’ = yo. We thus have —2z — 321 = x + 322,
i.e. x = —z) — 2y, whence z; - zo = 3, which shows that 427,425, +(27 — 22) are
the minimal vectors of a hexagonal lattice contained in Sg(A) whose second layer
is {+yo, Ty1, Y2}

We now apply lemma 3.15 to a system (z, 2;, z;) first with N(z;) = N(z;) = 6,
and then with N(z;) = 6, N(z;) = 4. In the first case, we obtain N(z + z; + z;) =
6 — N(zi — zj) < 2, hence N(z + z; + 2j) = 0, i.e. £ = —z — z;. This shows
that there are at most two vectors z; of norm 6, for if N(z;) = 6, we also have
T = —2z; — 2k, 1.e. zj = 2. Next, if N(2;) = 6 and N(2z4) = 4, thenN(z + 2; + 2;) =
8 — N(z; — zj). We have 4 < N(z; — zj) < 6, hence 2 < N(z + 2z + z;) < 4,
and finally N(x + z; + z;) = N(z; — z;) = 4. We deduce successively from the last
equality the following equalities z;-2z; = 3, z-z; = —6 (because N(z+3z;) = N(x)),
z-yj=wv-x+3r-zj=0and y;-y; =v-x+3v -2 +3v-2; + 92 - z; = 0.

The fact that the last two scalar products are zero shows that the hexagonal
lattice generated by yo = z,y1,y2 = x — y1 is orthogonal to ys,...,y,.. By the
induction hypothesis, the number of elements in the class of x in A/3A is at most
3+ L@J = [%”J Moreover, when equality holds, we can factor out in the set
{£yo, ..., 1y, } a direct sum of root systems A, (scaled to norm 18) until we reach
a system {z;,z; — zx} (1 < i < t) without any vector of norm 6, for which the
bound |3 ] is not attained unless t < 1. 0O

§ 5. Applications. The set of sublattices L of a given lattice A such that A/L is
cyclic of order d is in one-to-one correspondence with the set of elements of order
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d in A*/dA* modulo the operation of (Z/dZ)*, via the map
ecN*—»L={zeA|z-e=0 modd}.

For reasons of complexity, it is important to represent the classes of A* mod dA*
by vectors which are as short as possible. (For the same reason, it is better to use
A* rather than A, even if an explicit isomorphism A/dA ~ A*/dA* is known.)

If we want to consider L only up to isometry, it is important to know the orbits
of Aut(A) acting on A/dA, for it then suffices to consider one vector per orbit and
to test the corresponding lattices for isometry.

For Eg (which is unimodular), there is exactly one primitive orbit for each norm
2,4,6,8. Using for d = 2 and d = 3 the description of A/dA that we have found
above, we see that Eg contains exactly 2 (resp. 4) isometry classes of lattices of
index d = 2 (resp. d = 3). For d = 2, these lattices must be the root lattices
A, 1 E; and Ds; they are attached respectively to vectors of norm 2 (by definition
of E7) and 4. For d = 3, there again correspond root lattices to vectors of norm 6
and 8, namely Ay | Eg and Ag; lattices attached to vectors of norm 2 and 4 are not
root lattices, as there root systems (E7 and D7 respectively) are only of rank 7.

We now turn to the case of the Leech lattice A = Asy. Explicit computations
have been done on the PARI system, with the help of programs written by Batut
and of its Gram matrix of a basis (e1,...,e24) of A calculated from Eva Bayer’s
construction of Ayy over the ring Z[(35]. The entries a; ; of A solely depend on the
differences |7 — i|; thus, A is well defined by its first row, which is

(5.1) [4,1,-1,0,0,0,1,—1,-2,—1,—-1,—1,1,1,-1,-1,1,2,2,1, -1, —1,1,1].

Representatives of all orbits up to the norm 18 can be chosen as follows: a4 : e
Qg : €1 —ez; ag : €1+ eq; Ao : €1+ e2; ajn 1 er+ez+eg; big 1 ex — eg;
ais : er+eztes;ae : 2e1; big 1 e1—2ez; 16 1 €1+eq4+2e9; aig 1 ex—ez —2er;
bis : e1 + ez + 2e17 -

The three sublattices of index 2 inside the Leech lattice A = Aq4 were considered
by Bachoc and Batut (see [M], Chapter V, Theorem 7.9). By Theorem 4.1, there
are 9 sublattices of index 3. We give below the invariants s = s(L) and s* = s(L*)
and the value N* = N(L') of the twelve lattices of index 2 or 3 in A = Ay4 (given
an integral lattice M, we denote by M’ the lattice \/a M* where a is the annihilator
of M*/M), which we characterize by their index p and the orbit o such that L is
isometric to the orthogonal modulo p in Ay4 of a vector e € 0. One has det(L) = p?,
and the Smith invariant of L (i.e., the system of elementary divisors of L*/L) is
(p,p) if p| N(e) and (p?) otherwise.

[Given an integral lattice A of norm m, a prime P which does not divide det (A) and a vector
e€ ANpAlet Acp ={x € A e-2 =0 mod pA}; we have Az’p = (A%, %) Since
A*/A is of order prime to P, the p-component of Az,p/Ae,p is of order p2 and is generated by
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the class of % and that of any element of A \ Ae’p. Clearly, pz—i = e belongs to Ae,p if and
only if e- ¢ = 0 mod p. This proves that A;p/Ae’p is non-cyclic if and only if N(e) = 0
mod p.]

Index 2.

a4 s=51176 s*=1 N*=2
ag §=49128 s*=1 N*=3
asg §=49128 s*=24 N*=4

Index 3.

a4 s =46575 s*=1 N*=
ag s =38502 s*= N*=2
as s =34938 s* = N*=28
alg s$=233453 s*=1 N*=10
a12q $=232913 s*=1 N*=4
a1op S$=33399 s* = N* =
a4 S=32751 s*= N*=14
aep S=32724 s* = N* =16

aigy S = 32670 s*=36 N*=6
The values of s* and of N* found above have the following interpretation: with the

previous notation e, p, I—f is a minimal vector of Af ), which implies that s* is the

weight of the orbit of e and that N* = % if p| N(e) and N* = N(e) otherwise.

5.2. Remark. The systems of 36 vectors of norm 18 with configuration 12 A,
plays for p = 3 the role that play the orthogonal frames of norm 8 for p = 2. This
analogy could be made closer by considering the Leech lattice as a 12-dimensional
module over the rings of Gaussian or Eisenstein integers.

5.3. Remark. By making use of Jacobi theta series to evaluate the repartition
of the values of scalar products among vectors of norm N < 18 in the Leech lattice,
C. Bachoc ([Ba]) was able to prove directly that one needs to consider exactly
norms up to 18 to obtain the shortest representatives of the Leech lattice modulo 3.
Putting the orbit structure in her machinery yields quickly 4.2 and 4.3. One cannot
deduce directly from her method the structure of the sets of congruent vectors in
each orbit (i.e., the occurrence of configurations Ay, Eg, A5, 12A,). However, these
results might well follow from a more detailed study of the sets of scalar products.

APPENDIX : ON LATTICES OF MINIMUM 3

A.1. Theorem. Let A be a well rounded lattice of norm 3. Then, the classes of
A/2A cannot be represented by vectors of norm N < 2 N(A) = 6, except if A is one
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of the five lattices defined up to isometry by one of the following Gram matrices:
Mi=3), Ma=(31), mMp=(39),
3011

311 / 31 0311
M3=1|13-1), Mg=/[(130), or My=

153 o3 1130

1103

The lattice M3 is similar to A3 . The inclusions between the lattices above are
M, C My C M; andMchéCM§CM4.

The proof is not really difficult, but needs somewhat tedious verifications of
various details. For this reason, I do not give it, and refer the reader to my home
page http://math.u-bordeaux.fr/~ martinet.
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