Appendix to
“Reduction Modulo 2 and 3 of Euclidean Lattices”:
the Proof

The aim of this appendix is to prove the following theorem:

A.1. Theorem. Let A be a well rounded lattice of norm 3 Then, the classes of
A/2A cannot be represented by vectors of norm N < 2 N(A) = 6, except if A is one
of the five lattices defined up to isometry by one of the following Gram matrices:

M=), My=(1;), Mi=(53)

3011
311 / 311 0311
M3=1{13 -1 My=|130). or My=|]" .
1-1 3 103 30

1103

We consider a lattice A of norm 3 such that all classes modulo 2 possess repre-
sentatives of norm at most 2N (A) = 6.

A.2. Lemma. Let A be a lattice of norm 3 such that all classes modulo 2 possess
representatives of norm at most 2N (A) = 6.

(1) A contains no norm 7 vectors.
(2) Any vector of norm 8 (resp. 9) in A is of the form x = e+ 2y with N(e) = 4
(resp. N(e) =5), N(y) =3, ande-y = —2.

Proof. Any vector z € A ~\ 2A must be congruent modulo 2 to a vector e # 0 with
norm N(e) < 6. This norm must be one of the integers 3, 4, 5, or 6, and is well
defined by its value modulo 4. The congruence N(z) = N(e) mod 4 shows that
the norm of e is itself well defined.

Changing e into —e if need be, we may assume that e-x > 0. Let y = % (x —e).
If N(z) <10, we have N(z) = N(e) + 4, hence

N(z) <10 and z ¢ 20 — N(y) < % (N(z)+ N(e)) = 1 + % N(e).

Applied to an z of norm 7, this inequality yields the upper bound N(y) < 3,
hence y = 0. This is plainly impossible, whence (1).
Calculating e - y from the identity N(z) = N(e) +4e-y+ 4 N(y), we obtain

N(z) <10 and ¢ 2\ — e-y=1—N(y).

If N(z) = 8 (resp. if N(z) = 9), we have N(e) = 4 (resp. N(e) = 5), hence
N(y) < 4, ie. N(y)=3, whence (2). O
[The proof above shows that vectors of norm 8 (resp. 9) must be sums of one vector of norm 3

(resp. 4) and of one vector of norm 3, namely € + ¥ and .|

We now consider well rounded lattices A of norm 3, and investigate necessary
conditions for A to possess representatives modulo 2 of norm at most 6. Note that
the scalar products e-¢e’ for e, e’ € S(A) are equal to 3 if e and e’ are proportional,
and to 0 or +1 otherwise. Recall that for n < 4, n independent minimal vectors of



a lattice L constitute a basis of L, except perhaps if n = 4 and L is similar to the
root lattice Dy. (See [M], Chapter VI, Corollary 2.3.) Since a scaled copy of Dy
with minimum 3 is not integral, this exception shall never occur.

We shall now study when r < 4 the possibility for  independent vectors of A to
occur as minimal vectors. There is not much to say if » = 2: two minimal vectors
span a lattice L which is defined up to isometry by one of the Gram matrices

e (3) o M- (32).

and A/2A possesses representatives of norms 3 and 4, or 3 and 6. Moreover, the dis-
cussion below will show that such lattices may be embedded in 3- and 4-dimensional
lattices A as in Theorem A.1.

Next, we consider the lattice L generated by » = 3 independent vectors eq, es, e3
of S(A). (It would indeed suffice to suppose that no two of them are proportional.)

A.3. Lemma. A lattice L generated by three minimal vectors in some lattice A of
dimension n > 3 possesses a Gram maltriz equal to one of the matrices

31 1 311
M3:<13—1> or Mé:(mo).
1-1 3 103
A lattice with Gram matriz Mz is isometric to Ay. For M3 (resp. M}), we have
s3=4,54=3,55 =56 =0 (resp. s3 =3,54=2,55 =1, s6 =2). The weighted

formulae for classes modulo 2 are 3 +4 = 23 —1 and 3+2+ 1+ %2 =231
respectively.

Proof. Replacing e; by —e; transforms M3 into a matrix with entries —1 outside
the diagonal, which is indeed a Gram matrix for A} (see [M], Chapter IV, proof of
Proposition 2.3). The data for M3 and M} are easy to calculate, and we are left
we the classification assertions, for the proofs of which we distinguish four cases
according to the number (0,1, 2 or 3) of scalar products e; - e;, i < j which are zero.

In the first two cases, we may assume that e; -e5 = e; -e3 = +1. Then, the value
es - e3 = —1 must be excluded, since it implies N(e; + 22 — e3) = 7, and we are left
with the Gram matrices M3 and Mj.

In the last two cases, we may assume that e; -e3 = eg-e3 = 0. If e1 - e9 = +1,
then N(e; F ez + e3) = 7. We must thus have e; - e = 0. We shall prove that the
vector £ = e1 + e3 + ez of norm 9 cannot be congruent modulo 2 to a vector e € A
of smaller norm.

Suppose that we have in A an equality = = e + 2y with N(e) < 9. Then, as in
lemma 2, we have N(e) = 5 and N(y) = 3, and we may assume that z -e > 0,
which implies e - x = +1. Since the congruence ' = e mod 2 holds for any
x' = +eytegstes, wealways have e’z = +1lore -z = —1. If (e; +e2—e3)-e = +1,
then e-es3 = 0. This is impossible, since we would have 3 = e3-x = 2e3-y. We thus
have (e; +e2 —e3)-e = —1, and similarly (e; —ea+e3)-e = (—e; +ea+e3)-e = —1,
which implies ¢; -e = es - e = e3 - e, hence ¢; - e = %l‘ e = % This is again
impossible, [

Next we consider systems of four independent minimal vectors ey, es, e3,e4 € A.



A.4. Lemma. A lattice L generated by four independent minimal vectors in some
norm 3 latice A of dimension n > 4 possesses a Gram matriz equal to

3011

0311
M4_(1130>'

1103

The invariants s,, for My are s3 = 4, s4 = b, s5 = sg = 4, and the weighted
formula for My is4+5+4+%4:24—1.

Proof. Let t be the number of zeroes among the scalar products e; - e;, i < j.

If £ <1, we may assume that e; - ez =e;-e3 =e;-e4 = +1 and that e; - e; #0
for © < j except possibly for e3 - e4 = 0. lemma 3 shows that we must have
ex-e3=¢eg-e4 =—1 and e3-eq4 = 0 or 1, which yields the Gram matrices

31 1 1 31 1 1
(13 —1-1 r [ 13 —1-1
M—<1_13_1> and M—(1_13 0).
1-1-1 3 1-10 3

These two possibilities must be excluded, the first one because det(M) = 0 (the
firts row of M is the sum of the three other ones), and the second one because
N(—e1+e3+e3+eq) =2.

We thus have ¢ > 2. We must exclude the possibility e; - e; = e; - e, = 0, which
would contradict lemma A.3. Hence, after permuting the indices, we may assume
that e; - es = ez - e4 = 0 and that ¢ = 2. Replacing e; by —e; for some indices
i € {2,3,4}, we may then assume that e; - e3 = e1 - e4 = e - e3 = +1, and we are
left with two possible Gram matrices, namely

3011 3011
_[os311 ;[0 31-1
- () s (F113).
1103 1-10 3

The values of s3, s 4, S5, S¢ are easily calculated for My and for My, and this imme-
diately proves the assertions about M4 which are stated in the lemma. For M, we
have s3 = s4 = s5 = sg = 4, and the four pairs of vectors of norm 6 are +(e; & e3)
and +(e3 +e4). They represent exactly two classes in L/2L, and the corresponding
weight formula is 4+4+4+ % 4 = 14 < 2* — 1. Hence, if M} occurs in some lattice
A, its dimension must be at least 5.

The next invariants s, of M} are s; = 0 and sg = 8, and vectors of norm 8 share
out among two types: 4 pairs are of the form e; £ e;; these are congruent modulo 2
to the vectors e; F e;, of norm 4, and 4 pairs which all represent the missing class
of L, modulo 2. A typical vector of this last type is £ = e1 + ey — e3 — e4. We shall
show that no congruence z = e mod 2A with N(e) < N(z) may exist in A.

Otherwise, write x = e4+2y. As in lemma 2, we may assume that we have z-e > 0,
which implies N(e) = 4, N(y) = 3, and e-y = —2. Since e (of norm 4) and the
e; (of norm 3) are not proportional, we have N(e £ e;) > 3, hence |e - e;| < 2
for all 4. Similarly, since y and the e; may not be proportional (because y is
independent from the e;), we have |y - e;| < 1. We now consider the Gram matrix
of the vectors ey, es, e3,e4 and e5 = y. Taking into account the values of the e; -
(respectively, 1,3, —1, —3), and making use of the inequalities above, we easily see



that the possibilities for the scalar product e;-y are eq-y = +1,e4-y = —1,e1-y =1

or 0 and e3-y = —1 or 0. If ey - y were equal to 0, we would obtain for eq, es, e5 an
impossible 3 x 3 Gram matrix (e; - e2 = e1 - e5 = 0). Hence, we have e; -y = 1 and
similarly e4 - y = —1. But such a matrix may not occur, since the Gram matrix of

e1, €3, €4, €5 then possesses a single set {4, j} with e; - e; = 0, a possibility that we
have excluded at the beginning of the proof. [

Proof of theorem A.1. Taking into account the two lemmas above, we just have to
prove that there does not exist lattices A as in Theorem A.1 in dimension n > 5. We
prove this by showing that the Gram matrix of 5 independent minimal vectors of A
must contains non-admissible sub-matrices in dimension 3 or 4. Up to equivalence,
we may assume that the 4 x 4 matrix in the upper left corner of the Gram matrix
M’ of n independent minimal vectors of A is the matrix My. It is thus possible to
extract from M’ a matrix of the form

3011z
0311y
M: 1130z
1103t
ryzt3

with z,y, z,t € {0,4+1}. Since the Gram matrices of e, e, e5 and of e3, e4, e5 may
not contain two zeroes in the same row, z,vy, z,t are all non-zero. But this is not
possible, since the Gram matrix of e, e3, eq,e5 would then contain a single zero
scalar product e; - e; with ¢ < j. [

It would be interesting to look at lattices with an odd minimum N = 5,7,....



