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Abstract. We prove that a Euclidean lattice of dimension n = 5 (resp. 6;
resp. 7) having at least 6 (resp. 10; resp. 18) pairs of minimal vectors has
a basis of minimal vectors.

Résumé. Nous montrons qu’un réseau euclidien de dimension n = 5 (resp. 6;
resp. 7) ayant au moins 6 (resp. 10; resp. 18) paires de vecteurs minimaux
possède une base de vecteurs minimaux.
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1. Introduction

In this paper, we consider well rounded lattices, i.e. lattices Λ in some Euclidean
space E whose set of minimal vectors spans E. We denote by S(Λ) = S the set
of minimal vectors of Λ and by 2s its cardinality. Let n = dimE. Our aim is to
calculate lower bounds s0 for s which ensure that any well rounded lattice with
s ≥ s0 is generated by its minimal vectors. It is proved in [5] that up to n = 8,
every lattice generated by its minimal vectors possesses a basis of minimal vectors.
Hence for the dimensions we shall consider here, these two notions are equivalent.
We shall prove:

Theorem 1.1. Let Λ be an n-dimensional, well rounded lattice. Suppose that one
of the following conditions holds:

1. n ≤ 4;
2. n = 5 and s ≥ 6;
3. n = 6 and s ≥ 10;
4. n = 7 and s ≥ 18.

Then Λ possesses a basis of minimal vectors. Moreover, for n = 5, 6 and 7, the
lower bounds given above for s are optimal.

Travail effectué avec le soutien de l’Université Bordeaux 1 et du C.N.R.S. (UMR 5251).
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Since perfect lattices satisfy the condition s ≥ n(n+1)
2 , we recover the result

proved by Csóka ([1], 1987), namely that perfect lattices of dimension n ≤ 7
possess bases of minimal vectors, a result which we can check nowadays on the
Stacey-Jaquet classification.

Given a well rounded lattice Λ, n independent minimal vectors e1, . . . , en of
Λ constitute a basis for a sublattice Λ′ of Λ. The set of possible structures for
Λ/Λ′, and in particular the list L of indices [Λ : Λ′] are invariants for Λ.

Definition 1.2. The largest possible value ı(Λ) for [Λ : Λ′] is the maximal index of
Λ. For a given pair (Λ,Λ′), the smallest integer m such that Λ = 〈Λ′, e(i)〉 where Λ′

has a basis (e1, . . . , en) with ei ∈ S(Λ) and the e(i) are of the form a1e1+···+amem

di

is called the length of (Λ,Λ′).

For instance, if ı(Λ) = 2 (resp. 3), the length of Λ is the smallest integer m
such that one can write Λ = 〈Λ′, e〉 with e = e1+···+em

d and d = 2 (resp. d = 3).
Note that Λ has a basis of minimal vectors if and only if index 1 occurs in the
list L.

Lemma 1.3. (Watson’s index lemma, [6]) Suppose that Λ = 〈Λ′, e〉 for a vector

e =
a1e1 + · · ·+ amem

d
with ai ≥ 1 and d ≥ 2. Then

n∑
i=1

ai

(
N(e− ei)−N(ei)

)
=
(( n∑

i=1

ai

)
− 2d

)
N(e) .

Assume moreover that the vectors ei are minimal. Then we have
∑

i ai ≥ 2d and
equality holds if and only if all vectors e− ei are minimal.

Proof. The straightforward proof is left to the reader. Some more details can be
read in [4], Section 2. �

The following proposition is an example of the results we shall prove in rela-
tion with the index:

Proposition 1.4. Let Λ be a well rounded lattice of dimension n, maximal index 2,
and length `, having no basis of minimal vectors.

1. If ` = n, then s(Λ) = n.
2. If ` = n − 1, then s ≤ 2n − 1, and if s ≥ n + 4, we can choose the ei so

that either S(Λ) = {±ei,±(en + ej)} , i = 1, . . . , n, j = 2, . . . , s − n, or
S(Λ) = {±ei,±(e1 + ej + en)}, i = 1, . . . , n, j = 1, . . . , s − n (and then,
s ≤ 2n− 2).

Numerical evidence suggests that the bound s ≤ 2n − 1 is optimal from
dimension 7 onwards. Theorem 1.1 in dimension 6 will follow from the improvement
s ≤ 2n− 3 = 9.

Acknowledgements. I warmly thank Roland Bacher for his close look at a first
draft of this paper and his numerous remarks which allowed me to greatly improve
the original manuscript.
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2. Bounds for the Index

We succinctly recall some results on the index. For the proof, the reader is referred
to [4].

The trivial bound ı ≤ γ
n/2
n is optimal for all n ≤ 8, but if we disregard the

root lattices D4, D6, E7, E8 (which obviously have bases of minimal vectors), we
obtain the bounds ı ≤ 2, 3, 4, 8 for n = 5, 6, 7, 8, and we moreover have ı = 1 for
n ≤ 4, which proves Theorem 1.1 for dimensions n ≤ 4.

When d = 2 or 3, we may suppose (by reduction modulo d of the ai and
negation of some ei) that we have a1 = · · · = am = 1 and ai = 0 for m ≤ i ≤ n
for some m ≤ n. The index lemma then shows that if Λ is not generated by its
minimal vectors, and if ı(Λ) = 2 (resp. 3), then Λ has length ` ≥ 5 (resp. ` ≥ 7).

We now make and comment two general remarks, namely:
1. if Λ/Λ′ is cyclic of prime order and if Λ is not generated by minimal vectors,

then S(Λ) must be reduced to S(Λ′);
2. if [Λ : Λ′] = ı(Λ), then ı(Λ′) = 1.

Condition ı(Λ′) = 1 can be expressed in terms of characteristic determinants (in
the sense of Korkine and Zolotareff; see [3], Section 5.1). The consideration of
determinants of orders 1, 2, 3 show that a lattice of maximal index ı = 1 satisfies
the properties below.

1. Minimal vectors have components 0,±1 on e1, . . . , en.
2. Two minimal vectors cannot have components (1, 1) and (1,−1) on a pair

(i, j) of indices.
3. Three minimal vectors cannot have components (1, 1, 0), (1, 0, 1) and (0, 1, 1)

on a system (i, j, k) of three components.
The easy proposition below illustrates the case of these small indices:

Proposition 2.1. Let Λ be a well rounded lattice which is not generated by its
minimal vectors, of dimension and length n, and of index 2 (resp. 3). Then s(Λ) =
n (resp. s(Λ) ≤ n+ bn

2 c).

Proof. We may write Λ = 〈Λ′, e〉 with

e =
a1e1 + · · ·+ anen

d
and d = 2 or 3 .

Let x =
∑n

i=1 xiei ∈ S(Λ′); by the remarks above, we have xi = 0,±1.
Suppose first that d = 2. Negating ei and replacing e by e − ei if necessary,

we may assume that all xi are equal to 0 or 1. If, say, x = e1 + · · · + ek were
minimal for some k ≥ 2, we could write e = x+ek+1+···+en

2 and Λ would have
length ` ≤ n+ 1− k, a contradiction.

Suppose next that d = 3. We get rid of sums e1 + · · · + ek with k ≥ 2 as
above, but we must this time also consider sums of the form e1 ± e2 ± · · · ± ek. If,
say, x = e1 + e2 − e3 were minimal, we could write e − e3 = x−e3+e4+···+en

3 , and
Λ would have length ` ≤ n − 1. Similarly x = e1 − e2 and y = e1 − e3 cannot be
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both minimal, for we could then write e− e1 = −x−y+e4+···+en

3 . Then the minimal
vectors of Λ′ others that the ±ei are vectors ±(ei − ej) with disjoint supports
{i, j}. This completes the proof of Proposition 2.1. �

This proposition immediately implies Theorem 1.1 for dimension 5, since
5-dimensional lattices have maximal index ı = 1 or 2.

3. Lattices of Index 2

In this section, we prove Proposition 1.4 and complete the proof of Theorem 1.1
for dimension 6. We also prove a preliminary result for dimension 7.

Proof of Proposition 1.4. The first assertion of the proposition results from Propo-
sition 2.1. Let us prove (2). We then write as usual

Λ = 〈Λ′, e〉 with e =
e1 + · · ·+ en−1

2
.

As in the proof of Proposition 2.1, we show that S(Λ) = S(Λ′) and that at least
one x ∈ S(Λ′) can be written as a sum ei1 + · · · + eik

. Since systems of com-
ponents (1, 1), (1,−1) are forbidden, every x ∈ S(Λ′) (up to sign) has then pos-
itive components. Moreover, by definition of the length, x must have a non-zero
component on en. If, say, x = e1 + e2 + e3 + en were minimal, we could write
e = x−en+e4+···+en−1

2 . As a consequence, we may assume that minimal vectors
other than the ei are of the form ±(ei + en) (type I) or ±(ei + ej + en) (type II).
Next we observe that x = e1 +e2 +en and y = e3 +en cannot be both minimal, for
we could write e+ en = x+y+e4+···+en−1

2 , nor similarly x and y = e3 + e4 + en. We
now discuss the various possibilities according to the number t of type I vectors.

• t ≥ 2, say, e1 + en and e2 + en ∈ S(Λ′). The only possible vector of type II
is e1 + e2 + en, and then s = n+ 3. This proves Proposition 1.4 in this case.

• t = 1, say, e1 + en ∈ S(Λ′). Then all type II vectors must be of the form
e1 +ei +en. Replacing en by e′n = e1 +en and e1 by e′1 = −e1, we reduce ourselves
to the previous case.

• t = 0. We cannot have a system ei + ej + en, ei + ek + en, ej + ek + en,
which would imply i(Λ′) ≥ 2 (the vectors above define a non-trivial characteristic
determinant). Hence we may assume (up to a permutation of e1, . . . , en−1) that
all minimal vectors other than the ±ei are of the form e1 + ei + en. �

Proof of Theorem 1.1 for dimension 6. We consider a lattice Λ with maximal index
ı. We have ı ≤ 4, and bases of minimal vectors exist if ı = 4 (because Λ is then
similar to D6; see [4], theorem 4.3), if ı = 3 (because equality holds in Watson’s
theorem) and of course if ı = 1, and also if ı = 2 and if Λ has length 4 (because it
then has a D4-section) or 6 (by proposition 1.4).

There remains to consider the case where Λ is of the form 〈Λ′, e〉 with e =
e1+e2+e3+e4+e5

2 , that we scale for convenience to minimum 2. Hence, ei ·ei = 2. By
Proposition 2.1, we may assume that up to sign, the minimal vectors of Λ′ other
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than the ±ei are the vectors ei + e6 or ei + e5 + e6 for i = 1, . . . , k, k ≤ 5 or k ≤ 4,
and we must prove that k ≤ 3.

Suppose first that e1 + e6, . . . , e4 + e6 are minimal. Applying the averaging
argument of [4], Proposition 8.5 to the group S4 acting on {1, 2, 3, 4}, we may
reduce ourselves to the case where the scalar products ei · ej only depend on three
parameters, namely t = ei ·ej (1 ≤ i < j ≤ 4), u = ei ·e5 (1 ≤ i ≤ 4) and v = e5 ·e6
(we have ei · e6 = −1 for 1 ≤ i ≤ 4). An easy calculation shows that

(1) N(e+ e6)− 2 = − 3
2 + 3t+ 2u+ v ;

(2) N(e− e5 + e6)− 2 = − 3
2 + 3t− 2u− v ;

(3) N(e− e2 − e3)− 2 = 1
2 − t.

The left hand sides must be strictly positive. Adding (1) and (2), we obtain the
lower bound 6t > 3 which contradicts (3).

Suppose next that e1 + e5 + e6, . . . , e4 + e5 + e6 are minimal. Using the same
averaging argument, we find this time N(e−e1)−2 = u+ 1

2 and N(e−e1+e6)−2 =
v−u− 3

2 . Adding these two positive numbers, we obtain the inequality −v−1 > 0,
i.e. v < −1. This contradicts N(e5 + e6) = 4 + 2v ≥ 2.

That 2s ≤ 18 is the least upper bound for the number of minimal vectors in
a well rounded 6-dimensional lattice can be seen by inspecting the Gram matrices
displayed in the appendix. �

We now turn to lattices of index 2 and length n − 2 not generated by their
minimal vectors. This implies n ≥ 7 by the index lemma. We put special emphasis
on dimension n = 7, for which hyperplane sections can be handled using the
case n = 6 of Theorem 1.1, the statement of which is more precise than that of
Proposition 1.4. This will complete the study of 7-dimensional lattices of index 2.
The bounds given in the following proposition are perhaps not optimal.

Proposition 3.1. Let Λ be a well rounded lattice of dimension n, index 2, and
length n− 2, having no basis of minimal vectors. Then s ≤ 4n− 5, and if n = 7,
we have the sharper bound s ≤ 17.

Proof. Let F be the span of e1, . . . , en−2 and let F1 = F + en−1, F2 = F + en,
F3 = F + (en−1 + en) and F4 = F + (en−1− en). Since Λ′ has index 1, all minimal
vectors of Λ′ are of the form ±ei ± ej ± . . . , hence (up to sign) belong to one of
the affine spaces Fi. Moreover, F3 and F4 cannot both contain minimal vectors
of Λ′, because their components on en−1 and en would define a characteristic
determinant equal to ±2; see Section 2. Negating en if necessary, we may assume
that S(Λ′) ∩ F4 = ∅.

By Proposition 1.4 applied in dimension n − 1, there are in F + Ren−1 and
F+Ren at most n−2 pairs of minimal vectors besides e1, . . . , en−1, en. Hence each
set F1, F2 contributes at most n− 2 to s. A result of the same kind holds for F3:
if en−1 + en is minimal, the contributions to s of F3 is now at most n− 1 (at most
(n−2), plus 1 for en−1+en); otherwise, if S(Λ′)∩F3 6= ∅, let x be one of its elements,
and let Λ′′ be the lattice generated by e′1 = e1, . . . , e

′
n−1 = en−1 and e′n = x;

applying the previous argument to F ′ = F+e′n, we find that there are at most n−2
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minimal vectors in F ′ besides e1, . . . , en−1, x, but this list includes en. Altogether,
this gives for s(Λ) = s(Λ′) the upper bound s ≤ n+ 2(n− 2) + (n− 1) = 4n− 5,
which proves the first part of the proposition.

The argument for n = 7 is similar, replacing the bound n−2 of Proposition 1.4
by the bound 3 = 9 − 6 of Theorem 1.1 for dimension 6. This time we have
s ≤ 7 + 2× 3 + 4 = 17. �

4. 7-Dimensional Lattices

We begin this section with a lemma which paves the way for the complete study
of dimension 7. We keep the previous notation. In particular, e1, . . . , e7 are inde-
pendent minimal vectors of Λ which constitute a basis for a sublattice Λ′ of Λ.

Lemma 4.1. Let Λ be a 7-dimensional lattice which is not generated by its minimal
vectors. Assume that s(Λ) ≥ 14. Then Λ has one of the following forms:

1. Λ = 〈Λ′, e〉 with e =
e1 + e2 + e3 + e4 + e5

2
.

2. Λ = 〈Λ′, e, f〉 with

e =
e1 + e2 + e3 + e4

2
and f =

e1 + e2 + e5 + e6 + e7
2

.

3. Λ = 〈Λ′, e〉 with e =
e1 + e2 + e3 + e4 + e5 + 2e6 + 2e7

4
.

Proof. For n = 7, we have ı(Λ) ∈ {2, 3, 4} or ı = 8. but this last case must
be discarded since it occurs only for lattices similar to E7, see the beginning of
Section 2. If ı(Λ) = 2 and length(Λ) ≥ 6, we have s ≤ 13 by Proposition 1.4.
Hence if ı = 2, we must have length(Λ) = 5, which is case one of the lemma. If
ı(Λ) = 3, we have s ≤ 10 by Proposition 2.1. We are thus left with lattices such
that [Λ : Λ′] = 4.

If Λ/Λ′ is non-cyclic, we attach to (Λ,Λ′) the binary code (of length 7 and
dimension 2), with words (a1, . . . , a7) mod 2 for a1e1+···+a7e7

2 ∈ Λ. Its minimal
weight is ≥ 4 by Watson’s inequality, which implies that its weight system is (43),
(42, 6) or (4, 52). In the first two cases, Λ has a basis of minimal vectors, whereas
the third case corresponds to case (2) of the lemma.

If Λ/Λ′ is cyclic, we can write Λ = 〈Λ′, e〉 with e = e1+...ep+2ep+1+···+2e7
4 and

4 ≤ p ≤ 6 (see [4], Proposition 5.1). Applying Watson’s identity if p = 6 or writing
e = e′+e5+e6+e7

2 with e′ = e1+e2+e3+e4
2 if p = 4, we see that e− e7 is in both cases

a minimal vector. Hence we must have p = 5, which is case (3) of the lemma. �

Remark 4.2. The smallest possible value for s is s = 7 in cases (1) and (3), and
s = 15 in case (2); see [4], table 11.1.

We now consider lattices of index ı ≥ 4 which are not generated by their
minimal vectors. This implies ı = 4, and we are in one of the cases (2), (3) of
Lemma 4.1. We keep the notation of the previous sections. We begin with case (2),
corresponding to a non-cyclic quotient Λ/Λ′.
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Proposition 4.3. Let e1, . . . , e7 be 7 independent minimal vectors of Λ generating
a sublattice Λ′ of Λ. Suppose that Λ/Λ′ is non-cyclic of order 4 and that Λ is not
generated by its minimal vectors. Then s(Λ) ≤ 15.
(The upper bound s(Λ) ≤ 15 is optimal by Remark 4.2.)

Proof. We have ı(Λ) = 4 and by lemma 4.1, we may write Λ = 〈Λ, e, f〉 with

e =
e1 + e2 + e3 + e4

2
and f =

e1 + e2 + e5 + e6 + e7
2

. We observe that Λ contains
at least 15 pairs of minimal vectors, namely the 7 pairs ±ei and the 8 pairs
±e1±e2±e3±e4

2 . We are going to show that Λ has no other minimal vectors.

Set f ′ =
e3 + e4 + e5 + e6 + e7

2
. Since Λ = 〈Λ′, e, f〉 = 〈Λ′, e, f ′〉 is not gen-

erated by its minimal vectors, none of the cosets f + Λ′, f ′ + Λ′ contains minimal
vectors. We first prove that the only minimal vectors in the coset Λ′ are the ±ei.

Indeed, the arguments used to prove Proposition 1.4 show that we may reduce
ourselves to the case where there exists a minimal vector of the form x = ei1 +
· · ·+eir

with r ≥ 2, and that the support of x must not be contained in any of the
sets {1, 2, 3, 4}, {1, 2, 5, 6, 7} or {3, 4, 5, 6, 7}. This implies that the support T of x
intersects all three complementary sets {1, 2}, {3, 4} and {5, 6, 7} of the supports
of f ′, f and e. In particular , we have r ≥ 3. We cannot have T ⊂ {1, 2, 3, 4}
because e1+e2+e3+e4

2 /∈ 2Λ. Hence we may assume that either x = e1 +e3 +e5 + . . .
with r ≥ 3 components or x = e1 + e2 + e3 + e5 + . . . with r ≥ 4 components.
The case r = 4 (and a fortiori r > 4) is impossible: otherwise f = x+e2−e3+e7

2

or f = x−e3+e6+e7
2 would be minimal. Suppose now r = 3. The existence of the

8 pairs of minimal vectors ±e1±e2±e3±e4
2 implies ei · ej = 0 and a straightforward

computation yields N(e1 + e5) + N(e3 + e5) = N(e5) + N(e1 + e3 + e5) which
shows the minimality of e1 + e5 and e3 + e5 and contradicts the inequality r ≥ 3
established above.

We now prove that ±e1±e2±e3±e4
2 are the only minimal vectors in the coset

e + Λ. Let x ∈ S(Λ) ∩ (e + Λ), say, x = {a1e1+···+a7e7
2 }; we have ai ≡ 1 mod 2 if

i ≤ 4 and ai ≡ 0 mod 2 if i > 4. For an i with ai 6= 0, consider the lattice Λ′′

generated by x and the ej with j 6= i. We have ±ei =
−2x+

∑
j 6=i ajej

|ai|
, whence

|ai| = [Λ : Λ′′] ≤ 4, and equality must be excluded, since it corresponds to the
case “p = 4” in the proof of Lemma 4.1, (3). Hence ai = 0,±2 for i = 5, 6, 7, say,
ai = 2a′i, and at least one of them is non-zero, so that we may assume that a′7 = 1.
Replacing e7 in f by its expression as a combination of x and the aj with j 6= 5,
we obtain for f an expression of the form

f =

∑
1≤i≤4 biei +

∑
5≤i≤7 ciei

4

with odd bi (bi = 2 − ai or −ai) and even ci (2(1 − a′5), 2(1 − a′6), 2x). The
impossible case “p = 4” again shows up. �
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Proposition 4.4. Let e1, . . . , e7 be 7 independent minimal vectors of Λ generating
a sublattice Λ′ of Λ. Suppose that Λ/Λ′ is cyclic of order 4 and that Λ is not
generated by its minimal vectors. Then s(Λ) ≤ 17.

Proof. By Lemma 4.1, we may write Λ in the form Λ = 〈Λ′, e〉 where e =
e1+···+e5+2(e6+e7)

4 . Set f = e1+e2+e3+e4+e5
2 . Then e = f+e6+e7

2 , and the cosets
of Λ modulo Λ′ are those of ±e, f and 0. We again have ı(Λ) = 4. Assuming that
Λ is not generated by its minimal vectors, we are going to show that Λ has at most
17 pairs of minimal vectors. We observe that the cosets of ±e do not contain any
minimal vector, and we consider successively Λ′ and f + Λ′, and denote by s′ and
sf the contributions to s of Λ′ and f + Λ′ respectively.

Let x ∈ S(Λ′), x 6= ±ei. Because ı(Λ) = 4, x is up to sign a sum ei± ej ± . . .
with i < j < . . . . As in the proof of Proposition 4.3, the signs of e6, e7 do not
matter, but those of e1, . . . , e5 do. If x = ei + ej ± . . . with i, j ≤ 5, or if x =
· · ·+e6+e7, then Λ has length ` ≤ 6. If x = ei+ej with i ≤ 5 < j or x = ei−ej with
i, j < 5, then we are in the case p = 6 of Lemma 4.1. Finally, up to permutations
of {1, . . . , 5} and {6, 7}, we may assume that x = e1 − e2 + e6. Now another
vector y = ei − ej + e6 cannot be minimal: indeed, if y = e1 − e3 + e6 (resp.
e3− e4 + e6) were minimal, we would have e+ e6− e1 = −x−y−e1+e4+e5+2e7

4 (resp.
e − e6 − e1 = x+y+e5+2(e2+e4+e7)

4 ), and Λ would have length 6. Hence we have
s′ ≤ 9 and if equality holds, the pairs of minimal vectors in Λ′ other than the ±ei

are one pair ±(ei − ej ± e6) and one pair ±(ei′ − ej′ ± e7).
We now turn to the coset f + Λ, whose elements are of the form x =

a1e1+···+a5e5+a6e6+a7e7
2 with ai ≡ 1 mod 2 for 1 ≤ i ≤ 5 and a6 ≡ a7 ≡ 0 mod 2.

If ai 6= 0, we may write ±ei =
2x−

P
j 6=i ajej

|ai| . Assume that x is minimal, and let Λ′′

be the lattice generated by x and the ej with j 6= i. We have [〈Λ′, f〉 : Λ′′] = |ai|
hence [Λ : Λ′′] = 2|ai|, which implies 2|ai| ≤ ı(Λ) = 4, i.e. ai ∈ {0,±1,±2}. Negat-
ing some vectors among {e, f, e6, e7} if necessary, we may assume that there are
0, 1 or 2 coefficients ai equal to −1 with i ≤ 5 and that a6, a7 ∈ {0, 2}. Up to
sign, we have x = f ′ + b6e6 + b7e7, where f ′ = f , f − ei or f − ei − ej and bi = 0
or 1. If f ′ = f + . . . then e = f ′+e6+e7

2 has length ` ≤ 3 with respect to 〈Λ′, f〉,
which is plainly impossible. Similarly, if f ′ = f − ei + . . . , then e = f ′+ei+...

2 has
length ` ≤ 4 with respect to 〈Λ′, f〉, which is again impossible. Finally, the only
possibility is f ′ = f − ei − ej (with b6 = b7 = 0), which implies the upper bound
sf ≤ 10.

Taking into account s′ and sf , we obtain the bound s ≤ 19, that we shall
now slightly sharpen.

We observe that two vectors f ′ = f − ei − ej and x = ei − ej + ek, i < j ≤ 5
and k = 6, 7 cannot be both minimal. Indeed, with i = 1, j = 2 and k = 6, we may
write e−e2 = f ′+x+e7

2 . Hence if sf = 10 or sf ≤ 8, we have s ≤ 17. There remains
to consider the case where all vectors f ′ = f − ei − ej except, say, f − e4 − e5 and
also x = e4−e5 +e6 and y = e4−e5 +e7 are minimal. We choose the scale in which
N(ei) = 4. Writing that the nine vectors f − ei− ej (1 ≤ i < j ≤ 5, (i, j) 6= (4, 5))
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are minimal, we express the Gram matrix for 〈e1, . . . , e5, f〉 as a function of one
parameter t such that ei · ej = t for 1 ≤ i < j ≤ 3 and ei · ej = 2− t for 1 ≤ i ≤ 3
and j = 4, 5 and for i = 4 and j = 5. We then apply the averaging argument
of Proposition 8.5 in [4] referred to above with respect to the group generated
by the permutations of {1, 2, 3}, the transposition (6, 7), and the transformation
which exchanges e4 and −e5 and negates e6 and e7. We can express a Gram
matrix as a function of three parameters: t, u such that e4 · e6 = e4 · e7 = u and
e5 · e6 = e5 · e7 = −u, and v = e6 · e7, and we have ei · ej = 0 for i = 1, 2, 3 and
j = 6, 7. Then N(e4 − e5 + e6) = 8 + 2t+ 4u is minimal if and only if u = −1− t

2 ,
but we then have N(e− e4 − e6 − e7) = 1 + t+v

2 ≤ 3 since |t| and |v| are bounded
from above by 2. Hence sf = 9 implies s′ ≤ 8. This completes the proof of the
proposition. �

Proof of Theorem 1.1 for dimension 7. Lemma 4.1 shows that it suffices to consider
lattices which are either of index 2 and length 5, or of index 4, cyclic or not. The
bound s ≤ 17 for lattices which are not generated by their minimal vectors then
results from the three propositions 3.1, 4.3 and 4.4. The fact that there exists such
lattices with s = 17 is seen on the Gram matrix displayed in the appendix, which
defines a lattice having a 5-dimensional section similar to Coxeter’s perfect lattice
A3

5 (the perfect lattice P 2
5 in Conway and Sloane’s notation; see [3], Table 6.5.5).

�

5. Appendix

In this appendix, we display Gram matrices for lattices Λ of dimension n ≤ 7 with
given maximal index ı and length `, having the largest possible kissing number
among those which are not generated by their minimal vectors. We discard the
case where n = 7, ı = 2 and ` = 5, for which the optimal value for s (14, 15, 16 or
17) is not known, see the remark below.

We disregard the trivial case where ı = 2 and ` = n, the minimal class of
which (in the sense of [3], Section 9.1) is that of the centred cubic lattice. This
is the only possibility if n = 5. If n = 6, the only other possibility is ı = 2 and
` = n−1 = 5. If n = 7 and ı ≥ 3, then ` = 7, and we are left with 5 cases, namely:
ı = 2, ` = 6 or 5; ı = 3; ı = 4, cyclic or non-cyclic.

Matrices are constructed starting with the Gram matrix A′ of a basis of
minimal vectors for a lattice Λ′ such that Λ is of the form 〈Λ′, e〉 (resp. 〈Λ′, e, f〉)
and then replacing the first basis vector by e (resp. the first and the last ones by
e and f respectively).

We denote by T a set of representatives up to sign for S(Λ)r{±ei}.

Dimension 6. ı = 2, ` = 5 ; smax = 9. We display two matrices A6a and A6b
for the two minimal classes defined by T = {e1 + e6, e2 + e6, e3 + e6} and T =



10 Jacques Martinet

{e1 + e6, e2 + e6, e1 + e2 + e6} respectively:

A6a =

 75 36 36 21 21 −35
36 48 12 0 0 −24
36 12 48 0 0 −24
21 0 0 48 −6 1
21 0 0 −6 48 1
−35 −24 −24 1 1 48

 , A6b =

 5 2 2 2 2 −2
2 4 0 0 0 −2
2 0 4 0 0 0
2 0 0 4 0 0
2 0 0 0 4 0
−2 −2 0 0 0 4

 .

Dimension 7. ı = 2, ` = 6, T = {e1 + e7, . . . , e6 + e7}, smax = 13;
ı = 3, T = {e1 − e2, e3 − e4, e5 − e6}, smax = 10.

A7a2 =


27 9 9 9 9 9 −12
9 8 2 2 2 2 −4
9 2 8 2 2 2 −4
9 2 2 8 2 2 −4
9 2 2 2 8 2 −4
9 2 2 2 2 8 −4
−12 −4 −4 −4 −4 −4 8

 , A7a3 =


20 9 9 9 9 9 6
9 18 0 0 0 0 0
9 0 18 9 0 0 0
9 0 9 18 0 0 0
9 0 0 0 18 9 0
9 0 0 0 9 18 0
6 0 0 0 0 0 18

 .

ı = 4. We display two matrices A7a4 and A7b4 for the two minimal classes defined
by T = { e1±e2±e3±e4

2 } and non-cyclic quotient, with smax = 15, and S = S(P 2
5 ) ∪

{±e6,±e7} and cyclic quotient, with smax = 17, respectively.

A7a4 =


4 2 2 2 0 0 2
2 4 0 0 0 0 0
2 0 4 0 0 0 2
2 0 0 4 0 0 2
0 0 0 0 4 0 2
0 0 0 0 0 4 2
2 0 2 2 2 2 5

 , A7b4 =


9 4 4 4 4 4 4
4 8 2 2 2 0 0
4 2 8 2 2 0 0
4 2 2 8 2 0 0
4 2 2 2 8 0 0
4 0 0 0 0 8 0
4 0 0 0 0 0 8

 .

[In the cyclic case, there might exist other minimal classes with s = 17.]

Remark 5.1. Extending A6a to dimension 7 by ei · e7 = −ei · e6 (i = 1, 2, 3, 4, 5),
e6 · e7 = −24 and e7 · e7 = 48, we obtain a lattice of index 2 and length 5 with
s = 14 and extra minimal vectors ei + e6, ei − e7 (i = 1, 2, 3) and e6 + e7.

Remark 5.2. Let Λ be an 8-dimensional, well-rounded lattice with s ≥ n(n+1)
2 = 36

and let Λ0 be the sublattice generated by its minimal vectors. I could show that
one of the following conditions holds for Λ:

1. Λ has a basis of minimal vectors.
2. ı(Λ) = 4, ı(Λ0) = 2 and [Λ : Λ0] = 2.
3. ı(Λ) = 6, ı(Λ0) = 3 and [Λ : Λ0] = 2.

I conjecture that assertion (1) is indeed the correct one, and even that
the hypothesis s ≥ 36 could be slightly weakened. This conjecture implies that
8-dimensional perfect lattices have bases of minimal vectors, a result which is ac-
tually a consequence of the recent classification theorem of Dutour–Schürmann–
Vallentin ([2]).

Lattices of maximal index 2 play a crucial rôle in the remark above. They
are of two different types according to whether they are generated or not by their
minimal vectors. Recall that for n ≥ 3 and r | n+ 1, the Coxeter lattice Ar

n is the
unique lattice L such that An ⊂ L ⊂ A∗n and [L : An] = r.

If [Λ : Λ0] = ı(Λ) = 2 and s(Λ) ≥ n(n+1)
2 , then (by a theorem of Korkine

and Zolotareff; see [3], Section 6.1), Λ0 is similar to the root lattice An. A look
at the structure of An modulo 2 then shows that Λ is similar to a lattice of the
form 〈A2

m,An〉 for some odd m ≤ n. Now (see [3], Sections 5.1 and 5.2), we
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have S(A2
m) = S(Am) if and only if m ≥ 9. This gives us a complete description

of lattices with ı(Λ) = 2 which are not generated by their minimal vectors; in
particular, they exist if and only if n ≥ 9.

For perfect lattices with ı(Λ) = 2 which are generated by their minimal
vectors, I only have the following conjecture:

Conjecture 5.3. A perfect lattice of maximal index 2 which is generated by its set of
minimal vectors has dimension at most 7. (More optimistic form: replace “perfect”
by “s ≥ n(n+1)

2 ”.)
[In Conway and Sloane’s notation (see [3], Section 6.5), the perfect lattices with ı = 2

which are generated by their minimal vectors are P 1
4 , P 1

5 , P 2
5 , P 5

6 , P 6
6 and P 32

7 .]
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