
SPHERICAL 3-DESIGNS AND LATTICES
FROM BINARY CODES
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Abstract. Lifting binary codes over Zn produces lattices, with some
of which we construct spherical 3-designs. The case when the set of min-
imal vectors is a 3-design corresponds to the notion of strongly eutactic
lattices, introduced by Boris Venkov in [V]. In this paper we consider a
kind of counterpart of this notion for (linear) binary codes, with special
emphasis on codes of weight 3.

1. Introduction

Let C be a linear binary code of length n. Denote by E the Euclidean
space Rn, equipped with its canonical basis B = (ε1, . . . , εn) and its canonical
scalar product (xi) · (yi) =

∑
xiyi, and by Zn the lattice with Z-basis B.

The norm of x ∈ E is N(x) = x ·x, the Gram matrix of the basis (e1, . . . , en)
is Gram(B) = (ei · ej), the determinant of B is det(B) = det(Gram(B)).

The minimum of a lattice Λ ⊂ E is min Λ = minx∈Λr{0} N(x). We
set S(Λ) = {x ∈ Λ | N(x) = min Λ}, (the set of minimal vectors of Λ),
s(Λ) = |S|

2 (the [half-]kissing number of Λ), and define the determinant of Λ
as the determinant of one of its bases over Z.

With each word α of C we associate the vector eα =
P
α(i)=1 εi

2 , and with C
the lattice

ΛC = 〈Zn, eα | α ∈ C〉 .
The aim of this note is to study for such lattices ΛC some notions related
to perfection and eutaxy, the definitions of which we recall below. We also
consider a second construction for even codes C, namely

LC = 〈Dn, eα | α ∈ C〉 .

where Dn = {x ∈ Zn |
∑

xi ≡ 0 mod 2} is the even sublattice of Zn.
For reasons which will be explained in the next section we shall essentially

consider four situations:
(a) ΛC with wt(C) = 3 ; (b) ΛC with wt(C) = 4 ;
(c) LC with wt(C) = 6 ; (d) LC with wt(C) = 8.
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(*) Univ. Bordeaux, IMB & CNRS, UMR 5251.
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Consider a finite, symmetric set S of vectors of E having the same norm,
and set s = 1

2 |S|; the definitions below will then be applied to the set S of
minimal vectors of a lattice, and sometimes more generally to various layers
of the lattice. The notions relative to perfection and eutaxy that we recall
below stem from papers of Korkine & Zolotareff (1873–1877) and Vorononoi
(1907–1908); more details can be read in [M1], Chapter 3. Given a subspace
F of E, we denote by pF ∈ Ends(E) the orthogonal projection to F , and
for x ∈ E, x 6= 0, we denote by px the orthogonal projection to the line Rx.

The perfection rank of S is the rank r = r(S) in Ends(E) of the px,
x ∈ S. One has r ≤ n(n+1)

2 = dim Ends(E). The difference n(n+1)
2 − r is the

perfection co-rank of S. We say that S is perfect if its perfection co-rank is
zero. A relation

∑
x∈S/±1 λxpx = 0 is called a perfection relation.

A eutaxy relation is a relation of the form Id =
∑

x∈S/±1 ρxpx with real
coefficients ρx. Since Tr(px) = 1, we have

∑
x∈S/±1 ρx = n. We say that S

is weakly eutactic if the set of eutaxy relations on S is not empty, in which
case it is an affine space over the real vector space of perfection relations.
We say that S is semi-eutactic (resp. eutactic) if there exists a eutaxy
relation with ρx ≥ 0 (resp. ρx > 0). We say that a lattice is extreme if its
Hermite invariant achieves a local minimum (then necessarily strict modulo
similarities). By a theorem of Vorononoi, a lattice is extreme if and only if
it is perfect and eutactic.

Finally, we say that S is strongly eutactic if there exists a eutaxy re-
lation with equal coefficients ρx, then equal to n

s ; equivalent formulation:∑
x∈S/± px is proportional to the identity. This condition amounts to saying

that S is a spherical 3-design; see [V], Sections 3 and 6 for the application to
lattices of the Delsarte-Goethals-Seidel theory of spherical designs; see also
[B], [B-V], and [M-V1].

In the next section we consider the connection between codes and lattices
with respect to the various notions of eutaxy and perfection. The following
sections are then devoted to (linear, binary) codes, especially of weight 3,
but we also consider related codes of various weights, which show up for
instance as dual codes, or even subcodes or extended codes (by the parity
check) of odd codes.

2. Lifting binary codes

Recall that C is a code of length n. We assume that C is non-zero, and
denote by k ≥ 1 its dimension and d its weight or minimal distance. (For
short, C is a (linear, binary) [n, k]- or [n, k, d]-code.) The code C is even if
all its weights are even and odd otherwise, and doubly even if all its weights
are divisible by 4. The dual of C is

C⊥ = {y ∈ Fn2 | ∀x ∈ C, x · y = 0} ,
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and we say that C is self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥; note
that doubly even codes are self-orthogonal.

Codes lift to lattices ΛC , of minimum min(1, d4), and LC , of minimum
min(2, d4). We shall often rescale ΛC to minimum min(4, d) and LC to min-
imum min(8, d). In these scales they become integral, with determinants
det(ΛC) = 4n−k and det(LC) = 4n−k+1, respectively. Then ΛC is even is if
and only if C is even whereas LC is even for every C, and these lattices are
primitive if and only if C is not self-dual. Otherwise, they become integral
when rescaled to half their minimum (and are then primitive because C is
not zero).

To calculate s = s(ΛC) in full generality, we need the invariant below of C.

Definition 2.1. Let Mm = Mm(C) be the number of words of C having a
given weight m. When m is the weight d of C, we omit the subscript m.

Proposition 2.2. If d = 3, d = 4, d ≥ 5, then s(ΛC) = 4M , 8M + n, n,
respectively; if d = 6, d = 8, d ≥ 10, then s(LC) = 16M , 64M + n(n − 1),
n(n− 1), respectively.

Proof. Lifting a word x of weight wt(x) produces 2wt(x)−1 pairs of vectors
of norm wt(x)

4 in ΛC ; the same kind of calculation applies to LC . �

[In the proposition above we have disregarded construction LC with wt(C) = 2 or 4,
since replacing Zn by Dn does not produce interesting new sets of minimal vectors.
We also left aside lattices ΛC constructed with codes of weight w ≤ 2. These yield
lattices of minimum 1 or 2, and the sublattice generated by vectors of norm 1 or 2 is
a root lattice, thus isometric to an orthogonal sum of well-known irreducible lattices
(Z, An, n ≥ 1, Dn, n ≥ 4, En, n = 6, 7, 8). A look at the determinants of lifts of
doubly even codes generated by words of weight 4 shows that we may only obtain
Dn (n ≥ 4 even), E7, and E8, which shows that these codes are concatenations of
irreducible codes that we may call dn (n ≥ 4 even), e7, and e8. The latter two are
related to Hamming codes on which we shall return below; dn, n = 2m is obtained
by dividing {1, . . . , n} into the m blocks {1, 2}, . . . , {n− 1, n} and taking for words
all words with support an even number of blocks.]

Example 2.3. We give here a few examples of construction LC . Note that all
lattices quoted below are strongly eutactic by Theorem 3.6 of next section.

(1) Doubling the code d4 (resp. d6) we obtain for LC a scaled copy of E8 (resp.
of the laminated lattice Λmax

12 , for which s = 64 × 3 + 12 × 11 = 324; see
[M2], Section 8.2).

(2) There are unique [15, 4, 8]- and [16, 5, 8]-codes. The corresponding lattices
LC are the laminated lattices Λ15 and Λ16 (the Barnes-Wall lattice BW16).
Note that BW16 as well as D4, E7 and E8 which can be obtained by con-
struction ΛC , are spherical designs of level ` ≥ 5.

(3) Similarly rescaling the unique self-dual [16, 6, 6]-code of [B-G] produces the
lattice O16 (with even sublattice Λ16), again a spherical 5-design.
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(4) Using the binary Golay code G, we obtain a lattice with s = 759×64+24×
23 = 49128, indeed the orthogonal in the Leech lattice of a norm-6 vector.
To obtain the Leech lattice Λ24 we must use codes over Z/4Z, for instance,
adjoin to L the vector 1

4 (−3, 123) ; this construction is better understood
in terms of Kneser neighbours of ΛG .

Recall that the dual lattice of a lattice Λ is

Λ∗ = {x ∈ Rn | ∀ y ∈ Λ, x · y ∈ Z} .
We have [ΛC : Zn] = 2d, hence [Zn : ΛC⊥ ] = 2d, and [Zn : (2Z)n] = 2n.
Now ΛC⊥ contains (2Z)n and we have [ΛC⊥ : (2Z)n] = 2n−k = 2dim C⊥ , which
implies

Λ∗C⊥ = 〈(2Z)n, ew | w ∈ C⊥〉 .

3. Perfection and eutaxy

We keep the notation of the previous sections.

Lemma 3.1. The set S = {±ε1±···±εn2 } is strongly eutactic.

Proof. We apply the projection formula pe(x) = e·x
e·e e with e ∈ S and and

x equal to an εi. We have e · εi = ±1
2 and e · e = n

4 , hence pe(εi) = ± 2
n e,

so that the component of pe(εi) is + 1
n on εi, whereas it is ± 1

n on εj , j 6= i,
with the sign of εj in e. The sum of the pe(εi) on a half-system of S is

1
2

∑
e∈S

pe(εi) =
2n−1

n
εi ,

since there are in the sum above the same number of minus signs on the
εj , j 6= i. This shows that

∑
e∈S/± pe and 2n−1

n Id, which agree on the basis
B for E, are indeed equal. �

Proposition 3.2. Let C be a [n, k, 4] binary code. Then:
(1) In situation (b), ΛC is eutactic.
(2) In situation (d), LC is extreme.
(3) In situation (b), ΛC is perfect if and only if every pair i, j of coordi-

nates belongs to the support of a weight 4 word.
(4) In situation (a), ΛC is perfect if and only if every pair i, j of coordi-

nates belongs to the support of a (unique) weight 3 word.

Proof. The proof of eutaxy in situation (b) is dealt with in [K-M-S] by
induction on the number w of weight-4 words of C, using when w = 0
the fact that Zn is (strongly) eutactic. The same kind of proof applies to
situation (d) with Dn instead of Zn when w = 0. In this latter case, since
LC contains the perfect lattice Dn scaled to minLC , it is moreover perfect,
hence extreme by Voronoi’s theorem.

Assertion (3) is also proved (in a more general form) in [K-M-S],
(Lemma 7.2), and this proof adapts easily to the last two assertions. �
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Remark 3.3. Property (4) in the proposition above amounts to saying that the
code C (of weight 3 in this case) is perfect in the sense of coding theory; perfect codes
are then the generalized Hamming codes defined in Section 4 below. The notions
which appear in Assertions (3) and (5) are less restrictive than the corresponding
notions of perfection for codes. In [K-M-S], for situation (b), such codes are called
complete codes.

We now consider unions of sets S having a common length m ≤ n.

Proposition 3.4. Let k,m (m ≤ n) be positive integers, let Ej , j = 1, . . . , k

be subsets of {1, 2, . . . , n} of cardinality m, and for each j, let Sj =
P
i∈Ej

εj

2 .
Then S = ∪j Sj is strongly eutactic if and only if the number of sets Ej
containing a given index i is independent of i.

Proof. For each j ≤ k, denote by Fj be the span of the εi, i ∈ Ej , and for
i = 1, . . . , n, let µi be the number of j ≤ k with i ∈ Ej .

The set S is strongly eutactic if and only if the sum T :=
∑k

j=1

∑
e∈Sj pe

is proportional to the identity. Using Lemma 3.1, we see that the inner sum
is equal to 2m−1

m pFj = 2m−1

m

∑
i∈Ej pεi . We thus have T = 2m−1

m

∑n
i=1 µipεi ,

which shows that T is proportional to the identity if and only if the µi have
a common value µ (and then we have

∑
e∈S/± = 2m−1µ

m Id). �

We now return to the data of a code C and the lattices ΛC and LC .

Definition 3.5. Let C be a (linear, binary) code and let m be a weight of C.
(1) We denote by tm(i) the number of words w of weight m of C such

that w(i) = 1.
(2) We say that C is m-equidistributed if tm(i) does not depend on i ; the

common value of the tm(i) is then called the m-distribution weight
of C and denoted by tm = tm(C).

We omit the notation m when m = wt(C) is the weight of C, and also say
that an equidistributed code is strongly eutactic.

In terms of combinatorial designs, this definition means that the words
of weight m in C equip C with the structure of a 1 − (n,m, tm) design. So
various examples can be found in Bachoc-Gaborit’s paper [B-G].

Theorem 3.6. Let C be an equidistributed code. Then the lattices ΛC in
situations (a) and (b), and LC in situations (c) and (d) are strongly eutactic.

Proof. Let S0 be the set of vectors in ΛC or LC which lift the words of weight
wt(C). By Proposition 3.4, S0 is strongly eutactic. In situations (a) and (c),
we have S(ΛC) = S0 and S(LC) = S0, respectively, which proves the result
in these two cases. In situations (b) and (d), the set of minimal vectors of
the lattice is the disjoint union S0 ∪ S1 with S1 = S(Zn) in case (b) and
S1 = S(Dn) in case (d). In both cases, S1 is strongly eutactic, hence the
result in these latter cases. �
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Note that the various notions of eutaxy as well as that of perfection for a
lattice Λ solely depend on the set of minimal vectors of Λ. For this reason
we shall most of the time restrict ourselves to lattices which are generated
by their minimal vectors. Moreover, when this condition holds, these no-
tions are easily tested using the corresponding knowledge for the irreducible
components of Λ: the perfection rank is additive on the components, (weak,
semi-, proper) eutaxy holds if and only if it holds on each component, and
strong eutaxy holds if and only if (1) it holds on each component and (2)
the ratio s

n is the same for all components.
As a consequence we shall mainly consider lattices which are irreducible

and generated by their minimal vectors.
When performing one of the construction (a) to (d) with a code C, the

condition above is satisfied if and only if C is generated by its words of
minimal weight and is irreducible (i.e. not the concatenation of codes of
smaller length). In particular, this excludes equidistributed codes with k = 1.

4. Equidistributed codes

We keep the notation of the previous section. We denote by C a (linear,
binary) [n, k, d]-code, and refer to Definitions 2.1 and 3.5 for the notation
Mm, M , tm(i), t(i), tm, t.

We denote by 000 the word 0 and by 111 the all ones word. We moreover
denote by Aut(C) the automorphism group of C (and shall often use the
letter G).

We first state two propositions, of which we omit the evident proofs.

Proposition 4.1. (1) The dual code C⊥ is even if and only if 111 ∈ C.
(2) For every weight m of C, the weight-m words of C add to the word(

km(1), . . . , km(n)
)
.

(3) If C is m-equidistributed, this sum is 000 if km is even and 111 if km is
odd. �

Proposition 4.2. (1) We have
∑n

i=1 tm(i) = m ·Mm . In particular if
C is m-equidistributed, then

tm · n = m ·Mm .

(2) If the automorphism group of C acts transitively on the coordinates,
then C and C⊥ are m-equidistributed for every m. �

We now consider the connections which might exist between a code C of
weight 3, its even subcode and its extended even code (by the parity check).

Definition 4.3. Let C be an odd code. We denote by C′ its even subcode
and by C its extended code. We also write t′ = t(C′), t = t(C), M ′ = M(C′),
M = M(C).

This definition will mainly be applied when wt(C) = 3. Thus we shall
consider codes with parameters

C : [n, k, 3] ; C′ : [n, k − 1, 4 or 6] ; C : [n+ 1, k, 4] .
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[Under the conditions listed at the end of Section 3, one has wt(C′) = 4, since
weight-3 words may not all have disjoint supports.]

Proposition 4.4. Let C be a code of weight 3. Assuming that C′ has
weight 4, we have

t(i) = t(i) + t′(i) (1 ≤ i ≤ n), t(n+ 1) = M , and M = M +M ′ .

Proof. The words of weight 4 of C are those of C′ and the extensions of words
of weight 3 of C. �

This proposition, which reduces to t(i) = t+ t′ if i ≤ n and t(n+ 1) = M
when both C and C′ are equidistributed, allows calculations for C, but says
nothing on putative relations between C and C′. We shall construct examples
in which C but not C′, or C′ but not C, is equidistributed.

In the remaining of this section we concentrate on codes of weight 3,
giving three important examples.

Recall that the (generalized) Hamming codes Hn of length n = 2p − 1,
p ≥ 3, are [n, n− p, 3]-codes defined up to equivalence by their parity check
matrix A, a p×n matrix having for columns the n non-zero columns of zeros
or ones.

We order them so has to have A = (Ip | A0), which gives the codes the
generator matrices Hn = (In−p | tA0). The weight-3 words of Hn can be
viewed as the lines of the projective space Pp(F2), thus Aut(Hn) as the
group PSLp(F2), of order 2p(p−1)/2 · (2p−1) · · · (22−1) · (2−1), acting 2-fold
transitively on the coordinates, hence transitively on the weight-3 words.
Let w be weight-4 word with support {i, j, i′, j′}. Then (i, j, iw) is a weight-
3 word of C for a uniquely defined coordinate iw, and (i′, j′, iw) also belongs
to C. We see that M3(Hn) = 1

3

(
n
2

)
and M4(Hn) = n−3

4 M3. A closer look at
the automorphism group moreover shows that Aut(Hn) also acts transitively
on the sets of weight-4 words.

The following proposition easily follows from the data above.

Proposition 4.5. The codes Hn, H′n and Hn, n = 2p−1, p ≥ 3 are equidis-
tributed, with the following invariants:

(1) Hn: t = n−1
2 , M = n(n−1)

6 ;
(2) H′n: t′ =

(n−1)(n−3)
6 , M ′ = n(n−1)(n−3)

24 ;

(3) Hn: t = n(n−1)
6 , M = n(n2−1)

24 . �

Note that one has PSLp(F2) = GLp(F2), so that Aut(Hn) can be identified
with the affine group AGLp(F2), which is 3-fold transitive on the coordinates.

The Hamming codes are the only perfect codes of weight 3. (For weight-3 codes,
perfection amounts to saying that there exists for each set {i, j} of coordinates a
(unique) word w of weight 3 with w(i) = w(j) = 1.)

Thanks to the transitivity properties of the Hamming codes, we can asso-
ciate with Hn (canonically up to isomorphism) an [n−1, k−1, 3]-code Hn−1,
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its punctured code, obtained by removing one coordinate i and all the words
with w(i) = 1. Thanks to the 2-fold transitivity of Aut(Hn), the punctured
code of Hn is well defined up to isomorphism and its automorphism group
again acts transitively on the coordinates. We denote this code by Hpn, this
time with n = 2p − 2, p ≥ 3. Using Proposition 4.5 above, we obtain:

Proposition 4.6. The codes Hpn and Hp′n (n = 2p− 2) are equidistributed
codes having the following invariants:

t = n−2
2 , M = n(n−2)

6 , t′ = (n−2)(n−3)
6 , and M ′ = n(n−2)(n−3)

24 ;
Hpn is isomorphic to H′n+1. �

Our last family, though having nothing to do with the previous two fami-
lies except for a coincidence with Hp6 for n = 6, again relies on a parameter
p ≥ 3. We define it through its dual codes. We first state a lemma, without
writing its evident proof.

Lemma 4.7. Let C be an [n, k]-code and let A be a generator matrix for C.
The words of weight ` in C⊥ are in one-to-one correspondence with the sets
of ` columns of A adding to zero in C⊥. In particular we have wt(C⊥) ≥ 3
if and only if the columns of A are distinct and non-zero. This implies the
bound n ≤ 2k − 1, attained only on the duals of Hamming codes. �

Proposition 4.8. For any p ≥ 3, there exists (up to isomorphism) a unique
[n = p(p+1)

2 , p, p]-code K′(p) having M = p+ 1 words of weight p which have
pairwise a unique 1 in common (thus they add to 000). Its automorphism
group is isomorphic to Sp+1 acting faithfully on the p+ 1 words of weight p
and on the coordinates as the action on the 2-subsets of {1, 2, . . . , p+ 1}.

The dual code Kn of K′(p) is an equidistributed [n = p(p+1)
2 , k = p(p−1)

2 , 3]-

code with M = p(p2−1)
6 and t = p−1; its even subcode has M ′ = p(p2−1)(p−2)

8
and t′ = (p− 1)(p− 2).

Proof. We just sketch it. In the spirit of coding theory, a canonical con-
struction for such a code can be done inductively as follows: start with the
matrix Ip, then extend it to the right by p− 1 ones on the first row and by
Ip−1 below this row, then complete the first row by 0’s, forget it, and go on
inductively, putting p − 2 ones on the second row and writing down Ip−2

below, etc. The lines of this matrix define p words w1, . . . , wp which add to
wp+1 = (1p, 0p(p−1)/2). Here is the generator matrix for p = 4:(

1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

)
Uniqueness is proved by noticing that two words w,w′ can be exchanged

by exchanging conveniently the p − 1 coordinates at which they differ. (If
w(i) = 1, let w′′ be the word having w′′(i) = 1 and w′′(i′) = 1 where
i′ satisfies w′(i′) = 1, and exchange i and i′). This also shows that the
automorphism group is generated by products of p−1 transpositions on the
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coordinates which induce all possible transpositions on the set of words of
weight p, and that the action on the coordinates is induced by the action of
Sp+1 on the 2-sets, each coordinate being associated with the pair (w,w′) of
weight-3 words such that w(i) = w′(i) = 1.

We have n = p(p+1)
2 and dimK(p) = p, and it is clear that for any pair

(i, j) of coordinates of K(p), there are words having components (1, 0) and
(0, 1) at (i, j). This shows that K(p)⊥ is a [p(p+1)

2 , p(p−1)
2 , d ≥ 3]-code.

Pick any coordinate i, denote by w1 and w2 the words of weight 3 such
that w1(i) = w2(i) = 1. and choose j 6= i such that w1(j) = 1. Then there is
a unique word w3 of weight 3 such that w3(j) = 1 and a unique coordinate
` such that w3(`) = w2(`) = 1. The set of p − 1 weight-3 words we obtain
this way does not depend on the choice of w1 among {w1, w2}. This shows
that wt(K⊥) = 3 and that M = n(p−1)

3 = p(p2−1)
6 . By the transitivity of

its automorphism group, K⊥ is equidistributed, and by Proposition 4.2 we
have t = 3M

n = p− 1.
The same kind of argument then allows us to enumerate weight-4 words,

which completes the proof of the proposition. �

Remark 4.9. The only known perfect, integral lattices of minimum 3 in the range
[2, 15] are those which lift the codes H7 (similar to E∗7) and H15. I conjecture that
these two lattices are the only such perfect lattices, and even that the perfection
bound n(n+1)

2 is not attained by the kissing number for n ≤ 13, n 6= 7. This is
proved in [M-V2] for n ≤ 9. For n = 14 (resp. 15), the largest known value for s is
112, given by the lift of Hp14 (resp. 160).

Remark 4.10. The codes dual to Kn,Hpn,Hn all have weight t + 1, and can
be constructed using design structures on their sets of words of minimal weight.
Probably, other examples could be constructed following the method we used for
K(p). Due to the big gap which exists between p(p+1)

2 and 2p − 2, I do not expect
the three examples above to be the only ones. !e

We end this section by describing a construction which doubles both the
length and the distribution weight of an equidistributed code of weight 3.
Let C be an [n, k, 3]-code and let D be the code obtained by repeating C⊥.
If C⊥ has minimal distance δ, this is an [2(n − k), n − k, 2δ]-code, having
pairwise equal columns for any choice of a generator matrix G for it, an
(n − k) × n matrix invariant under each of the n transpositions (1, n + 1),
(2, n+2), . . . , (n, 2n). Enlarge G to an (n−k+1)×n matrix G̃ by adjoining
a row having a one and a zero at each pair of equal columns of G. Then up
to isomorphism, the code D̃ defined by G̃ does not depend on the choice of
G nor on the distribution of the ones and zeros in the last row (we shall for
convenience put a 1 at the first n coordinates and a o at the last n), and its
dual C̃ has weight 3.

We state the proposition below without giving its easy proof.
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Proposition 4.11. Let C be an [n, k, 3]-code having M words of weight 3.
The its double C̃ is a [2n, n+k−1, 3]-code having M̃ = 4M words of weight 3.
If C is equidistributed with distribution weight k, C̃ is equidistributed with
distribution weight 2k.

Applied to C = Hn, this construction yields Hp2n; applied to C = Hpn,
it yields the orthogonal of the (well-defined) code deduced from H⊥2n+1 by
deleting three columns adding to 0 1.

5. Codes of weight 3: low length classification

In this section we consider an irreducible, equidistributed [n, k, 3] code
C generated by its words of weight 3. This implies that t ≥ 2. We shall
often denote a word w of weight ` by its coordinates having w(i) = 1:
w = (i1, i2, . . . , i`), and most of the time, begin the enumeration of its
weight-3 words with w1 = (1, 2, 3), w2 = (1, 4, 5), . . . , wt = (1, 2t, 2t + 1).
We have

n ≥ 2t+ 1 and wt(C⊥) ≥ t+ 1 .
[For the second inequality, observe that a word w ∈ C⊥ with w(1) = 1 satisfies
w(i) = 1 for exactly one coordinate i in each of the 2-sets {2, 3},. . . ,{2t, 2t + 1},
and may be for some coordinates j > 2t+ 1.]

When n is close to its lower bound 2t+ 1, we have:

Proposition 5.1. (1) If n > 2t+ 1 and 111 ∈ C, and in particular if t is
odd, then n ≥ 2t+ 4.

(2) If n = 2t + 1, then n = 2p − 1 for some p ≥ 3 and C is isomorphic
to Hn.

(3) If n = 2t + 2, then n = 2p − 2 for some p ≥ 3 and C is isomorphic
to Hpn.

Proof. (1) The words w1, . . . , wt and 111 add to w = (2t+ 2, . . . , n), of weight
n− 2t− 1.

(2) We may assume that C⊥ contains a word w of the form (1, 2, 4, . . . , 2t).
Then words of weight 3 containing an even index i are of the form (i, i′, j)
with even i′ and odd j = j(i, i′). Since (1, i, i + 1), (1, i′, i + 1) and (i, i′, j)
add to (i + 1, i′ + 1, j), we see that for every pair (i1, i2) of coordinates, C
contains a word of the form (i1, i2, i3). This proves that C is perfect, hence
that n = 2p − 1 for some p ≥ 3 and that C is isomorphic to Hn.

(3) We assume as usual that C contains the words w1 = (1, 2, 3), . . . ,
wt = (1, 2t, 2t + 1). Then C must also contain t words (i, j, n) with 1 <
i < j < n and (1, i, j) /∈ C. With (i, j, n), C also contain (i′, j′, n) such

1 This produces a fourth family of codes of weight 3 whose automorphism group acts

transitively on the coordinates; the code with (n, k) = (12, 4) of Theorem 5.6 is fHp6.
Deleting from H⊥2n+1two columns of three columns which do not add to zero yields non-
equidistributed codes.



SPHERICAL 3-DESIGNS AND LATTICES 11

that (1, i, i′) and (1, j, j′) ∈ C ; we may assume that these words are (2, 4, n),
(6, 8, n), . . . , and their “odd” counterparts (3, 5, n), (7, 9, n), . . . .

We now consider the code C̃ which extends C to length n + 1, generated
by C and the word w0 = (1, n, n+ 1). The words of C̃ are those of C and the
new words w̃ = w+w0, w ∈ C. Note that the number r of components that
w and w0 have in common is at most 2, and that denoting by m the weight
of w, that of w̃ is m+ 3, m+ 1, or m− 1 if r = 0, 1, 2, respectively, and that
if m = 3, then r = 0 or 1. This shows the lower bounds wt(w̃ ≥ m+ 1 ≥ 4
if m = 3 or w = 0, and wt(w̃ ≥ m− 1 ≥ 4 if m > 3. Hence wt(C̃) = 3.

For the number t̃(i) of weight-3 words of C̃ containing a given component i,
we have t̃(i) = t+ 1 if i = 1 or n, and if i ∈ (2, n), then C contains a unique
word of the form (i, j, n), and also the related word (i′, j′, n). We have

(i′, j′, n) + (1, i, i′) + (1, n, n+ 1) = (i, j′, n+ 1) ,

which bounds from below by t + 1 all t̃(i) with 2 ≤ i ≤ n − 1 and also
t̃(n + 1). Hence C is an equidistributed code of length 2t(C̃) + 1, which is
consequently isomorphic to Hn+1, and C is its punctured code Hpn. �

Given an equidistributed code, we know the value of M (= tn
3 ) by Propo-

sition 4.2. The proposition below gives the value of the dimension k for
codes with t = 2. It would be interesting to prove formulae for larger values
of t, or at least to find sharp lower and upper bounds for the dimension.

Proposition 5.2. If C is an equidistributed code with t = 2 (irreducible,
generated by weight-3 words), then

M = 2n
3 and k = M − 1 .

Proof. Let W be the set of weight-3 words of C, let W ′ be a minimal subset
of W on which we have

∑
w∈W ′ w = 0, and let T ′ be the support of W ′.

Every coordinate i ∈ T ′ belongs to an even number of words of W ′, hence
to exactly two words because k = 2. Hence a word x ∈WrW ′ cannot meet
any word of W ′, and since C is generated by W , it is the concatenation of
the codes generated by W ′ and by WrW ′. Since C is irreducible, we have
W = W ′, hence

∑
w∈W w = 0 is the unique linear relation between weight-3

words of C. �

The following proposition provides a classification result in (very) low
dimensions together with some information on the weight of the dual codes,
which we shall use later to push forward the classification results stated
below.

Proposition 5.3. Let C is an equidistributed code with t ≥ 2 (irreducible,
generated by weight-3 words).

(1) If t = 2 then either C is isomorphic to Hp6 ' K6, or to a code
containing the words w1 = (1, 2, 3), w2 = (1, 4, 5), w3 = (2, 6, 7),
and w4 = (3, 8, 9).
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(2) If n ≤ 10, the C is isomorphic to Hp6 ' K6, H7, K10, or to
the [9, 5, 3]-code C9 with k = 2 and weight-3 words w1, w2, w3, w4,
w5 = (4, 6, 8) and w6 = (5, 7, 9).

(3) wt(C⊥) is bounded from below by 4 if t = 2 and by 6 if t ≥ 3 except
it C is one of the four codes Hp6 (k = 2, wt(C⊥) = 3), H7 or K10

(t = 3 and wt(C⊥) = 4), and C = K15 (k = 4, wt(C⊥) = 5).

Proof. We first observe that because of the inequalities n ≥ 2t + 1 and
wt(C⊥) ≥ t+ 1, it suffices to consider codes with t = 2, 3 or 4; and that the
four codes listed in (3) are indeed exceptions (note in particular that Hp6 is
isodual). We now consider successively the three possible values for t.
t = 2. We may assume that C contains the words w1 = (1, 2, 3) and

w2 = (1, 4, 5). If C contains a word w3 = (i1, i2, j) with i1 ∈ {2, 3} and
i2 ∈ {4, 5}, we may assume that w3 = (2, 4, 6), then w1, w2, w3 generate
a code C0 isomorphic to H6, and since C is irreducible, we have C = C0.
Otherwise we may assume that C also contains the words w3 and w4 above.

This proves (1), and shows that we may assume that a word w ∈ C⊥ with
w(1) = 1 also has w(2) = w(4) = 1, hence also w(6) = 1 or w(7) = 1, which
proves (3) for t = 2.

Finally if n > 6, since n ≡ 0 mod 3, we have n ≥ 12 or n = 9, and in
the latter case, for a word (4, i, j) ∈ C, we must have, say, i ∈ {6, 7} and
j ∈ {8, 9}, and we obtain a code isomorphic to C9, with e.g. w5 = (4, 6, 8)
and w6 = (5, 7, 9).
t = 3. We start with w1 = (1, 2, 3), w2 = (1, 4, 5) and w3 = (1, 6, 7). If

there is a word w4 = (i1, i2, i3) with ij ≤ 7, say, w4 = (2, 4, 6) (which is
necessary if n = 7), then C also contains the three words (3, 5, 6), (3, 4, 7)
and (2, 5, 7). We obtain this way a unique code with t = 3, necessarily
isomorphic to H7, and such a code does not extend to a code with t = 3 and
n > 7.

If n > 7, we have n ≥ 10 by Proposition 5.1, and if n = 10, then C
contains w0 = (8, 9, 10). This shows that C may not contain words of the
form (i, j, j′) with i ≤ 7 and j, j′ ≥ 8, so that we may assume that C contains
w4 = (2, 4, 8), w5 = (2, 6, 9) and w6 = (4, 6, 10) (we have w4+w5+w6 = w0).
This unique code is necessarily isomorphic to K10.

Finally if wt(C⊥) = 4, we may assume that C⊥ contains w = (1, 2, 4, 6).
Then words of weight 3 containing 2 or 4 may be assumed to be (2, 4, 8) and
(2, 6, 9), unless one of them is (2, 4, 7), and C is then one of the codes K10

or H7.
t = 4. We start with w1 = (1, 2, 3), w2 = (1, 4, 5), w3 = (1, 6, 7) and

w4 = (1, 8, 9). We may assume that C⊥ contains a word w with ones at
1, 2, 4, 6, 8. If wt(w) > 5, we then have n ≥ 10, hence n ≥ 12, which proves
(2) in this case. It now suffices to consider the case when w = (1, 2, 4, 6, 8).

We now show that C may not contain a word of the form (i1, i2, j) with
i1, i2 ≤ 8 even and j ≤ 9 odd, say, w5 = (2, 4, 7), hence also (2, 5, 6), (3, 4, 6),
and (3, 5, 7). To push t(i), i = 2, 4, 6 to t(i) = 4, we need add words such
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as (2, 8, 10), (4, 8, 11), (6, 8, 12), hence also (3, 9, 10), (5, 9, 11), (7, 9, 12),
and since (3, 5, 7) + (5, 9, 11) + (7, 9, 12) = (3, 11, 12), we have t(3) ≥ 5, a
contradiction.

We may now assume that C contains w5 = (2, 4, 10), w6 = (2, 6, 11)
and w7 = (2, 8, 12). We exclude as above a word of the form (4, 6, 12)
(which would imply t(12) ≥ 5), and may thus go on with w8 = (4, 6, 13),
w9 = (4, 8, 14) and w10 = (6, 8, 15). We have found a unique code, which
must be isomorphic to K15.

This proves (2) and (3) for t = 4 and completes the proof of the
proposition. �

Remark 5.4. The automorphism groups of the four codes of Proposition 5.3 are
all generated by products of a constant number of disjoint transpositions and act
transitively on the coordinates and on the sets of words having a given weight.
Only C9 needs a proof. One checks that Aut(C9) is a group of order 72 generated
by convenient products of 3 disjoint transpositions (typically, (2 5)(3 4)(6 9)), which
can be identified by its action on weight-3 words with a maximal solvable transitive
subgroup of S6.

Remark 5.5. The classification of Proposition 5.3 remains true without any
restriction on the codes. This is no longer true in higher dimensions: the code
H6 ⊥ H6 is reducible, and possesses an irreducible enlargement with a weight-4
word; both have t = 2.

We now turn to classification in higher dimensions. We shall make direct
calculations when k = 2 and make use when k = 3 of results on the dual
code proved in Proposition 5.3. We observe that Lemma 4.7 shows that for
the dimension k∗ of the dual code, we have 2k

∗ ≥ n+1 , and even 2k
∗ ≥ n+2

if C is not a Hamming code Hn, and that given k∗, a code with weight w ≥ 3
is dual to a code extracted from the columns of the k∗ × n matrix defining
the dual of Hn, n = 2k

∗ − 1. This extraction procedure can be used when
k∗ is known and n− k∗ not too large.

Theorem 5.6. Let C is an equidistributed code with t ≥ 2 (irreducible,
generated by weight-3 words), of dimension n ≤ 14. Then C is one of the
eight codes displayed in the numerical appendix:
t = 2: C6, C9, C12a, C12b ; t = 3: C7, C10 ; t = 4: C12c ; t = 6: C14 ' Hp14 .
In dimension 15, there exists such codes with t = 2 (at least two), 3, 4

and 7.

Proof. By Proposition 5.3, it suffices to consider lengths n ∈ [11, 15], and
the case when n = 15 results from the numerical appendix.

First consider a code C with t = 3. We then have wt(C⊥) ≥ 6 and
dimC⊥ ≥ 4, and an easy inductive calculation shows that for n = 9, 11, 12,
the maximal dimension of a code of weight w ≥ 6 is 2, 3, and 12, respectively.
In each case there a unique code, which is even. Using this result, we easily
check that in length 13, the maximal dimension is again 4. This proves the
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theorem for n = 11, an and inspection of the sections of H∗15 shows that
there is no equidistributed code in of length 13 and a unique one of length
12, which has t = 4.

The case of length 14 is more difficult. We must have t = 3 or 6, and if
t = 6, the unique possibility is Hp14. Otherwise C⊥ must be an even code
of weight 6 and dimension k∗ ≥ 5, hence 5. This is proved by classifying
[n ≤ 13, 4, 3]-codes; see Appendix 2.

There remains to consider the case when t = 2. By Proposition 5.3, we
may start with w1 = (1, 2, 3), w2 = (1, 4, 5), w3 = (2, 6, 7) and w4 = (3, 8, 9),
and must avoid words (i1, i2, i3) with ij ≤ 9; also there can be at most three
words of the form (i, i2, i3) with i ≤ 9 and j1, j2 ≥ 10, and three such words
will add to a word (i1, i2, i3), a possibility which we have discarded. Hence we
may go on with w5 = (4, 6, 10) and either w6 = (5, 7, 11) or w6 = (5, 8, 11).

If w6 = (5, 7, 11) then w1 +w2 +w4 +w5 +w6 = (3, 10, 11), which implies
t(3) > 2. Hence we choose w6 = (5, 8, 11), and the last two words must
must be of the form (i, j, 12) and (i′, j′, 12), with i = 7 and j = 9, 10, 11, but
if w7 = (7, 10, 11), we then have w3 + w5 + w7 = (2, 4, 12), hence t(2) > 2.
Choosing, j = 9, 11 we obtain the codes Ca12, Cb12, respectively. �

Remark 5.7. (1) The automorphism groups of the codes of length n ≤ 15
displayed in the numerical appendix act transitively on the coordinates,
except those of Ca12, Ca15 and Cb15.

(2) The same transitivity property holds for the even extension to length 16
of Cc15, a code which is dual to Bachoc-Gaborit’s [16, 6, 6]-code quoted in
Example 2.3, (3).

APPENDIX 1: GENERATOR MATRICES of WEIGHT 3

The list below together with C14 = Hp14 is complete up to length 14.

C6 ' Hp6 ' K6 :
(

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1

)
; C7 ' H7 :

(
1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0

)
.

C9 :

(
1 1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0
0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 0 1 1
0 0 0 1 0 1 0 0 1

)
; C10 ' K10 :

 1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 1 0 0 0 1

 .

Ca12 :


1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 1 0 0 1

 Cb12 :


1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 1


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Cc12 :


1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 1

 .

Ca15 :


1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

 ; Cb15 :


1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

 .

Cc15 :


1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0 0 0 1

 ; Cd15 ' K15 :


1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 1

 .

Remark.
• C14 = Hp14 and Ce15 = H15 must be added to the list above.
• Cc15 is dual to Bachoc-Gaborit’s C15 of [B-G]; see Remark 5.7.

APPENDIX 2: GENERATOR MATRICES of WEIGHT 6

To complete the proof of Theorem 5.6 we list the even [13, 4, w ≥ 6]-codes,
which is done inductively from the even [11, 2, w ≥ 6]- and [12, 3, w ≥ 6]-codes.
We only list below primitive codes, those which do not trivially extend a code
of lower length, and thus consider primitive codes of length n ≤ 11, 12, 13
having dimensions d = 2, 3, 4, respectively. Actually it suffices to consider
codes of weight 6.

For d = 2 we trivially have one code for each length n = 9, 10, 11. The
[9, 2, 6]-codes is made of the three blocks {1, 2, 3}, {4, 5, 6} and {7, 8, 9}. It
has a unique extension to n = 11 and three primitive extensions to n = 12,
generated! by a word with ones at {10, 11, 12} and three extra ones belonging
to one, two, or three of the blocks above.

The [11, 3, 6]-code, that we denote by F11,3 is better understood as a kind
of concatenation of the [8, 4, 3]-code d8 with the [3, 2, 2]-code. It has a unique
extension to n = 12, in which we replace d8 by d+

8 , the code for E8. We
display below a generator matrix for this code, the dual of which is Cc12;
F11,3 is obtained by deleting from it the last row and the last column:

F12,4 =
(

1 1 1 1 0 0 0 0 1 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0
1 1 0 0 0 0 1 1 0 1 1 0
1 0 1 0 1 0 1 0 1 0 0 1

)
.
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We now turn to the classification of even [n ≤ 13, 4, 6]-codes, making
use of automorphisms of the codes of dimension 3 that we found above. It
turns out that the generator matrices of extensions of the three primitive
[12, 3, 6]-codes all have a pair of columns of the form t(0, 0, 0, 1), so that all
these extensions indeed extend the [11, 3, 6]-code. Simple calculations show
that there exactly four primitive even [12, 3, 6]-codes, namely

F13,4a =
(

1 1 1 1 0 0 0 0 1 1 0 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0
1 1 0 0 0 0 1 1 0 1 1 0 0
1 0 0 0 0 0 0 0 1 1 1 1 1

)
; F13,4b =

(
1 1 1 1 0 0 0 0 1 1 0 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0
1 1 0 0 0 0 1 1 0 1 1 0 0
1 1 1 0 1 0 0 0 0 0 0 1 1

)
;

F13,4c =
(

1 1 1 1 0 0 0 0 1 1 0 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0
1 1 0 0 0 0 1 1 0 1 1 0 0
1 0 1 0 1 0 0 0 1 0 0 1 1

)
; F13,4d =

(
1 1 1 1 0 0 0 0 1 1 0 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0
1 1 0 0 0 0 1 1 0 1 1 0 0
1 0 1 0 1 0 1 0 0 0 0 1 1

)
.

Using these data it is easy to run through all extensions to length 14 and
dimension 5 of the five matrices above, discarding those which have a zero
column or two equal columns, so as to keep only those defining a dual code
of weight at least 3, and to check that no equidistributed dual code shows
up. This completes the proof of Theorem 5.6.

I have also constructed inductively some [n, n− 9, 6]-codes for n = 14 to
18, keeping at each step one code per weight distribution. I obtained this
way one code with n = 17 and n = 18, both equidistributed with t = 24
and t = 34, respectively. Here is a generator matrix for length 18; deleting
the last row and the last column yields the code for n = 17:

F18,9 =


1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0
1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0
1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1

 .

By lack of a reliable isomorphism test I cannot assert that the list lattices I
found in lengths 14 – 18 is complete. If it is, F18,9 is then necessarily isodual,
and F17,8 is isomorphic to the even subcode of its dual (of weight 5).
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