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Complements to
Perfect Lattices in Euclidean Spaces.

Note. Since the publication of Perfect Lattices in Euclidean Spaces, im-

provements on several questions considered in this book appeared in the

literature, or have been noticed by various researchers who read my book.

Besides the erratum, my home page displays an update of the reference list

(completion of the original which appeared after the book as well as new

references quoted after the original reference list).

In what follows, we intend to list some results which improve on those which

occur in the book, and either give (an outline of) a proof or refer to the

updated reference list. The last page, formerly an appendix to the erratum,

is devoted to Craig lattices.

Section 1.10.C.

Problems involving tensor products of lattices play an interesting rôle
in Arakelov theory. The interested reader could look at the following
two papers by D. Grayson (Comment. Math. Helvetici 59 (1984),600–

634 & 61 (1986), 661–676) and at recent papers by Y. André (Tohoku

Math. J. 63 (2011), 629-–649), J.-B. Bost & H.Chen (arXiv:1203.0216v1

[math.NT]), B. Casselman (Asian Journal of Mathematics 8 (2004); issue

dedicated to Armand Borel), and É. Gaudron & G. Rémond (arXiv:1109.2812v1

[math.NT]); quoted by Fabien Pazuki in

http://www.math.u-bordeaux1.fr/̃ fpazuki/GDTGD.html .

Section 2.2.C.

An analogue of the Hermite constant for global function fields is
defined in [Hu-Y].

Section 2.3.C.

Generalization of the Mordell inequality to lattices endowed with
various algebraic structures have been obtained by Stephanie Vance
in [Van1]. In particular, her inequality shows that the maximal Hermite
invariant among 16-dimensional lattices over the Hurwitz order is that
of the Barnes-Wall lattice Λ16; this makes use of the fact (proved by
Sigrist and by Schürmann) that the densest 12-dimensional Hurwitz
lattices are Λmax

12 and Λmin
12 .
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Section 2.6.C.

Achill Schürmann pointed out to me that van der Waerden’s con-

stants δp quoted in Theorem 2.6.11 are indeed equal to
(

5
4

)p−4
for all

p ≥ 4. Alternative reference:

[vdW’], same title, Acta Math. 96 (1956), 265–309.

He moreover puts ahead a conjecture according to which the exponen-
tial bound above could be replaced for n ≤ 8 by the linear bound n

4
.

This I have proved in an unpublished preprint (Hermite versus Minkow-
ski, November, 2007), now on arXiv as [Mar14].

[Added August 12th, 2021.] I recently noticed the paper [Reg] by S. Regavim
(and its joint appendix with L. Hadassi) which throws new light on re-
duction problems for lattices. What concerns Schürmann’s conjecture
(around van der Waerden’s theorem) has been previously solved up to
dimension 8 in [Mar14] in a somewhat crude form. However the results
of Regavim for dimensions 6 and 7 are more precise.

The methods of [Mar14] can probably be pushed to dimension 9
using [Mar-Schr1], and maybe to dimensions 10 and 11, using unpub-
lished data of M. Dutour-Sikirić, but do not look suitable to attack the
problem in large dimensions.

Regavim’s paper reminds me of the existence of the paper [L-L-S],
which appeared between the French 1996 and English 2003 editions of
my book, and that I should have quoted in my printed book.

Section 2.8.C.

C. Poor and D. Yuen have obtained the exact values of γ′n and the
corresponding dual-critical lattice for n = 5, 6, 7; see Section 6.4.C
below.
[November 14th, 2008.] In a mail dated October 23rd, 2008, T. Watan-
abe wrote: “In the last Monday , we have found that Hermite-Rankin con-

stants of 8-dimensional are immediately determined by the Bergé-Martinet

constants of 5 and 7 dimensional, which were determined by Poor and

Yuen.”; see [S-Wt-O]; the “Bergé-Martinet” inequalities are those of [B-M1]

and are accounted for in this section 2.8.

(Feb. 19, 2009). Recent progress has been made on the constant γ′′n
introduced in [B-M1].

(1) On request of the editorial board of “J. Th. Nombres de Bor-
deaux”, a paper by Marc Gindraux ([Gi’], replacing the inaccessible
[Gi] quoted in the book) has been published in the third issue of 2009
of the journal. This is a compact form of a 2002 text intended to be
part of a Ph. D., which was never completed (the author no longer
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works in a university). The constant γ
′′
n is broken into two constants

γ
′′
n,+ and γ

′′
n,− in order to take care of problems of non-continuity;

see “publications by various authors” in my homepage.

(2) The paper [Pe-vZ] by R.A. Pendavingh et S.H.M. van Zam gives
a very sharp upper bound for γ′′5 , which strongly suggests that the exact
value is attained on Blichfeldt’s example.

Section 3.2.C.

Definition 3.22 (3) could be enlarged by introducing the notion of
strong semi-eutaxy:

Definition 3.2.C1. We say that a system of lines or a lattice is
strongly semi-eutactic if it is semi-eutactic with equal nonzero coeffi-
cients.

It is easily checked that the set of lines (or vectors) having nonzero
corresponding eutaxy coefficients is then a 3-design in the sense of
Chapter 16. The first example occurs in dimension 4; see the file
strongeut.gp on my home page, which contains the complete classi-
fication of strongly (semi-)eutactic lattices up to dimension 6. A more
“classical” example is provided by K ′9

∗; see Section 8..

In the course of the joint research [B-M8] with Anne-Marie Bergé, we
noticed the following result on weakly eutactic lattices, which improves
Corollary 3.2.6 for such lattices:

Proposition 3.2.C2 (June, 2005). Let Λ be weakly eutactic and let
Id =

∑
s∈S(Λ)/± ρx px be a eutaxy relation for Λ. Then the set of mini-

mal vectors of Λ having strictly positive coefficients ρx spans E.

Proof. Let T = {x ∈ S | ρx > 0} and let F ⊂ E be the span of T .
Let y ∈ E be orthogonal to all vectors of T . Let us apply to y the

eutaxy relation above. Since px(y) =
1

min Λ
(x ·y)x, this relation reads

y =
1

min Λ

∑
ρx<0 ρx (x · y)x. Taking the scalar product of both sides

with y, we now obtain N(y) =
1

min Λ

∑
ρx<0 ρx (x · y)2.

Since the left hand side is ≥ 0 and the right hand side is ≤ 0, both
are zero. In particular, we have N(y) = 0, i.e. y = 0. �
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Section 3.5.C.

The characterization given in Proposition 3.5.3, (3) of perfection for
lattices having a perfect hyperplane section with the same minimum

has the following easy generalization: perf Λ = n(n−1)
2

+ rkS \ S ∩ H
(where perf stands for the perfection rank). This formula is itself a
special case of the following more general statement:

Proposition 3.5.C3. Let S be a (finite) subset of E, let H be a
hyperplane in E, and let S0 = S ∩H. Denote by r0 the perfection rank
of S0, by r that of S, and by t the rank of S \ S0. Then we have the
inequality r ≥ r0 + t , and equality holds whenever either S contains
exactly t pairs of vectors off S0, or S0 is perfect.
[This applies to a lattice Λ and a hyperplane section Λ0 of Λ, assuming that

min Λ0 = min Λ.]

Proof. We normalize all vectors of S to norm 1, and denote by e a unit
vector orthogonal to H.

First observe that vectors x1, . . . , xk ∈ S \ S0 are dependent if and
only if there exists a relation

∑
λi pxi = 0 in Ends(E)/Ends(H) with

coefficients not all zero off H. Indeed, a relation
∑

x λx px = 0 in
Ends(E) implies

∑
x/∈H λx px ◦ pe because px ◦ pe = 0 on H. Applied

to e, it reads
∑

x/∈H λx (x · e)x = 0, a non-trivial dependence relation
since x · e 6= 0 off H. Conversely, a dependent relation can be written∑

x/∈H λx (x · e)x = 0, and implies
∑

x λx px ∈ Ends(H), since for all
y ∈ E, we have∑

x λx (px ◦ pe)(y) = (e · y)
∑

x λx (x · e)x .

Now choose t independent vectors y1, . . . , yt ∈ S \ S0 and vectors
x1, . . . , xr0 ∈ S0 such that the pxi constitute a basis for the span of the
px, x ∈ S0. Then the projections pxi , pyj are independent, which shows
that r ≥ r0 + t.

If S \ S0 reduces to the ±xi, then the vector space {px | x ∈ S} is
generated by the pxi , pyj , whence the inequality r ≤ r0 + t in this case.

If S0 is perfect, then the px, x ∈ S0 span Ends(H), so that the
px, x ∈ S \S0 are again linear combinations of the pxi and the pyj . �

The notion of a perfection relation occurs only incidentally in the
book (in Remark 6.2.5.). A formal definition should have been given
in this section: a perfection relation on a lattice Λ is a relation of the
form ∑

x∈S(Λ)/{±} ax px
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with real coefficients ax. In terms of matrices, this takes the form∑
X∈S(M)/{±} a

′
X X

tX, with set of coefficients (a′X) proportional to (ax).
Taking the trace shows that the ax add to zero.

The set of perfection relations is a real vector space of dimension
s − r (s is the kissing number, r is the perfection rank); and the set
of eutaxy relations, if non-empty, is an affine space over the space of
perfection relations. More details can be found in the paper [B-M10]
of the complementary reference list.

Section 3.8.C.

The first part of Corollary 3.8.6 could have been more suitably stated
in a form which separates the properties of (dual-) perfection and eu-
taxy. For a perfect lattice, we can even prove slightly more.

Corollary 3.8.C1. Let Λ be a eutactic (resp. an extreme) lattice.
If Λ∗ is eutactic (resp. semi-eutactic), then Λ is dual-eutactic (resp.
dual-extreme).

Proof. Since Λ∗ is semi-eutactic, there exists for Λ∗ a eutaxy relation
of the form Id =

∑
y∈S1/± ρy py with strictly positive coefficients ρ′y

for some symmetric subset S1 of S(Λ∗). Eliminating the identity in
this relation and in a eutaxy relation for Λ, we obtain a relation of
dual-eutaxy of the form∑

x∈S(Λ)/±

ρx px =
∑

y∈S1/±

ρ′y py

with strictly positive coefficients ρx, ρ
′
y.

If S0 = S(Λ∗) \ S1 is empty, this shows that Λ is dual-eutactic.
Otherwise, we may assume that Λ is extreme. Then the endomor-

phism
∑

z∈S0/± pz is a combination
∑

x∈S(Λ) µx px. For ε > 0 small
enough, the relation∑

x∈S(Λ)/±

(ρx + εµx) px =
∑

y∈S1/±

ρy py +
∑

z∈S0/±

ε pz

is a relation of dual-eutaxy with strictly positive coefficients. �

[The argument indeed shows that if Λ is perfect and possesses a relation of

dual-eutaxy
∑

x∈S(Λ) ρx px =
∑

y∈S(Λ∗) ρ
′
y py with strictly positive ρx and

non-negative ρ′y, then Λ is dual-extreme.]

In general, dual-eutaxy does not imply any eutaxy property. How-
ever, the following statement establishes a partial converse to the corol-
lary above:
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Proposition 3.8.C2. Let Λ be a eutactic and dual-eutactic lattice.
Assume that its automorphism group acts transitively on its set of min-
imal vectors. Then Λ∗ is eutactic.

Proof. Consider a relation of dual-eutaxy∑
x∈S(Λ)/±

ρx px =
∑

y∈S(Λ∗)/±

ρ′y py

with strictly positive coefficients ρx, ρ
′
y. By averaging on the automor-

phism group, we obtain a new relation of the form∑
x∈S(Λ)/±

px =
∑

y∈S(Λ∗)/±

ρ′′y py

with strictly positive coefficients ρ′′y. By Theorem 3.6.6, Λ is strongly
eutactic. This shows that the left hand side of the equality above is
proportional to the identity, and so is the right hand side. �

The mere condition that Λ should be strongly eutactic does not imply
that Λ∗ is eutactic. An example is provided by the 9-dimensional lattice
Λ found by Baril and referred to in Section 14.5, for which γ′2 = 16

5
,

the largest known value in dimension 9 (also attained on Coxeter’s A2
9).

Here is a Gram matrix for Λ; see also strongeut.gp, matrix baril9:
6 −2 2 −1 −2 0 −2 −1 2
−2 6 −2 2 −1 −2 0 −2 −1
2 −2 6 −2 2 −1 −2 0 −2
−1 2 −2 6 −2 2 −1 −2 0
−2 −1 2 −2 6 −2 2 −1 −2
0 −2 −1 2 −2 6 −2 2 −1
−2 0 −2 −1 2 −2 6 −2 2
−1 −2 0 −2 −1 2 −2 6 −2
2 −1 −2 0 −2 −1 2 −2 6


This lattice is extreme and strongly eutactic, with s = 45; its dual,
which has s = 40, is not even weakly eutactic. The automorphism
group of Λ acts transitively on S(Λ∗), but has two orbits S1 with s1 = 5
and S2 with s2 = 40 on S = S(Λ). Dual eutaxy can be studied using
the averaging argument of Proposition 3.8.8: if Λ is dual-eutactic, there
exists a relation of dual eutaxy involving sums of projections to vectors
of S1, S2 and S∗. Using formula 3.8.3’, we check that such a relation
must be unique up to proportionality and that

8
∑

x∈S1/±

px + 3
∑

x∈S2/±

px = 4
∑

y∈S∗/±

py

indeed holds.

An attempt for classifying dual-extreme lattices in dimension 5 was
done by Anne-Marie Bergé at the time the English edition of this book
was prepared. Her aim was to prove that γ′5 is attained uniquely on
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the two perfect lattices P 1
5 and P 2

5 and their duals, at a time when
Poor-Yuen’s result was no known. I briefly explain her ideas below.
Her basic idea consists in looking at putative dual-extreme lattices in each

minimal class. A lattice with perfection rank r = 15 is extreme and dual-

extreme (there are three such lattices, namely D5, A3
5, and D5). We now con-

sider classes and lattices with s ≤ 14. Next observe that if a 5-dimensional

lattice has one (resp. at least two) perfect D4 minimal sections, then it

has s∗ = 1 (resp s ≥ 12 + 12 − 6 = 18, hence is similar to D5), so that

we may restrict ourselves to lattices without a D4 minimal sections, that

is, lattices with r = s. Since we have s + s∗ ≥ n(n+1)
2 + 1 = 16, we may

restrict ourselves to classes with r ≥ 8. Using essentially computations by

hand, she succeeded in dealing with all classes of perfection rank r ≥ 11.

She probably proved more, namely that there does not exist dual-extreme

lattices with perfection rank r = 14, 13, 12 or 11.

Up to similarity, lattices in a class with perfection rank r depend
on 15 − r parameters, so that the difficulty of the task is a rapidly
increasing function of the co-rank 15− r. To go further, and to check
A.-M. Bergé’s results, it would be highly desirable to make algorithmic
her procedure.

Sections 4.2.C to 4.5.C (September 202)

The knowledge of the sets of orbits of pairs of minimal vectors having
a given scalar products is useful is some applications (e.g., to the theory
of graphs). This is done in the book for the lattice E8. Here is the
general result:

Proposition. Let Λ be an irreducible root lattice. Then the ordered
pairs (x, y) of minimal vectors of Λ having a given scalar product cons-
titute a unique orbit under Aut(Λ) except for Dn, n ≥ 5 where there
are two orbits if x · y = 0, with representatives (ε1 + ε2, ε1 − ε2) and
(ε1 + ε2, (ε3 + ε4).

Sketch of proof. By transitivity we may choose x arbitrarily. We choose
x = ε0−ε1 for An and x = ε1 +ε2 for Dn and En. It suffices to consider
the cases x · y = 1 and x · y = 0.

An. Then x · y = 1 (resp. x · y = 0) amounts to y = ε0 − εi or
−εi + εi, i ≥ 2 (resp. y = ±(εi − εj), 2 ≤ i < j ≤ n), and under the
fixator G1 of x in {± Id}×Sn+1, y is clearly equivalent to ε0−ε2 (resp.
to ε2 − ε3).

Dn. We consider the subgroup G = {±1} × Sn of Aut(An) and the
fixator G1 of x in G. Then x · y = 1 amounts to y = ε1 ± εi or ε2 ± εi,
i ≥ 3, and y is clearly equivalent to ε1 + ε3 under G1.
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However, ±(ε1 − ε2) and ±εi ± εj, 3 ≤ i < j ≤ n belong to different
orbits under G1, those of ε1 − ε2 and ε1 + ε3. Since G is the whole
automorphism group of Dn for n ≥ 5, we are done if n ≥ 5. If n = 4 we
identify D4 with the ring M of Hurwitz quaternions equipped with the
form Trd(xy) and the basis (ε`) to (1, i, j, k). Then right multiplication
with ω := −1+i+j+k

2
transforms (1+i, 1−i) into (−1+k, i+j) belonging

to distinct orbits.
En, n = 8, 7, 6. Let e = (ε1−ε2)+vp3+ε4+ε5+(ε6−ε7+ε8)

2
and e′ = e + ε2.

These are elements of E6 and we have E8 = D8 ∪ (e + D8). Under the
action of the Weyl group W (D8) ∩ En, vector y ∈ En with x · y = 1
(resp. x · y = 0) are equivalent to ε1 + ε3 or e′ (resp. ε1 − ε2, ε3 + ε4

or e). Using the formulae displayed in the proof of Theorem 4.4.4, we
check that the symmetry along e send ε1 + ε3, ε1 − ε2 and ε3 + ε4 to
elements of e+ D8, which completes the proof of the proposition. �

Section 4.C. Exercises. (July, 2010; January, 2012.)

I should have added a useful third question to Exercise 4.3.1, and writ-
ten some more exercises on vectors having a given norm in root lattices.

Exercise 4.3.1... 3. Denote by D2 the embedding of A1 ⊥ A1 of the form

〈εi + εj , εi − εj〉 and by D3 that of A3 of the form 〈εi − εj , εi − εk, εj + εk〉.
Show that every root sublattice of rank n of Dn is isometric to an orthogonal

sum of lattices Dmi with mi ≥ 2 and
∑

i mi = n, and is well defined up to

an automorphism of Dn by the set {mi}.
Nota bene. For the complementary exercises for Chapter 4 below, the

reader could look at my papers [Mar8] and [Mar10] of the extended reference

list on the homepage.

Note in particular that for any n-dimensional lattice of minimum m, if

two vectors x, y of norms N ≤ 2m define the same class modulo 2, then

either y = ±y, or N(y) = N(x) = 2m and y · x = 0; in the latter case, for a

given x, the set of vectors y±x
2 with N(y) = 4 and y ≡ x mod 2 constitute

a root system of type DDDk rescaled to norm m (k = k(x) may depend on x).

Other results for classes modulo 2 or 3 can be found in [Mar8] or [Mar10].

Exercise 4.C1. 1. Show that the vectors of norm 4 in an exceptional
lattice Λ constitute a single orbit under Aut(Λ), containing 135 pairs of
vectors if Λ ' E6, 378 if Λ ' E7, and 1080 if Λ ' E8.

2. Show that the set of norm 4 vectors congruent to one of them modulo 2
consists of k pairwise orthogonal pairs of vectors with k = 5 if Λ ' E6, k = 6
if Λ ' E7, and k = 8 if Λ ' E8. [One can choose as representatives under
Aut(Λ) the system ±2εi with 1 ≤ i ≤ 5, 1 ≤ i ≤ 6, and 1 ≤ i ≤ 8,
respectively.]

3. Show that s2 + s4
k is equal to 26− 1 if Λ ' E6, to 28− 1 if Λ ' E8, and

to 28 − 2 if Λ ' E7.
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4. Show that if if Λ ' E6 or Λ ' E8, all classes of Λ modulo 2 have

representatives of norm N ≤ 4, but that there is one missing class if Λ ' E7.

Exercise 4.C2. (The missing class in E7 modulo 2.) 1. Show that the
norm 6 vector y = ε1 + ε2 + ε3 + ε4 + ε5 + ε6 ∈ E7 is not congruent to a
vector of smaller norm.

2. Show that the class Cx of x modulo 2 consists of
(a) the 16 pairs ±ε1± ε2± ε3± ε4± ε5± ε6 having an even number of minus
signs, and
(b) the 12 pairs ε7 − ε8 + 2εi, i = 1, 2, 3, 4, 5, 6.

3. Show that Cx = 2S(E∗7).

4. Prove that there are 1008 pairs of norm-6 vectors off 2S(E∗7), that they

constitute one orbit under Aut(E7), and that every minimal vector of E7 is

congruent to 16 such pairs of vectors. (See Exercise 4.4.9.)

Exercise 4.C3. 1. Show that the automorphism group of E6 acts transi-
tively on its norm 6 vectors.

2. Show that the norm 6 vectors of the class C of ε1 + ε2 consists of
(a) the 6 pairs ε1 − ε2 ± 2εi, i = 3, 4, 5, and
(b) the 4 pairs ±ε3 + ±ε4 + ±ε5 + ±(ε6 − ε7 + ε8) having an even number
of minus signs.

3. Show that the configuration of these 10 pairs of vectors is that of

S(A2
5). (The Coxeter lattice A2

n is defined in Section 5.2.)

Exercise 4.C.4. E∗7 modulo 2 (scaled to minimum 3).
1. Show that the norm of x ∈ E∗7 is of the form 4k + 3 if x ∈ E∗7 \ E7 and

4k if x ∈ E7, k ≥ 0.
2. Show that there is one orbit of vectors for each of the norms 3, 4, 7,

having 28, 63 and 288 pairs of vectors, respectively.
3. Prove that vectors of norm 7 appear in sets of 8 pairs ±x consisting of

one class modulo 2E∗7, with configuration A∗7.

4. Prove that these vectors represent all non-zero classes modulo 2, ac-

cording to the formula 28 + 63 + 288
8 = 27 − 1.

Section 5.1.C.
Not to assume that r is integral is useless!
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Section 5.2.C.
A way of using Coxeter lattices to increase γ(An) is to consider lat-

tices 〈Ar
m,An〉 for m ≤ n and r | m+1. In particular lattices with r | n

of Proposition 5.2.5 are isometric to 〈Ar
n−1,An〉. This applies notably

to the dense lattices A2
8 and A3

9 and shows immediately the existence
of cross-sections E7 and E8, respectively.

One can even insert in An two or more copies of Coxeter lattices of
lower dimensions provided n is large enough.

Section 5.3.C. (May 2nd, 2015)

The way we construct the lattices Pn = A(2)
n in this section is a special

case of the following general procedure. Consider an n-dimensional lat-
tice Λ with successive layers of norm m0 = 0, m1 = min Λ, m2,m3, ...,
a finite additive Abelian group A of order m, and a surjective homo-
morphism ϕ : Λ → A. Then L := kerϕ is a lattice of index m2

in Λ, hence det(L) = m2 det(Λ). If ϕ is non-zero on S(Λ) we have
minL ≥ m2. In case of equality (which is in practice the usual situ-

ation) we have γ(L) = γ(Λ) × m2

m1

m−2/n. Otherwise we shall have a

multiplicator m3

m1
m−2/n, etc. When A is cyclic, L can be viewed as the

lattice orthogonal modulo m to a convenient vector of Λ∗.

Taking Λ = An equipped with its Korkine-Zolotareff basis (ei), we
must get rid of the vectors ei and ei − ej, i < j, which needs ϕ(ei) 6= 0
and ϕ(ej) 6= ϕ(ei) for i < j, hence |A \ {0}| ≥ n, i.e., m ≥ n + 1 ;
and if m = n + 1, all choices of ϕ are equivalent under the automor-
phisms of An induced by permutations of the ei; for instance, we may
take ϕ(ei) = i mod m, a map induced by ϕ(εi) = i on the canonical
basis (ε0, ε1, . . . , εn) of Zn+1.

Taking A = Z/mZ we obtain Barnes’s lattices Pn. A generalization

of this construction yields the Craig lattices A(r)
n of minimum ≥ mr, a

lower bound which is sometimes strict, as one can see in the appendix.
I could have made more precise Proposition 5.3.6.

Proposition 5.3.6.C. For n ≥ 11, the group Gn, of order 2(n+1)ϕ(n+1),
is the full automorphism group of Pn.

A similar construction can be done with Dn. The smallest possi-
ble modulus is m = 2n − 2, which can be achieved taking for ϕ the
restriction of the function defined on Zn by ϕ(εi) = i−1 mod m. Con-
jecturally, these lattices are perfect for n ≥ 9, satisfy S(L∗) = S(D∗n)
[= S(Zn)] for n ≥ 14, and are never strongly eutactic. I have not tested
them for eutaxy.
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Constructing the even part of an odd lattice is also a construction of
type “kerϕ”; other such constructions occur in further chapters (e.g.,
modulo 3 in Section 8.4).

Section 5.4.C.
Variants of the Craig lattices and analogues defined using ideals pipp

j
q

in cyclotomic fields Q(ζpq) (p, q primes) have been considered by Flores
et al. in [F-I-P] and [FIPLO]. A different kind of generalization has
been considered by Hao Chen in [Chen].

Section 6.4.C.

In lemma 6.4.13, the ten minimal vectors (up to sign) outside Λ′ are
e, e− ei (i = 1, 2, 3), and e− ej − ek (j = 1, 2, 3; k = 4, 5). The matrix
B2 corresponds to the more symmetric choice e−ei−ej, 1 ≤ i < j ≤ 5.

[January 23rd, 2007.] Conjecture 6.4.16 (and the natural ones for dimen-
sions 6 and 7) has been solved by Cris Poor and David Yuen ([P-Y4],
2006): γ′5 is attained exactly on D5, D∗5, A3

5, A3
5
∗

= A2
5, γ′6 on E6 and

E∗6, and γ′7 on E7 and E∗7. We have

(γ′5)2 = 2 , (γ′6)2 = 8
3

and (γ′7)2 = 3 .

Their proofs make use of a new function satisfying a convenient convexity

property (rather “concavity”), a type one function. Curiously, proofs are

shorter in dimensions 6 and 7, in relation with the fact that the two densest

perfect lattices in these dimensions are dual to each other. In dimension 5,

the proof is by inspection of the minimal classes (classified by Batut), with

however an extra trick thanks to which they avoid the consideration of all

cases.

Section 6.6.C.

In this overview of our knowledge on 8-dimensional perfect lattices,
I mentioned the problem of eutaxy only in the case of Läıhem lat-
tices, which had been dealt with by Jaquet ([Ja7]) a few months after
Läıhem’s thesis had been completed. Cordian Riener ([Rie]) has re-
cently established the status of the 10916 perfect lattices. His data
confirm Jaquet’s result. We summarize them in the table below:
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Eutaxy for Perfect 8-Dimensional Lattices

Type Läıhem Baril Napias Batut total

Eutactic 383 16 1929 66 2394

Semi-eut. 21 0 5 2 28

Weakly eut. 771 37 7608 78 8494

Total 1175 53 9542 146 10916

In the table above, “semi-eutactic” means “semi-eutactic, non-eutactic”;

similarly, “weakly eutactic” means “weakly eutactic, non-semi-eutactic”.

Among these 2394 eutactic lattices, only 7 are strongly eutactic,
namely the Läıhem lattices lh(2), lh(3), lh(8), lh(271), lh(1172) ' E8,
lh(1174) ' D8, and lh(1175) ' A8. Their duals are also strongly
eutactic except lh(3), for which s∗ = 3, and lh(8).

We now consider the property of being dual-extreme (or dual-eutac-
tic, this amounts to the same since these lattices are perfect). A neces-
sary condition is that S(Λ∗) should have rank 8. This condition is satis-
fied by only 8 lattices: the 7 Läıhem lattices lh(2), lh(6), lh(8), lh(271),
lh(1172), lh(1174), and lh(1175), and the Napias lattice nap(6920).
Since the duals of 5 of them are strongly eutactic (see above), we are
left with lh(6), the dual of which is only (strongly) semi-eutactic, and
lh(8) and nap(6920), the duals of which are not weakly eutactic. We
have calculated the orbit structures of (Λ,Λ∗) for these three lattices:
(3, 2), (3, 1) and (5, 1) respectively, and applied the method used in
Section 3.8.C above to deal with the 9-dimensional Baril lattice. The
conclusion is that lh(6) and lh(8) are dual-extreme and that nap(6920)
is not. (For lh(6), one can use Corollary 3.8.C1.)

Work by Mathieu Dutour, Achill Schürmann and Frank Vallentin
(e-mail from A. Schürmann, June 30th, 2005) has thrown new light
on dimension n = 8 (and also n = 9, for which they found more than
500 000 lattices). In particular, they showed that:
1. All neighbours of the known perfect lattices except perhaps E8

belong to the list of previously known lattices.
2. Every lattice of the list is a neighbour of some lattice of the list with
kissing number s ≤ 39.
3. Every lattice of the list except A8 and nap(7014) is a neighbour
of E8.

In an e-mail dated October 5th, 2005, Schürmann wrote “... we
finally managed, with the help of Mathieu Dutour’s code for the so
called adjacency decomposition method, to finish the classification of
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8-dimensional perfect forms.” The corresponding manuscript now ex-
ists on arXiv, Article math.NT/0609388, Sept. 18, 2006 ([D-S-V1]).
This work proves that the list of 10916 perfect, 8-dimensional lattices
referred to in my book (and for which Gram matrices can be down-
loaded from my home page) is complete. In particular, Conjecture 6.6.7
is true (all perfect 8-dimensional lattices have a basis of minimal vec-
tors). The classification also shows that all perfect 8-dimensional lat-
tices have a hexagonal section with the same norm; in particular, all
have an even minimum in any scale which make them integral.

[Integral perfect lattices with an odd minimum exist in dimension n = 1,

n = 7 and also n ≥ 10 by [B-M7], and do not exist for n = 2, 3, 4, 5, 6 and 8.

The case of dimension 9 remains open. However, Riener checked that the

(more than) 500,000 perfect 9-dimensional lattices quoted above have an

even minimum in any scale which make them integral. Anne-Marie Bergé

and myself have conjectured that this is general, and even that all perfect

9-dimensional lattices do have hexagonal sections with the same minimum.]

[updated on March 21st, 2023.] Over two billions of perfect lattices in dimen-
sion 9 have been found by van Woerden ([vW1]). Also lower and upper
bounds for the number of perfect lattices in a given dimension have
been obtained by Bacher ([Bc5], 2017) and by van Woerden ([vW2],
2018).

[updated on September 16th, 2024.] I just learn by an e-mail of W. van Woerden
that he has finished the classification of 9-dimensional perfect form.
Alltogether there are

2.237.2.237.251.040
such forms. They are generated by their minimal vectors except one
of them, namely a foem for for A3

9, indeed the only lattice connected
uniquely witk Λ9.

Section 7.4.C.

For relations between the Voronoi graph and minimal classes, see
Section 9.1.C below.

Section 8.4.C.

In Theorem 8.4.2, for n = 2h+ 1 odd, we have s(Ln) = 9h(h−1)
2

+ 3h
2

.
This accounts for the existence of two orbits of minimal vectors, that
of the section Ln−1, and its complementary set in S(Ln).

Section 8.7.C. (a) See the erratum.
(b) January 12th, 2023. The lattices K ′n, n ≤ 24 are defined in dimensions

n ≤ 12 inside K ′12 = K12, then by symmetry in dimensions 24 − n.
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They differ from laminated lattices only if 3 ≤ n ≤ 21. One can define
K ′21 as the orthogonal of a minimal square in Λ∗23 (using instead a
minimal hexagonal lattice yields Λ21). An alternative construction
is as follows: taking the orthogonal of a norm 6 vector in Leech’s Λ24

we obtain a lattice Λ′23 well-defined up to isometry; we then obtain by
“antilaminations” first a lattice Λ′22, next a lattice Λ′21 ' L′21.

The lattices Λ′23 and Λ′22 are perfect, strongly eutactic, and have
strongly eutactic duals, hence are extreme and dual-extreme,

Section 9.1.C.

After the proof of Theorem 9.1.5, I remark that perfect classes (those
which contain a perfect lattice, i.e., those of maximal perfection rank
n(n+1)

2
) reduce to the similarity class of one perfect lattice. Here I should

have also remarked that classes of rank n(n+1)
2
− 1 are represented by

Voronoi paths.

Voronoi paths are listed in Section 6.5. There is one path per orbit of
their perfect endpoints. However it may happen that two distinct orbits
define equivalent minimal classes.
(March 20th, 2023.) In dimensions n ≤ 7, this occurs exactly with the two
paths (i, j) = (1, 9) and (1, 10), two out of the eleven paths P 1

7 —P 1
7 .

What happens for n = 8is not known.

A more convenient description of the Voronoi graph would be to classify
the edges by their minimal class rather than by isometries of their
endpoints.

Section 9.4.C.

In the joint research with A.-M. Bergé referred to above in con-
nection with Corollary 3.2.6, we were lead to use a stronger form of
Corollary 9.4.2. Here is a more precise statement:

Proposition 9.4.C1 (June, 2005). On a minimal class C consist-
ing of lattices whose minimal vectors do not span E (a “non-well–
rounded class”), the Hermite invariant has no maximum nor minimum.
Moreover, inf

Λ∈C
γ(Λ) = 0 .

Proof. Only the “moreover” part needs a proof. Let Λ ∈ C, let
F ⊂ E be the span of S(Λ), and let r = dimF . For λ ≥ 1, let uλ be
the linear map which is the identity on F and multiplication by λ on
F⊥, and set Λλ = uλ(Λ). For x ∈ E with components y on F and z on
F⊥, we have uλ(x) = x+λy, hence N(uλ(x)) = N(x)+λ2N(y) ≥ N(x).
Hence S(Λλ) = S(Λ), so that Λ is still in C. But det(uλ) = λn−r, hence

γ(Λλ) = γ(Λ) · λ−2(n−r)/n−→λ→∞ 0 . �
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Section 9.5.C. (December, 2013)

By Theorem 9.5.2, the fields of definition of all weakly eutactic lat-
tices up to dimension 5 are totally real. Batut (private communication)
has made an exploration of all minimal classes lying below that of A6.
He found eutactic lattices which are defined over non-totally real fields,
notably on a cubic field with mixed signature.
(July, 2017). Weakly eutactic lattices belonging to Voronoi paths have totally

real fields of definition. Actually such a minimal class has a parametrization

by matrices M(t) = A+ t(B−A), t ∈ [0, 1]. These matrices may be written

in the form M(t) = −t A
(
t−1
t In − A

−1B
)
, which shows that if θ is a root

of p := det(M(t)) then θ−1
θ is an eigenvalue of A−1B (and indeed θ 7→ θ−1

θ

puts these roots in one-to-one correspondence with the set of eigenvalues

6= 1 of A−1B). Hence all roots of p, and consequently of its derivative p′ are

real, the field of definition of the weakly eutactic lattice (if any) is totally

real. (Moreover, since p has no roots in [0, 1], we see that p′ has at most one

root in (0, 1), which gives a direct proof of the uniqueness of weakly weakly

eutactic in minimal classes of perfection co-rank 1.)

The question of the field of definition also arises for dual-eutactic
lattices. In dimension 4, the class a8 contains both a eutactic lattice,
defined on Q(

√
3), and a dual-eutactic lattice, defined on the cubic field

K of discriminant −244, a quadratic discriminant, so that K is (up to
conjugacy) the cubic subfield of the Hibert class field of the quadratic
field Q(

√
−61) (which has class number h = 6); see Exercise 9.5.1.

Section 9.7.C.

The minimal classes in dimensions 6 and 7 have been classified in a
work by Ph. Elbaz-Vincent, H. Gangl and C. Soulé on the K-theory
of Z. The data can be read in [E-G-S2]. There are 5 634 classes in
dimension 6 and 10 722 899 in dimension 7, the classification of which
has been completed some months after the 2005 Oberwolfach meeting.
[In the notation of the tables of [E-G-S2], the perfection rank is n+ 1.]

Minimal classes are identified by the n× n positive, definite matrix
S tS (called the Bacher matrix by Anne-Marie Bergé and the barycenter
matrix in [E-G-S2]): two systems of minimal vectors define the same
class if and only if their Bacher matrices are equivalent over Gln(Z),
that is, define isometric lattices.

Whereas Batut classified all cells containing a weakly eutactic lattice,
using a specific gradient algorithm and using the Bacher matrix only
for calculating the automorphism group of the class, the authors of
[E-G-S2] restricted themselves to minimal classes, using all the strength
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of the Bacher matrix. (The classification of (weakly) eutactic lattices,
though possible using their data, would need heavy calculations.)

From the Bacher matrix (or barycenter matrix) Bc of a class C, one
can easily see whether C contains a strongly (semi-) eutactic lattice
(definition 3.2.C1). The recipe is given by the proposition below, the
proof of which is straightforward from the definitions.

Proposition 9.7.C1. (A.-M. Bergé, J. Martinet).
Let C be a minimal class, let S be the set of minimal vectors of a

lattice Λ ∈ C, let Bc = S tS be the corresponding Bacher matrix, and
let S1 be the set of minimal vectors of the form associated with Bc−1.

(1) C contains a strongly eutactic lattice if and only if S1 = S.
Then Λ is strongly eutactic, and Bc−1 is a Gram matrix for Λ.

(2) C contains a strongly semi-eutactic lattice if and only if S1 is
contained in S. Then Λ is strongly semi-eutactic, and S1 is the
set of of minimal vectors of Λ having non-zero eutaxy coeffi-
cients.

Using this device, Elbaz-Vincent and Gangl were able during the
2005 Oberwolfach meeting to obtain the complete list of the 6-dimen-
sional strongly (semi-) eutactic lattices: 21 strongly and 6 semi-strongly
eutactic lattices. (Only 20 + 3 were previously known.) The file
strongeut.gp of my homepage contains the complete classification of
strongly eutactic or semi-eutactic lattices up to dimension 6 and
examples in dimensions 7, 8, 9, and 10.

One of the main problems in this theory is:
What kind of information can be extracted from Bc?

On November 27., 2012, while I was delivering a talk in the algorith-
mic seminar in Bordeaux, Gabriel Nebe pointed out to me the exis-
tence of a paper by Plesken ([Pl3] in the complementary bibliography)
in which the author describes an algorithm which, given Bc and s, out-
puts an n× s matrix S solving the equation StS = Bc. On can thus go
from Bc back to a minimal class. However one cannot obtain directly
from Bc the perfection rank, nor forecast the nature of Λ with respect
to (weak) eutaxy.

Also, is there a simple interpretation of the standard invariants of
Bc (minimum, kissing number, Smith invariant) in terms of the corre-
sponding minimal class?

The question of the connection which could exist between the Ash
and the Bavard formulae has been solved in a 2007 joint work with
Anne-Marie Bergé ([B-M8]). It is shown that if a minimal class C does
not contain any weakly eutactic lattice, then infC γ is attained at a
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unique (up to similarity) lattice L ∈ ∂C, that L is weakly eutactic, but
not eutactic, and that Bavard’s weighted sum with signs restricted to
the set cells for which infC γ is attained on L is zero.
[In the statement above, semi-eutactic lattices play no special rôle inside the

set of all weakly eutactic lattices, in contrast to e.g. Corollary 3.8.C1.]

Section 11.6.C. (March, 2020)

Consider the matrices M(t), P and the Moebius function ϕ below:

M(t) =
(

1 −1+2t −t
−1+2t 1 −t
−t −t 1

)
, P =

(
1 1 1
1 0 0
1 0 1

)
, and ϕ(t) = 1−t

1+t
,

where M(t), 1
3
< t < 1

2
, represents the dual-minimal class C with

s = s∗ = 4 of Section 9.2. Then the equalities
tPM(t)P = 4t(1−t)

1+t
M(ϕ(t)) and tP = P

show that C is globally isodual of symmetric type. The fixed point of ϕ
(t = −1 +

√
2 = 0.414 . . . ) defines the ccc lattice; see Exer. 6.3.1.

The same kind of result holds with the matrix displayed after
Theorem 9.2.2 for the dual-minimal class with s = s∗ = 3, taking
ϕ(t) = − t

t+1
and P =

(
0 0 −1
0 −1 0
−1 0 0

)
; see Exer. 9.2.2.

Section 13.1–3.C. (December, 2013)

In the usual Voronoi algorithm, because minimal classes of perfection
co-rank 1 are necessarily well rounded, dead ends never occur. To get
rid of them (at least in the equivariant algorithm), it suffices to restrict
oneself to well rounded (= bounded) minimal classes: bounded minimal
classes are the natural setting of the theory; see also Proposition 9.4.C1.

Section 13.3.C. (September, 2016)

In a previous edition of the file erratang.tex I wrote that one should
suppress “∈ A−1T A−1”. This is indeed correct.

In the case of the action of a group G the sum in this displayed
formula is invariant by the transpose of G, not by G itself, except
when G = tG, e.g. in the case of the regular representation.

Section 14.4.C. (July, 2016)

We refer to Rogers’s packing bounds to obtain reasonable upper
bounds for the Hermite invariant beyond dimension n = 8. Three
kinds of improvements have been obtained since the book was written:
(1) In [Cn-El], Cohn and Elkies have improved Rogers’s bounds in the
range 4 ≤ n ≤ 36. The inequalities they prove rely on the choice of a
function on Rn having convenient properties together with its Fourier
transform. In dimensions 8 and 24 they prove bounds very close to
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those which occur for E8 and Λ24, respectively, and conjecture that
these bounds should be attained for a well chosen function.

(2) In [Cn-Km1], Cohn and Kumar have proved that the Leech lattice
is the unique critical lattice (up to scale) in dimension n = 24.

(3) Using modular forms Maryna Viazovska ([Viaz]) constructed a func-
tion which shows that the density of sphere packings in dimension 8 is
bounded above by that of E8; and the case of dimension 24 was then
soon dealt with similarly ([C-K-V-al]; see also [Oe4]).

Independently of any application to lattice theory, it should be no-
ticed that Hales (see [Hl1]) has found the exact bound for dimension 3
(“Kepler’s conjecture”). As a consequence the density of any sphere
packing in one of the dimensions 2, 3, 8 and 24 is bounded above by the
density of the densest known lattice packing.

Section 14.5.C. (Updated on June 14 th, 2021, then February 14 th, 2022.)

Thanks to Cohn–Kumar’s [Cn-Km1]; see above, Section 14.4.C (resp.
Poor–Yuen [P-Y4]; see above, Section 6.4.C) the results displayed in
Table 14.5.1 for n = 24 (resp. for n = 5, 6, 7) are now known to be
optimal, and attained exactly on the self-dual Leech lattice (resp. on
the four extreme lattices D5, A3

5, E6, E7 and their four duals).

In the other dimensions the known upper bounds for γ′n come from
upper bounds for γn, via the inequality γ′n ≤ γn. This upper bound is
strict if the dual of a critical lattice is not critical, a fact we a priori do
not know. In this respect the case of dimension 9 is particular: using
Theorem 2.8.7 (2) of [M] and the now known exact value of γ′5, we can
show the inequality γ′9 < 2 (≤ γ9).

Here are three remarks concerning the search of lattices Λ on which
γ′ takes high values. (Since γ′2 is rational on rational lattices, we shall
list values of γ′2 rather than of γ′, though we cannot exclude that γ′n
be an algebraic irrationality for some n.)

(1) The set S(Λ) carries the structure of a spherical design of level
some well-defined odd integer ` (if n ≥ 2; if n = 1, ` = ∞); conjec-
turally, n = 1, 3, 5, 7 or 11. Lattices with ` ≥ 5 were called strongly
perfect by Venkov. In particular he proved that if ` ≥ 5 (resp. ` ≥ 7,
then we have

γ′(Λ)2 ≥ n+2
3

(resp. γ′(Λ)2 > n+2
3

) .

This “Venkov bound” n+2
3

is an interesting value to give an idea of

what can be expected for γ′2.
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(2) By contrast with the Hermite invariant γ, when searching for
high values of γ′ on sections of a lattice, the densest sections are often
not the best choices.

(3) It often happens that for a lattice Λ having an odd minimum
m, Λ and its even sublattice Λeven have the same dual. Then passing
from Λ to Λeven improves γ′ by a factor at least m+1

m
, generally, 4

3
if

m = 3; 8
5

for a lattice generated by vectors of norm 5 with paiwise
scalar poducts ±5 or ±1, as in the example with n = 13 and m = 5,
where Λeven is Conway-Sloane’s example in [S-S9]. After rescaling such
lattices produce integral lattices of minimum 4.

On a lattice Λ which is not self-dual, Λ and Λ∗ are non-similar lattices
on which γ′ has the same value. We shall generally quote only one of
them. Self-dual lattices will be t-modular for some t (because we shall
meet only rational lattices). Denoting by m the minimum of Λ, we

then have γ′(Λ)2 = m2

t
.

Next we consider the results of Table 14.5.1 in the range 9—23.
Our largest known value of γ′ occurs on several lattices when n = 9,

10, 11, 14, 17, 19, 20. If some of them is not dual-extreme, the given
lower bound is strict . This is the case exactly for n = 17 and n = 19:
for n = 17 (γ′2 = 6), on even sublattices of lattices of minimum 3
or 5; for n = 19 (γ′2 = 48

7
= 6, 857...), on even sublattices of lattices of

minimum 3, or on cross-sections of the “Kleinian”, 7-modular lattice
of dimension 20, with γ′2 = 64

7
= 9.142....

Modular lattices occur with (m, t) = (4, 4) (n = 10, two lattices),
(4, 3) (n = 12, 14), (4, 2) (n = 16), and (8, 7) (n = 20, three lattices).

Strongly perfect lattices give examples for n = 10, 12, 14, 16, 18, 20,
21 and 23 (and 2, 4, 8, 24).

We now illustrates the remarks (2) and (3) above. The densest
2-dimensional sections of O∗23 ' O23 are represented by matrices
( 3 1

1 3 ) and ( 3 0
0 3 ), defining by orthogonality the lattice O21 and a new

lattice O′21, respectively. Taking the successive densest hyperplane sec-
tions we obtain a well-defined descending series O′21, ..., O′16 distinct
from O21, ..., O16, the next element of which is isometric to O15.

By orthogonlity to any vector of the fourth level of O′
∗
20 (resp. to

a conveniently chosen vector of the third level of O′
∗
18), we obtain a

lattice L′19odd (resp. L′17odd). Denote by L′19 and L′17 their respective
even parts (L′17 is isometric to one of the Plesken-Pohst lattices for
minimum 4). We have

minL′19 = 4 , minL′19
∗ = 12

7
, minL′17 = 4 , minL′17

∗ = 3
2

.



20

It turns out that both the sets of minimal vectors of their duals are
of rank 12, strictly smaller than their dimensions, so that these lat-
tices (indeed, extreme) are not dual-extreme. We thus have the strict
inequalities

γ′19 >
48
7

= 6.857... and γ′17 > 6 .

We now list lattices having the largest known value of γ′n, skipping
dimensions 13, 17, and 19 yet considered above.

In some dimensions we know a unique lattice to within duality, hav-
ing a rather large γ′ invariant, that can be conjectured to be the unique
dual-critical lattice in its dimension. These are the modular latticesK12

and Λ16, and pairs (L,L∗) with L = K ′18, K ′21, Λ22 and Λ23.

We are now left with dimensions 9, 10, 11 and 14. The lower bound

given for n = 9 (γ′2 ≥ 16
5

) is attained on the Coxeter lattice A(2)
9 and on

the Baril lattice described in Section 3.8.C above of this complement
(and their duals).

In dimension 10 we have γ′2 ≥ 4, value attained on four lattices
mentioned above: the 4-modular lattices

√
2D+

10 and Souvignier’s Q10

(isometric to the even sublattice of
2∧
D5); a section of Λmid

11 ), and the
pair of strongly perfect lattices (K ′10, K

′∗
10).

In dimension 11, we also have γ′2 ≥ 4, value attained on three pairs
(L,L∗) of non-isodual lattices, with representatives K11, Coxeter’s A3

11

and Λmid
11 , the orthogonal to Λmid

13 in the Leech lattice (not a laminated
lattice).

In dimension 14, the value γ′2 = 16
3

is attained on the 3-modular,
strongly perfect lattice Q14, but also on Λ14, This extreme lattice, which
has a non-eutactic dual, is nevertheless dual-extreme, as checked by
direct calculation.

Questions.

(1) Are the values of γ′2 strictly smaller than n+2
3

(the Venkov
bound for 5-sesigns) in dimensions 9, 11, 13, 17 and 19 ?

(2) Is the lower bound γ′n
2 ≥ 4 exact in dimensions 10 and 11 ?

I expect the answers to be positive, with a modicum of doubt for
n = 17, where the known lower bound is close to Venkov’s.

Beyond dimension 24, good examples are sparse, principally derived
from modular lattices. This applies in particular for
n = 26, (m, `) = (6, 3), γ′2 = 12 ; n = 32, (m, `) = (6, 2), γ′2 = 18 ;
n = 48, (m, `) = (6, 1), γ′2 = 36 ; n = 72, (m, `) = (8, 1), γ′2 = 64 .
Other reasonably good examples are obtained using cross-sections of
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the previous lattices, for instance, we have the lower bound
γ′25

2 ≥ 9. Also even sublattices of some unimodular lattices of min-
imum 3, produce examples with γ′2 = 11 for n = 27 and γ′2 = 12 for
n = 28, 29, 31. However, Nebe’s extremal 5-modular lattice of dimen-
sion 28 has γ′2 = 64

5
= 12.8, and Bachoc’s 2-modular, 32-dimensional

lattice over the Hurwitz quaternions has sections of dimension 31 with
γ′2 = 27

2
= 13.5 .
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Section 16.2.C.

G. Nebe and B. Venkov have proved in [Ne-V3] that the Coxeter-
Todd lattice K12 is the unique strongly perfect lattice in dimension 12.
They proved in [Ne-V5] that the isodual lattice Q14 is the only 14-
dimensional lattice L such that both L and L∗ are strongly perfect;
this result has been extended to dimensions 13 and 15 in [Ne-No-V];
see also [Nos1] for some complements, and to dimension 16 by Hu and
Nebe ([Hu-Ne1],[Hu-Ne2]).
[One conjectures that the hypothesis on the dual lattice is not necessary.]

In [Hu-Ne1], the authors construct two strongly perfect “compan-
ion lattices” to the Barnes-Wall lattices in dimensions n = 22m ≥ 16.
In particular, the 16-dimensional examples constitute the first enlarge-
ment of the list in dimensions ≤ 23 established circa 2000 by Batut
and Venkov.
Question Are these lattices 7-designs, or only 5-designs ?

G. Nebe and B. Venkov also classified (in [Ne-V4]) lattices whose
set of minimal vectors is a higher design up to dimension n = 24,
except possibly for n = 23 — but the appearance of other 6-designs
in dimension 23 is very unlikely. This completes [Mar7], devoted to
integral lattices of minimum m ≤ 5. [Warning: in the statement of
the classification theorem of [Mar7], the lattice O23 has been forgotten.]

Section 16.3.C.

C. Bachoc ([Bac4]) has proved using group theoretical arguments
that all layers of the Barnes-Wall lattices are 7-designs in all dimensions
n ≥ 8.

On May 3rd, 2018, in the arXiv paper [Hu-Ne], Hu and Nebe have
announced the construction of new infinite series of 7-designs sand-
wiched into the Barnes-Wall lattices and their duals in dimensions 16,
64, 256,. . . In particular this gives in dimension 16 new strongly perfect
lattices, the first discovery in dimensions 1–23 since the list constructed
in 1999 by Batut and Venkov for [Ven3].

Section 16.4.C.
For even unimodular lattices Λ the corrected formula in Theorem

16.4.1 which bounds the minimum (see the erratum), namely

min Λ ≤ 2+2 b (`+1)n
48
c, reads min Λ ≤ 2+2 b n

24
c. It has been proved by

Rains and Sloane ([R-S]) that this bound also holds for odd unimodular
lattices except for the lattice O23, of minimum 3; and Gaulter ([Ga])
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has shown that for dimensions n ≡ 0 mod 24, this bound is strict on
odd unimodular lattices.

The last sentence (... n = 80 with ` = 1) refers to [Bac-Ne2] where
the authors construct two unimodular lattices of minimum 8. At this
date (1998), extremal even unimodular extremal lattices were known
to exist in dimensions n = 8k up to n = 64 and in dimension 80.
On August 11th, 2010, Gabriele Nebe announced that she had con-
structed an even unimodular lattice of dimension 72 and minimum 8,
now published as [Ne6].

At the date of December 13th, 2013, four even unimodular lattices
are known in dimension 48. Two of them are quoted in [C-S], and the
other two have been found by Nebe; see [Ne5], [Ne8], [Ne9]. Also four
lattices are now known in dimension 80; see [Ste-Watk] and [Watk].
[(Unpublished.) Using the four known even, extremal, 2-modular lattices

of dimension 32 and minimum 6, I have constructed four probably distinct

extremal even unimodular lattices in dimension 64. The construction, an

analogue of a construction of Barnes-Wall lattices, consists in doubling the

dimension, obtaining alternatively 1- and 2-modular lattices, but not ex-

tremal beyond dimension 64.]

.../...
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More on Craig’s lattices (appendix to Section 5.4)

Table 5.4.12 was calculated using the PARI system. We reproduce it
below, then list the s invariants of some more Craig lattices of minimum
2r with r ≤ bp+1

4
c, or their norm N when it exceeds 2r.

Table 5.4.12. Lattices A(r)
p−1 with 29 ≤ p ≤ 47 and 3 ≤ r ≤ (p+ 1)/4.

3 4 5 6 7 8 9 10 11 12

29 6496 7917 5684 1421 580

31 8835 11625 7905 5735 930 465
37 19092 31968 29304 14430 13320 1665 888
41 29520 57605 61008 36490 31980 4920 N = 20 1066
43 36421 74046 86688 63812 25929 28896 2709 N = 22 903
47 52969 122153 154583 141611 63779 69184 4324 N = 22 N = 24 1081

Complement 1. Beyond (p+1)/4.
p = 29. r = 8 :N = 20, s = 3248.
p = 37. r = 10 :N = 24, s = 777.
p = 41. r = 11 :N = 28, s = 2460.
p = 43. r = 12 :N = 28, s = 129.
p = 47. r = 13 :N = 34, s = 4324.
p = 53. r = 14 :N = 36, s = 4134.

Complement 2. Exceptional pairs (p,r). For p ≤ 53 and

r ≤ (p + 1)/4, the only exceptions to the rule N(A(r)
p−1) = 2r are the

following ones, for which N(A(r)
p−1) = 2r + 2 :

p = 41, r = 9, N = 20, s = 10086 ; p = 43, r = 10, N = 22, s = 3612 ;
p = 47, r = 10, N = 22, s = 12972 ; p = 47, r = 11, N = 24, s = 3243 ;
p = 53, r = 11, N = 24, s = 12402 ; p = 53, r = 12, N = 26, s = 1696 .

Complement 3. Larger values of p.
p = 59 : r = 3, N = 6, s = 138591 ;

r = 4, N = 8, s = 424328 ;
r = 5, N =10, s = 759684 .

p = 61 : r = 3, N = 6, s = 159820 ;
r = 4, N = 8, s = 504165 ;
r = 5, N =10, s = 924516 .


