Appendix to
“Reduction Modulo 2 and 3 of Euclidean Lattices”:
the Proof

The aim of this appendix is to prove the following theorem:

A.1. Theorem. Let Λ be a well rounded lattice of norm 3. Then, the classes of $\Lambda/2\Lambda$ cannot be represented by vectors of norm $N \leq 2N(\Lambda) = 6$, except if Λ is one of the five lattices defined up to isometry by one of the following Gram matrices:

$$M_1 = (3), \quad M_2 = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}, \quad M_4 = \begin{pmatrix} 3 \ & 1 & 1 \\ 1 & 3 \ & 0 \\ 1 & 0 & 3 \end{pmatrix}. \quad \text{or} \quad M_4 = \begin{pmatrix} 3 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 1 & 3 & 0 \\ 1 & 1 & 0 & 3 \end{pmatrix}.$$

We consider a lattice Λ of norm 3 such that all classes modulo 2 possess representatives of norm at most $2N(\Lambda) = 6$.

A.2. Lemma. Let Λ be a lattice of norm 3 such that all classes modulo 2 possess representatives of norm at most $2N(\Lambda) = 6$.

1. Λ contains no norm 7 vectors.
2. Any vector of norm 8 (resp. 9) in Λ is of the form $x = e + 2y$ with $N(e) = 4$ (resp. $N(e) = 5$), $N(y) = 3$, and $e \cdot y = -2$.

Proof. Any vector $x \in \Lambda \setminus 2\Lambda$ must be congruent modulo 2 to a vector $e \neq 0$ with norm $N(e) \leq 6$. This norm must be one of the integers 3, 4, 5, or 6, and is well defined by its value modulo 4. The congruence $N(x) \equiv N(e) \mod 4$ shows that the norm of e is itself well defined.

Changing e into $-e$ if need be, we may assume that $e \cdot x \geq 0$. Let $y = \frac{1}{2} (x - e)$. If $N(x) \leq 10$, we have $N(x) = N(e) + 4$, hence

$$N(x) \leq 10 \text{ and } x \notin 2\Lambda \implies N(y) \leq \frac{1}{4} (N(x) + N(e)) = 1 + \frac{1}{2}N(e).$$

Applied to an x of norm 7, this inequality yields the upper bound $N(y) < 3$, hence $y = 0$. This is plainly impossible, whence (1).

Calculating $e \cdot y$ from the identity $N(x) = N(e) + 4e \cdot y + 4N(y)$, we obtain

$$N(x) \leq 10 \text{ and } x \notin 2\Lambda \implies e \cdot y = 1 - N(y).$$

If $N(x) = 8$ (resp. if $N(x) = 9$), we have $N(e) = 4$ (resp. $N(e) = 5$), hence $N(y) < 4$, i.e., $N(y) = 3$, whence (2). \quad \Box

[The proof above shows that vectors of norm 8 (resp. 9) must be sums of one vector of norm 3 (resp. 4) and of one vector of norm 3, namely $e + y$ and y.]

We now consider well rounded lattices Λ of norm 3, and investigate necessary conditions for Λ to possess representatives modulo 2 of norm at most 6. Note that the scalar products $e \cdot e'$ for $e, e' \in S(\Lambda)$ are equal to ± 3 if e and e' are proportional, and to 0 or ± 1 otherwise. Recall that for $n \leq 4$, n independent minimal vectors of
a lattice L constitute a basis of L, except perhaps if $n = 4$ and L is similar to the root lattice \mathbb{D}_4. (See [M], Chapter VI, Corollary 2.3.) Since a scaled copy of \mathbb{D}_4 with minimum 3 is not integral, this exception shall never occur.

We shall now study when $r \leq 4$ the possibility for r independent vectors of Λ to occur as minimal vectors. There is not much to say if $r = 2$: two minimal vectors span a lattice L which is defined up to isometry by one of the Gram matrices

$$M_2 = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \quad \text{or} \quad M_2' = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix},$$

and $\Lambda/2\Lambda$ possesses representatives of norms 3 and 4, or 3 and 6. Moreover, the discussion below will show that such lattices may be embedded in 3- and 4-dimensional lattices Λ as in Theorem A.1.

Next, we consider the lattice L generated by $r = 3$ independent vectors e_1, e_2, e_3 of $S(\Lambda)$. (It would indeed suffice to suppose that no two of them are proportional.)

A.3. Lemma. A lattice L generated by three minimal vectors in some lattice Λ of dimension $n \geq 3$ possesses a Gram matrix equal to one of the matrices

$$M_3 = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ -1 & 1 & 3 \end{pmatrix} \quad \text{or} \quad M_3' = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 0 \\ 0 & 1 & 3 \end{pmatrix}.$$

A lattice with Gram matrix M_3 is isometric to \mathbb{A}_3^*. For M_3 (resp. M_3'), we have $s_3 = 4, s_4 = 3, s_5 = s_6 = 0$ (resp. $s_3 = 3, s_4 = 2, s_5 = 1, s_6 = 2$). The weighted formulae for classes modulo 2 are $3 + 4 = 2^3 - 1$ and $3 + 2 + 1 + \frac{1}{2} 2 = 2^3 - 1$ respectively.

Proof. Replacing e_1 by $-e_1$ transforms M_3 into a matrix with entries -1 outside the diagonal, which is indeed a Gram matrix for \mathbb{A}_3^* (see [M], Chapter IV, proof of Proposition 2.3). The data for M_3 and M_3' are easy to calculate, and we are left with the classification assertions, for the proofs of which we distinguish four cases according to the number (0, 1, 2 or 3) of scalar products $e_i \cdot e_j, i < j$ which are zero.

In the first two cases, we may assume that $e_1 \cdot e_2 = e_1 \cdot e_3 = e_2 \cdot e_3 = +1$. Then, the value $e_2 \cdot e_3 = -1$ must be excluded, since it implies $N(e_1 + 2e_2 - e_3) = 7$, and we are left with the Gram matrices M_3 and M_3'.

In the last two cases, we may assume that $e_1 \cdot e_3 = e_2 \cdot e_3 = 0$. If $e_1 \cdot e_2 = \pm 1$, then $N(e_1 + e_2 + e_3) = 7$. We must thus have $e_1 \cdot e_2 = 0$. We shall prove that the vector $x = e_1 + e_2 + e_3$ of norm 9 cannot be congruent modulo 2 to a vector $e \in \Lambda$ of smaller norm.

Suppose that we have in Λ an equality $x = e + 2y$ with $N(e) < 9$. Then, as in lemma 2, we have $N(e) = 5$ and $N(y) = 3$, and we may assume that $x \cdot x \geq 0$, which implies $e \cdot x = \pm 1$. Since the congruence $x' \equiv e \mod 2$ holds for any $x' = e + e_2 \pm e_3$, we always have $e' \cdot x = +1$ or $e' \cdot x = -1$. If $(e_1 + e_2 - e_3) \cdot e = +1$, then $e \cdot e = 0$. This is impossible, since we would have $3 = e_3 \cdot x = 2e_3 \cdot y$. We thus have $(e_1 + e_2 - e_3) \cdot e = -1$, and similarly $(e_1 - e_2 + e_3) \cdot e = -1$, which implies $e_1 \cdot e = e_2 \cdot e = e_3 \cdot e$, hence $e_i \cdot e = \frac{1}{3} x_i \cdot e = \frac{1}{3}$. This is again impossible.

Next we consider systems of four independent minimal vectors $e_1, e_2, e_3, e_4 \in \Lambda$.

A.4. **Lemma.** A lattice L generated by four independent minimal vectors in some norm 3 lattice Λ of dimension $n \geq 4$ possesses a Gram matrix equal to

$$M_4 = \begin{pmatrix} 3 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 1 & 0 & 3 \\ 1 & 1 & 0 & 3 \end{pmatrix}.$$

The invariants s_m for M_4 are $s_3 = 4$, $s_4 = 5$, $s_5 = s_6 = 4$, and the weighted formula for M_4 is $4 + 5 + 4 + \frac{1}{2} 4 = 2^4 - 1$.

Proof. Let t be the number of zeroes among the scalar products $e_i \cdot e_j$, $i < j$.

If $t \leq 1$, we may assume that $e_1 \cdot e_2 = e_1 \cdot e_3 = e_1 \cdot e_4 = +1$ and that $e_i \cdot e_j \neq 0$ for $i < j$ except possibly for $e_3 \cdot e_4 = 0$. Lemma 3 shows that we must have $e_2 \cdot e_3 = e_2 \cdot e_4 = -1$ and $e_3 \cdot e_4 = 0$ or 1, which yields the Gram matrices

$$M = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & -1 & -1 \\ -1 & 3 & 1 & -1 \\ -1 & -1 & 3 & 1 \end{pmatrix} \quad \text{and} \quad M' = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & -1 & -1 \\ -1 & 3 & 1 & 0 \\ -1 & 0 & 3 & 1 \end{pmatrix}.$$

These two possibilities must be excluded, the first one because det$(M) = 0$ (the first row of M is not the sum of the three other ones), and the second one because $N(-e_1 + e_2 + e_3 + e_4) = 2$.

We thus have $t \geq 2$. We must exclude the possibility $e_i \cdot e_j = e_i \cdot e_k = 0$, which would contradict Lemma A.3. Hence, after permuting the indices, we may assume that $e_1 \cdot e_2 = e_3 \cdot e_4 = 0$ and that $t = 2$. Replacing e_i by $-e_i$ for some indices $i \in \{2, 3, 4\}$, we may then assume that $e_1 \cdot e_3 = e_1 \cdot e_4 = e_2 \cdot e_3 = +1$, and we are left with two possible Gram matrices, namely

$$M_4 = \begin{pmatrix} 3 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 1 & 3 & 0 \\ 1 & 1 & 0 & 3 \end{pmatrix} \quad \text{and} \quad M'_4 = \begin{pmatrix} 3 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 1 & 3 & 0 \\ 1 & 1 & 0 & 3 \end{pmatrix}.$$

The values of s_3, s_4, s_5, s_6 are easily calculated for M_4 and for M'_4, and this immediately proves the assertions about M_4 which are stated in the lemma. For M'_4, we have $s_3 = s_4 = s_5 = s_6 = 4$, and the four pairs of vectors of norm 6 are $\pm (e_1 \pm e_2)$ and $\pm (e_3 \pm e_4)$. They represent exactly two classes in $L/2L$, and the corresponding weight formula is $4 + 4 + 4 + \frac{1}{2} 4 = 14 < 2^4 - 1$. Hence, if M'_4 occurs in some lattice Λ, its dimension must be at least 5.

The next invariants s_m of M'_4 are $s_7 = 0$ and $s_8 = 8$, and vectors of norm 8 share out among two types: 4 pairs are of the form $e_i \pm e_j$; these are congruent modulo 2 to the vectors $e_i \mp e_j$, of norm 4, and 4 pairs which all represent the missing class of L modulo 2. A typical vector of this last type is $x = e_1 + e_2 - e_3 - e_4$. We shall show that no congruence $x \equiv e \mod 2\Lambda$ with $N(e) < N(x)$ may exist in Λ.

Otherwise, write $x = e + 2y$. As in Lemma 2, we may assume that we have $x \cdot e \geq 0$, which implies $N(e) = 4$, $N(y) = 3$, and $e \cdot y = -2$. Since e (of norm 4) and the e_i (of norm 3) are not proportional, we have $N(e \pm e_i) \geq 3$, hence $|e \cdot e_i| \leq 2$ for all i. Similarly, since y and the e_i may not be proportional (because y is independent from the e_i), we have $|y \cdot e_i| \leq 1$. We now consider the Gram matrix of the vectors e_1, e_2, e_3, e_4 and $e_5 = y$. Taking into account the values of the $e_i \cdot x$ (respectively, 1, 3, -1, -3), and making use of the inequalities above, we easily see
that the possibilities for the scalar product \(e_i \cdot y \) are \(e_2 \cdot y = +1 \), \(e_4 \cdot y = -1 \), \(e_1 \cdot y = 1 \) or \(0 \) and \(e_3 \cdot y = -1 \) or \(0 \). If \(e_1 \cdot y \) were equal to \(0 \), we would obtain for \(e_1, e_2, e_5 \) an impossible \(3 \times 3 \) Gram matrix \((e_1 \cdot e_2 = e_1 \cdot e_5 = 0) \). Hence, we have \(e_1 \cdot y = 1 \) and similarly \(e_4 \cdot y = -1 \). But such a matrix may not occur, since the Gram matrix of \(e_1, e_3, e_4, e_5 \) then possesses a single set \(\{ i, j \} \) with \(e_i \cdot e_j = 0 \), a possibility that we have excluded at the beginning of the proof. □

Proof of theorem A.1. Taking into account the two lemmas above, we just have to prove that there does not exist lattices \(\Lambda \) as in Theorem A.1 in dimension \(n \geq 5 \). We prove this by showing that the Gram matrix of \(5 \) independent minimal vectors of \(\Lambda \) must contain non-admissible sub-matrices in dimension \(3 \) or \(4 \). Up to equivalence, we may assume that the \(4 \times 4 \) matrix in the upper left corner of the Gram matrix \(M' \) of \(n \) independent minimal vectors of \(\Lambda \) is the matrix \(M_4 \). It is thus possible to extract from \(M' \) a matrix of the form

\[
M = \begin{pmatrix}
3 & 0 & 1 & 1 & x \\
0 & 3 & 1 & 1 & y \\
1 & 1 & 3 & 0 & z \\
1 & 1 & 0 & 3 & t \\
x & y & z & t & 3
\end{pmatrix}
\]

with \(x, y, z, t \in \{0, \pm 1\} \). Since the Gram matrices of \(e_1, e_2, e_5 \) and of \(e_3, e_4, e_5 \) may not contain two zeroes in the same row, \(x, y, z, t \) are all non-zero. But this is not possible, since the Gram matrix of \(e_1, e_3, e_4, e_5 \) would then contain a single zero scalar product \(e_i \cdot e_j \) with \(i < j \). □

It would be interesting to look at lattices with an odd minimum \(N = 5, 7, \ldots \).