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ERRATUM AND COMPLEMENTS TO MONOGRAPHIE 37

RÉSEAUX EUCLIDIENS, DESIGNS SPHÉRIQUES ET FORMES

MODULAIRES

JACQUES MARTINET

Abstract. We present here errata and complements for some of the papers

published in “Monographie 37 de l’Enseignement Mathématique”. The papers
in which I am not involved will be considered only if the authors wish to send

me their remarks.

N.B. Recent references are those of “Corrected and extended reference list of the
book “Perfect Lattices in Euclidean Spaces”.” (This homepage.)

Summary of the book.

(1) B.Venkov (Notes by J. Martinet),
Réseaux et designs sphériques.

(2) C. Bachoc, B.Venkov (with an appendix with G. Nebe),
Modular forms, lattices and spherical designs.

(3) J. Martinet, B.Venkov (with an appendix by R. Coulangeon),
Les réseaux fortement eutactiques.

(4) J. Martinet,
Sur certains designs sphériques liés à des réseaux entiers.

(5) R. Coulangeon,
Voronöı theory over algebraic number fields.

(6) J. Martinet (with an appendix by C. Batut),
Sur l’indice d’un sous-réseau.

(7) R. Bacher, B.Venkov, Réseaux entiers unimodulaires sans racines en dimen-
sions 26 et 27.

(8) P. Engel, L. Michel †, M. Senechal, New geometric invariants for Euclidean
lattices.

1. First paper.

Updated bibliography.

The paper [L-S-T] has appeared:
[L-S-T] W. Lempken, B. Schröder, P.H. Tiep, Symmetric squares,
spherical designs, and lattice minima. With an appendix by Christine Bachoc and
Tiep, J. Algebra 240 (2001), 185–208.

An English updated version of the book [M] has appeared:
[M’] J. Martinet, Perfect Lattices in Euclidean Spaces, Grundlehren 327, Springer-
Verlag, Heidelberg (2003).
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The paper [R-S] has appeared:
[R-S] E. Rains, N.J.A. Sloane, The shadow theory of modular and unimodular lat-
tices, J. Number Theory 73 (1998), 359–389.

The paper [N-R-S] has appeared:
[N-R-S] G. Nebe, E. Rains, N.J.A. Sloane, The invariants of the Clifford groups,
Des. Codes Cryptogr. 24 (2001).
See also
[N-R-S2] G. Nebe, E. Rains and N. Sloane, Codes and invariant theory , Mathema-
tische Nachrichten 274-275 (2004), 104-116,
and also the book by the same authors:
Self-Dual Codes and Invariant Theory , Algorithms and Computation in Mathe-
matics nu. 17, Springer-Verlag, Heidelberg, 2006.

Complements.

Section 18. Using the results of [N-R-S], C. Bachoc (Designs, groups, and Lat-

tices, J. Th. Nombres de Bordeaux 17 (2005), 25–44, issue dedicated to the Journées

Arithmétiques of Graz, 2003) has proved that from dimension 8 onwards, the automor-
phism groups of the Barnes-Wall lattices have no non-trivial invariants in degrees
d ≤ 6. As a consequence, all non-zero orbits of these automorphism groups are
spherical 7-designs. In particular, all layers of the Barnes-Wall lattices are spher-
ical 7-designs. [In the language of Section 5, the fundamental degrees for Aut(BWn)

(n = 2p ≥ 8) are equal to 2 or ≥ 7.]

Section 19. The list of strongly perfect lattices displayed in Tables 19.1 and 19.2
was constructed by Batut and Venkov. No new strongly perfect lattices have been
discovered since in dimensions n ≤ 25. In dimension 26, three strongly perfect
lattices are known, namely one 3-modular extremal lattice, the integral lattice of
minimum 4 and determinant 3 discovered by G. Nebe, and its dual.
G. Nebe and B. Venkov (Low dimensional strongly perfect lattices. I: The 12-dimensional

case, L’Enseignement Mathématiques 51 (2005), 129–163) have recently proved that the
Coxeter-Todd lattice K12 is the only strongly perfect 12-dimensional lattice.

They have also proved an analogous result in dimension 14, but under an extra
condition, and work with E. Nossek has extended this last result to dimensions 13
and 15; see the complements to Perfect Lattices in Euclidean Spaces, Section 16.3 C
(ref. [Ne-No-V]).

More on group theory. C. Bachoc’s written talk of the “Journées Arithmétiques of
Graz, 2003” contains the list of all known strongly perfect lattices in dimensions
n ≤ 26 whose automorhism groups have fundamental non-trivial degrees ≥ 5.

2. Third paper.

Erratum.
In Table 8.1, a lattice with n = 5, r = s = 12 and minimum 10 has been forgotten;
see nu. 5 in Martinet’s catalogue of perfect lattices.

Updated bibliography.

[Bt] C. Batut, Classification of quintic eutactic forms, Math. Comp. 70 (2001),
395–417.
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Complements.

One more strongly eutactic 6-dimensional lattice has been found with s = r = 15
and minimum 8 (A.-M. Bergé, J. Martinet, Symmetric Groups and Lattices, Monat-

shefte Math. 140 (2003), 179–195, the lattice with Gram matrix C6 displayed after
Theorem 4.3). More recently, Elbaz-Vincent/Gangl/Soulé have obtained the com-
plete classification of 6-dimensional cells, and consequently, that of strongly eutactic
6-dimensional lattices. The results for dimension 7 could be extracted from their
work. See the file devoted to strongly eutactic lattices in Martinet’s home page,
and P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms and the cohomology of
modular groups, [E-G-S]; preprint at arXiv:math/1001.0789v1.

3. Fourth paper.

Erratum.
In the theorem stated in the introduction (page 137 of the book), the lattice O23

has been forgotten. The correct statement reads as follows:

Theorem. The integral primitive lattices Λ of minimum m ≤ 5 whose set S(Λ)
of minimal vectors is a spherical 7-design are Z, the root lattice E8, the shorter
Leech lattice O23, the three laminated lattices Λ16 (the Barnes-Wall lattice BW16),
Λ23 and Λ24 (the Leech lattice), and the even unimodular lattices of dimension 32
and minimum 4 (which have not been classified). In particular, minimum 5 is not
possible.

Complements.
The classification of lattices whose sets of minimal vectors constitute a 6-design
(or 7 -design) has been solved in dimensions n ≤ 24 (except for an open case if
n = 23) by Nebe and Venkov in On lattices whose minimal vectors form a 6-design,
preprint (2006); European J. Combin. 30 (2009), 716–724. (Special issue dedicated
to Eiichi Bannai’s 60th birthday.)

4. Sixth paper.

Erratum.

p. 173, Example 3.3. In the three formulae involving e, replace the denominators
2 by d.

In Section 9, case d=6.
line +2 (p. 192, l. -5 in the book): read i.e., m3 ≤ 2.
(6,0,2) (page 193, line 8 in the book), after “donc e6 · f ′ = 0”, read:

∀ i, ei · f = 1 =⇒ N(f) = 2 and N(f − ei − e6) = 2 ei · ej ≥ 1

=⇒ N(f) ≥ 1+5/2
3 = 7

6 < 2, a contradiction; see also Proposition 2.2 a below.

In Section 9, case d=9, (page 194, line 3 in the book), read: i.e., m3 ≤ 2.

In Section 9, case (2,4,2), (page 195, line -5 in the book), in “e =”, read −e3.

In Section 9, case (4,3,1) (page 196, line 12 in the book), read ...+ e4 + e8 instead
of ...+ e4e+ e8.

pp. 198–199. Several slips in the long proof showing the impossibility of (3, 2, 2, 1)
have been found by Achill Schürmann. The proof is otherwise correct, but can
now be skipped since all cyclic quotients in dimensions up to 9 have been classified
in [K-M-S].

In Section 10, page 200, line -6, read 1
3

∑8
i=1 aiei instead of 1

3

∑8
i=0 aiei.
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p.204, line 18. Actually, all scalar products ei ·ej , 3 ≤ i < j ≤ 6 are also equal to y,

so that N(e) = 10+12y
16 . The inequality N(e) ≥ 1 now reads y ≥ 1

2 , whence y = 1
2 ,

which implies N(e− e3) = 3
4 < 1, a contradiction.

Updated bibliography.

One can replace [M] by the better reference
[M’] J. Martinet, Perfect Lattices in Euclidean Spaces, Grundlehren 327, Springer-
Verlag, Heidelberg, 2003,
and also [M2] by [M’], Section 6.4.

One should also add to [Ry] the reference
[B-R] Baranovskii, S.S. Ryshkov, Derivation of perfect lattices from admissible cen-
terings, Russian Math. Survey 40, 4 (1985), 155–156. (Russian original: 1985.)
as well as the recent
[K-M-S] W. Keller, J. Martinet, A. Schürmann, On classifying Minkowskian sub-
lattices, Math. Comp. 81 (2012), 1063-1092; preprint at arXiv:0904.3110v3.

Maxim Anzin, in an e-mail dated March 23rd, 2004, pointed out to me that the
three possible structures which were forgotten in [Zah] were corrected by the author
in a preprint written under the name of N.V. Novikova, a preprint (in Russian)
that I have never seen.

Also, the name Zahareva may occur in print as Zaharova or Zakharova.

Complements.

Section 2. In a joint work with Anne-Marie Bergé (On Perfection Relations in
Lattices, preprint, arXiv: math.NT/0611220 (8 Nov. 2006), 26 pp.); Contempo-
rary Math. 493 (2009), 29–49, we proved the following complement to Watson’s
Theorem 2.2:

Proposition 2.2 a. If equality holds in Theorem 2.2, we have ai ≤ d
2 for all i, and

if d ≥ 4, equality holds for at most one index i.

This simplifies some proofs, and in particular immediately shows that the system
(6, 0, 2) is impossible.

Whenever Watson’s condition holds, there is a unique perfection relation relating
the orthogonal projections to the vectors ei and e′i, namely∑n

i=1 ai pei =
∑n
i=1 ai pe′i .

This is quoted in Appendix 3 to the joint paper with A.-M. Bergé A generalization
of some lattices of Coxeter, Mathematika 51 (2004), 49–61.

Section 7. For cyclic quotients with order d ≤ 6), all lattices Λ constructed as
Λ = 〈e1, . . . , en, e = a1 e1+···+an en

d 〉 with e1, . . . , en ∈ S(Λ) and ai not divisible by d
exist provided Watson’s inequalities hold for all divisors d′ > 1 of d and moreover
have for smin and r the value predicted by Watson’s identities, except for a short
list of exceptions corresponding to small dimensions n. Here are the results, which
were only partially given in the paper.
• d = 2, n ≥ 4 : s = 12 and r = 10 if n = 4, s = r = n if n ≥ 5.
• d = 3, n ≥ 6 : s = 12 and r = 11 if n = 6, s = r = n if n ≥ 7.
• d = 4, n ≥ 7, m1 ≥ 4, m2 6= 0 if n = 7. Except if (m1,m2) = (4, 3), (6, 1)
or (8, 0), we have s = n+ 8 and r = n+ 6 if m1 = 4, and s = r = n if m1 ≥ 5.
• d = 5, n ≥ 8 (and m1 ≥ m2): s = 2n and r = 2n− 1 if (m1,m2) = (4, 4), (6, 2),
(8, 1) or (10, 0), and s = r = n otherwise.
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• d = 6, n ≥ 9. All systems (m1,m2,m3) satisfying Watson’s conditions

m1 +m3 ≥ 4 , m1 +m2 ≥ 6 and m1 + 2m2 + 3m3 ≥ 12

exist and have the predicted values for smin and r except (4, 5, 0) and (5, 1, 3) for
which smin = 23 (by repeated application of Watson’s identities).

Section 9, Proposition 9.1. Zahareva’s identity holds true for any system (m1,m2),
with

(m1 − 4)
∑

m1+1≤i≤m2

(N(e′ − ei) −N(ei)) + (m2 − 4)
∑

1≤i≤m1

(N(e− ei) −N(ei))

in the right hand side. When m1 = m2 = 4, there is a unique perfection relation
relating the orthogonal projections to the vectors ei and e′i = e − ei or e′ − ei,
namely

∑n
i=1 pei =

∑n
i=1 pe′i .

There is a similar result for denominator 7, involving m1,m2,m3, and assuming
that m1 = m2 = m3 = 3 for the perfection relation. This accounts for the values
s = 18, r = 17 in Remark 9.2.

Section 9, Remarque 9.2, page 200 in the book (November 24th, 2008).
The complete classification for dimension 9 has been obtained in the joint work
[K-M-S] with Wolfgang Keller and Achill Schürmann (On classifying Minkowskian
sublattices; preprint at arXiv: 0904.3110v1). The new structures for quotients
Λ/Λ′ which occur are (7), (8), (9), (10), (12), (6, 2) and (4, 2, 2), which all exist in
the lattice Λ9, and (4, 4), which exists only in a perfect, strongly eutactic lattice
with s = 81.
The proofs make intensive use of linear programming.

Sections 9 and 10 (July 3rd, 2006).
The bound [Λ : Λ′] ≤ 9 for 8-dimensional lattices (except for E8, for which an

elementary quotient of order 16 exists) was stated without a proof by Watson. For
the sake of completeness, we present a detailed, handy-computational proof as an
appendix.

5. Eighth paper.

Updated bibliography.

[EMS01] Marjorie Senechal’s home page
http://www.math.smith.edu/̃ senechal/books.html refers to a 284 pages, 2003
preprint, available as an I.H.E.S. 2004 preprint at http://www.ihes.fr/ .
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Appendix: complements for dimension 8

In dealing with dimension 8 (Sections 9 and 10), we have left aside the possible
large indices: all the details have been written for ı ≤ 9, and we just trusted
Watson’s statement without proofs for ı > 9. Here we shall provide proofs. Note
that if one makes use of the results on Hermite’s constant in dimension 8, there
just remains to consider the range 10 ≤ ı ≤ 15, since γ48 = 16 and is attained only
on lattices similar to E8. We must thus consider for Λ/Λ′ the structures (10), (11),
(12), (6, 2), (13), and (15), (note that (14) is impossible because index 7 does not
exist in dimension 8).
[Since γ8 and the corresponding critical lattices can be easily classified using the corre-

sponding results in dimensions 6 and 7 (a short proof due to A.-M. Bergé is written in [M],

Theorem 6.6.1), it is reasonable not to bother with larger indices. However, using only

the value of g5 and the bound for g8 obtained by repeated use of Mordell’s inequality (ac-

cording to Watson’s philosophy), one would have to consider the larger range 10 ≤ ı ≤ 18.

Again, ı = 18 is impossible (because ı = 9 exists only for E8) and quotients Λ/Λ′ of type

(16) and (8, 2) are excluded (because denominator 8 does not exist in dimension 8). We

are then left with the extra structures (4, 4), (4, 2, 2), and (17).

We first consider the case when Λ/Λ′ is cyclic, i.e.

Λ = 〈Λ′, e =
a1e1 + · · ·+ anen

d
〉

for some d in the range 10 ≤ d ≤ 15 (or d = 17) 1 ≤ ai ≤ d′ = bd2c. We denote by
mi the number of j ∈ {1, . . . , 8} such that aj = i ; we have m1 + · · · + md′ = 8,
and set σ1 = m1 + 2m2 + · · · + d′md′ and for a prime to d, we denote by σa the
transform of σ1 resulting from the transformation e 7→ a e. Watson’s inequalities
then read σa ≥ 2d. If equality holds for, say, σ1, all vectors e− ei are minimal, so
that if mi 6= 0, then the denominator d − i is possible in dimension 8. If d = 10,
we have m5 = 0 (because index 5 does not show up in dimension 7), m1 and m3

cannot be both zero, and a denominator 10 − 1 = 9 or 10 − 3 = 7 shows up, a
contradiction. When it is proved that index 10 is impossible, we may again apply
the same argument with d = 11, which will show inductively that the inequality
must be strict in Watson’s inequality for all d ≥ 10.

Before looking at the possible values of d, we write down two general inequalities.
First, Watson’s bound implies that m1 +(8−m1)d′ ≥ 2d+1, i.e. m1 ≤ 4d−6

d−3 < 5

for d ≥ 11 odd (and similarly m1 ≤ 4 holds for d ≥ 10 even).
Next, if d is odd, adding Watson’s inequalities for e and 2e mod Λ′, we can

sharpen m1 ≤ 4 to m1 ≤ 3 for d ≥ 11 odd: for k even (resp. odd) the coefficient of

mk is bounded from above by k+ k
2 ≤

3(d−1)
4 (resp. by k+ d−k

2 = d+k
2 ≤

3d−1
4 ), so

that m1 + 3d−1
4 (8−m1) ≥ 2(2d+ 1), i.e. m1 ≤ 8(d−2)

3d−13 < 4 for d ≥ 11. [If Watson’s

equality could hold, the bound m1 ≤ 3 would be correct only for d ≥ 13.]

Using the action of (Z/dZ)×/{±1}, we see that the inequalities above hold for
all mk with k prime to d. In particular, when d is a prime, mk ≤ 3 holds for all k.

We now consider the cyclic quotients Λ/Λ′ of order d = 10 to 15.

d = 10. Recall that m5 = 0, and consider the two Watson inequalities

σ1 = m1 + 2m2 + 3m3 + 4m4 ≥ 21 and σ3 = 3m1 + 4m2 +m3 + 2m4 ≥ 21
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and their averaging 2(m1 + m3) + 3(m2 + m4) ≥ 21. We have m5 = 0 because
index 5 is not possible in dimension 7, hence 2(m1 +m3) + 3(8− (m1 +m3)) ≥ 21,
i.e. m1 +m3 ≤ 3, which contradicts the lower bound m1 +m3 ≥ 4 given by 5e.

d = 11. We have five inequalities, obtained by performing permutations on σ1 =
m1 + 2m2 + 3m3 + 4m4 + 5m5 ≥ 23, σ2 = 2m1 + 4m2 + 5m3 + 3m4 + m5 ≥
23, σ3 = 3m1 + · · · ≥ 23, . . . Adding the first two inequalities above, we obtain
(∗) 3m1 + 6m2 + 8m3 + 7m4 + 5m5 ≥ 46. We have mi ≤ 3. If maxmi = 3, we may
assume that m1 = 3, but then the maximal value of σ1 + σ2 is 41 < 46 (attained
on (3, 0, 2, 2, 1)). Hence maxmi = 2, so that the system (mi) is a permutation of
24, 0) or (23, 12). In the first case, we may assume that m3 = 0, which implies
σ1 + σ2 ≤ 44 < 46. In the second case, we may assume that the value 1 occurs for
m3 but not for m1, which implies σ1 + σ2 ≤ 46, with equality only on (2, 1, 1, 2, 2)
(and then, σ2 = 21 < 23) or (2, 2, 1, 2, 1) (and then, σ1 = 22 < 23).

d = 12. Considering denominators 6 and 4, we see that m6 = 0 and m4 ≤ 1.
Averaging the two inequalities σ1 = m1 + 2m2 + 3m3 + 4m4 + 5m5 ≥ 25 and
σ5 = 5m1 + 2m2 + 3m3 + 4m4 + m5 ≥ 25, we obtain σ = σ1+σ5

2 = 3(m1 + m3 +
m5) + 2m2 + 4m4 ≥ 25. Setting t = m1 +m3 +m5, we have σ = 3t+ 2m2 + 4m4 ≤
3t + 2(7 − t) + 4 = t + 18, and σ ≥ 25 holds only if t = 7 and m4 = 1, whence
m2 = 0. But this contradicts σ4 = m1 + 2m2 +m3 +m5 ≥ 8.

d = 13. The proof roughly follows the one we gave for d = 11. We have σ =
σ1+s2+s3 = 6m1+12m2+13m3+10m4+10m5+12m6 ≥ 27×3 = 81. If maxmi = 3,
we may assume that m1 = 3, so that σ ≤ 6×3+13×3+12×2 = 81, value attained
uniquely on the systems (3, 0, 3, 0, 0, 2), (3, 1, 3, 0, 0, 1) and (3, 2, 3, 0, 0, 0), for which
σ1 ≤ 24 < 27. There remains to consider systems which are a permutation of
(24, 02), (23, 12, 0) or (22, 14).
• In the first case, we may assume that m3 = 0 and m1 = 2, whence σ ≤ (6 + 12 +
12 + 10)× 2 = 80 < 81.
• In the second case, we may assume that m3 = 0 or 1 and m1 = 2.
If m3 = 0, then σ ≤ (6 + 12 + 12) × 2 + 10 = 80. Let now m3 = 1
(and m1 = 3). If m2 = 0, then σ ≤ (6 + 10 + 12)× 2 + (13 + 10) = 79 ; If m2 = 1,
then σ ≤ 81 with equality only on the systems (2, 1, 1, 0, 2, 2) and (2, 1, 1, 2, 0, 2), for
which σ2 ≤ 22 ; finally, if m2 = 2,
then σ1 ≤ (1 + 2 + 6)× 2 + (3 + 5) = 26.
• In the third case, we may assume that m1 = 2 and m3 = 1, which implies
σ ≤ (6 + 12)× 2 + (13 + 12 + 10 + 10) = 81, with equality only if m2 = 2, and then
σ1 = 26, or if m6 = 2, and then σ2 = 26.

d = 15. We have m5 = 0 and m2 + m6 ≤ 2. Adding σ1, σ2, s4, s7, we obtain the
inequality 14(m1 +m2 +m4 +m7) + 18(m3 +m6) ≥ 124, whose L H S is bounded
from above by 14× (8− 6) + 18× 2 = 120.

[d = 17. This superfluous case can be dealt using the methods used for d = 13.]

We now turn to non-cyclic quotients Λ/Λ′, indeed of type (6, 2), and write

Λ = 〈Λ′, e =
a1e1 + · · ·+ anen

6
, f =

b1e1 + · · ·+ bnen
2

〉

with ai ∈ {1, 2, 3} and b1 ∈ {0, 1}. We associate a system (m1,m2,m3) with e, a
system (m′1,m

′
2,m

′
3) with e′ = e + f (whose numerator has coefficients ai + 3bi),

and a system (m′′1 ,m
′
2,m

′′
3) with 2e + f , which generates the third subgroup of

order 6 in Λ/Λ′. Note that m3,m
′
3,m

′′
3 are non-zero. If ai = 3 and bi = 1 for
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some i, then we have m′1 +m′2 +m′3 ≤ 7, and since denominator 6 is impossible in
dimension 7, all ai + 3bi must be even (they cannot all be divisible by 3 !), which
implies f ≡ 3e mod Λ0, hence that Λ/Λ′ has order only 6. Hence bi = 0 whenever

a1 = 1 or 2. But 2e is congruent modulo Λ′ to a vector of the form
±e1±···±em1+m2

3 ,
so that e1, . . . , em1+m2

, 2e+ f define a lattice of index 6 in dimension 8−m3 < 8,
a contradiction.

[The superfluous cases where Λ/Λ′ would be of type (4, 4) or (4, 2, 2) can be dealt with

using the remark they define several structures of type (4, 2) and that in each case, a

vector with denominator 4 has exactly 7 components not divisible by 4.]


