Preface to the English Edition

This book discusses a beautiful and central problem in mathematics, which
involves geometry, number theory, coding theory and group theory. The ge-
ometrical objects we consider are lattices, i.e. discrete subgroups of maximal
rank in a Euclidean space. To such an object we attach its canonical sphere
packing, namely the set of (non-overlapping) spheres centred at all points of
the lattice whose common radius is half the minimal distance of two lattice
points. Assuming some regularity conditions, a sphere packing has a density.
The question of estimating the highest possible density of a sphere packing
in a given dimension n is a fascinating and difficult problem: the answer is
known only up to dimension 3, and the case of dimension 3 was settled very
recently by Hales, who gave a positive answer to an old conjecture of Kepler.
The case of lattice packings is slightly easier, though still highly non-trivial:
in this case, the answer is known up to dimension 8, thanks to the difficult
1935 paper [BI2] of Blichfeldt.

The book is centred on the study of extreme lattices, those on which the
density of the canonical sphere packing attains a local maximum, and various
related questions. This is based on the French version published by Masson in
1996 under the title “Les réseaux parfaits des espaces euclidiens”. However,
it is very far from being a word-for-word translation. Every chapter has been
rewritten, some completely, For example, I found a much simpler proof of
the classification of 5-dimensional perfect lattices after the French version
was printed, and as a result Section 4 of Chapter 6 has been completely
changed.

A more detailed list of the major changes can be found in the footnotes
to the Introduction (which otherwise follows the French version). The reader
who possesses the French Edition can find an erratum and a full list of
the changes on the web page http://www.math.u-bordeaux.fr /~martinet/.
A number of readers of the French version supplied lists of corrections and
of course these have all been made in the new edition. I should like to thank
more specially Anne-Marie Bergé, Philippe Calame and Maurice Mischler for
their comments.

During the six years since the French version was published there has
been important progress in some areas directly connected with the main
topics of the book. For this reason an essentially descriptive appendix has
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been added, whose main objective is to discuss the work of B.B. Venkov and
others connecting the local theory of lattices with spherical designs.

I must mention here the recent work of Bavard, who has incorporated the
theory of Chapter 10 (which considers families of lattices which form orbits
under the action of a Lie subgroup of the linear group) in a more general
setting in the context of Riemannian geometry. This has provided unified
definitions for some ad hoc notions that were introduced in order to obtain
reasonable finiteness theorems or conditions to guarantee that certain lattices
are algebraic. However, it would have taken too much space to include a full
discussion of this work here, and I can only refer the reader to Bavard’s papers
mentioned in the bibliography.

Finally, the bibliography has been updated and the index has been greatly
enlarged. There is an extensive list of symbols.

The following are the most important changes that have been made
(besides the modifications to the appendices and the bibliography):

e Chapter 1: Section 1.9 contains further material on integral lattices.

e Chapter 4: Changes in Section 4.8, and six new exercises.

e Chapter 6: Section 6.4 has been completely rewritten.

e Chapter 8: Section 8.1 has been completely rewritten to take into account
the modifications to the appendices.

e Chapter 9: There is a new Section 9.7 devoted to recent results by Batut
and by Bavard.

e Chapter 14: The first section has been shortened, and a new theorem has
been incorporated in Section 14.6.

Many improvements were suggested to me by Neil Sloane after he read
in detail my manuscript. I thank him for his important contribution to the
book. I would like to thank also Henri Cohen for his help in using Springer’s
Latex.

Finally, I express my heartfelt thanks to my wife Titou for her patience
during the years I have been writing the two editions of this book.

Talence, March 28th, 2002.

Jacques Martinet



General Principles for the Notation

The following notation will be used throughout the book unless explicitly
stated to the contrary. (For instance, it may happen that we consider a se-
quence Ly, Lo, ... of lattices.)

1. E denotes a Euclidean space, whose dimension is denoted by n.

The notation F 1 F' 1 ... is used for orthogonal direct sums.

3. In a Euclidean space F' of dimension n + 1 (resp. n), (€0,€1,.-.,En)
(resp. (€1,...,€n)) denotes an orthonormal basis for F'. Latin letters,
usually (eq,...,e,), are used for a basis which is not a priori orthonormal.

4. The symbols A, A', L, L', M etc. denote lattices. A subscript such as A4,,
indicates the dimension.

o

The notation for duality deserves special comments. The symbol M*
means first that M is a lattice, and that we consider its dual over Z, even
if M is endowed with some other algebraic structure. If we need to consider
the dual of M over some ring containing strictly Z, we write M*. Finally the
set of invertible elements in a ring R is denoted by R*.

The notation from linear algebra is essentially the standard one (End(V),
GL(V), SL(V), O(V)). As for matrices, we denote by M,, ,(R) the module
of matrices with p rows and ¢ columns over a ring R, and use the shorter
notation M,,(R) for M, ,,(R).

Finally, we use two notions of norm. In a Euclidean space the norm z-z is
denoted by N(z). In an algebra L/K the determinant of the endomorphism
y + zy is denoted by N(z) (or Ny k(z)). Note that N(z) = ||z||? is the
square of the classical Euclidean norm.

Statements (theorems, propositions, definitions, tables, etc.) are num-
bered according to the scheme Theorem a.b.c., Table a.b.c., etc., where
a is the number of the chapter, b is that of the section, and ¢ denotes the
c-th statement in Section b of Chapter a, independently of its nature. A
reference to Theorem 5 of Section 3 in Chapter 4 is thus written in the form
Theorem 4.3.5.






Introduction

This is based on the Introduction to the French version, the main differences being the
addition of footnotes to indicate places where significant changes have been made in the
English version.

Throughout this book, E denotes an n-dimensional FEuclidean space,
i.e. a finite-dimensional real vector space endowed with a positive definite
symmetric bilinear form, namely the scalar product on E. A lattice in E is a
discrete finitely generated subgroup of F of maximal rank, i.e. of rank n.

Let A be a lattice, and let d be the smallest distance to the origin of the
other points of A; d is also the smallest distance between two points of A.
Consequently, balls of radius R = % centred at points of A do not overlap
(their intersection contains at most one point). We say that they are packed
by A. The density of this packing is an important invariant of A, sometimes
called by abuse of language “the density of A”. Another important invariant
is the kissing number of A, the number of length d vectors in A (the minimal
vectors of A), which we will usually denote by 2s (these vectors occur in
pairs +z).

Lattices for which this density is a local maximum, i.e. such that this den-
sity does not increase when one performs a sufficiently small deformation,
were called extreme lattices by Korkine and Zolotareff. Their goal, which
they were able to carry out up to dimension 5, was to classify extreme lat-
tices in a given dimension and then to extract from this classification a list
of the absolutely densest ones, which they called the absolutely extreme lat-
tices. However, we prefer to call these critical lattices, in conformity with the
tradition in the geometry of numbers.

The notion of a perfect lattice is a less restrictive one, which can be
expressed within the framework of linear algebra, whereas inequalities are re-
quired to characterize extreme lattices. These are the lattices with the prop-
erty that the set of projections onto the lines containing the minimal vectors
spans the space of symmetric endomorphisms of E. Less formal properties
will show up later, for instance the following, which goes back to Voronoi: a
lattice A is perfect if the image of A under any sufficiently small deformation
which is not a similarity of E contains fewer minimal vectors than A itself.

1
The formal definition shows that the inequality s > M holds for all
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perfect lattices. Let us also quote Voronoi’s finiteness theorem: up to similar-
ity, there exist only finitely many perfect lattices in any given dimension.

*
* £

In fact, the theory of perfect lattices and sphere packings was developed
up to the 1960s as part of the theory of positive definite real quadratic forms.
However, we prefer to work with the Hermite invariant of a lattice A rather
than with its density. This is defined by

¥(4) = N(4) det(4)~/"

where N(A) (the norm or minimum of A) is the minimum on AN{0} of
the scalar products N(z) = z.z, and det(A), the determinant of A, is the
determinant of the matrix of pairwise scalar products of the vectors of any
Z-basis B for A (the Gram matrix of B). Then the density is proportional to
7(A)™2. Since the density is bounded from above (by 1), one may consider
the upper bound of y(A) on the set of all n-dimensional lattices: this is the
Hermite constant for dimension n, denoted by 7,. (A more natural invariant
would be ™, which was shown by Korkine and Zolotareff to take rational
values on perfect lattices.)

The definitions above, which were expressed in terms of lattices, are eas-
ily translated into the language of quadratic forms over R® (homogeneous
degree 2 polynomials in n variables z1,...,z,): with a given a pair (4, B)
where A is a lattice and B = (ey,...,e,) is a basis for A over Z, we associate
the quadratic form

q(x1,...,2n) = N(z1€1 + -+ + Tpnen) -

To replace B by another basis amounts to replacing g by an equivalent form
(equivalent under a transformation of GL,,(Z)). Passing to quotients, we es-
tablish a one-to-one correspondence between isometry classes of lattices and
equivalence classes of quadratic forms. This dictionary relating lattices and
quadratic forms is studied in detail in Chapter 1; notice that it induces a
one-to-one correspondence between similarity classes of lattices, the natural
object in the theory of perfect or extreme lattices, and classes of quadratic
forms up to proportionality.

When working with quadratic forms, the existence of the constant v,
is not evident. It was established by Hermite in a letter to Jacobi (dated
August 6, 1845), although Lagrange (resp. Gauss) had already calculated it
for dimension 2 (resp. 3).

After Hermite’s work, the problem of determining v, beyond dimension 3
was considered. The case of dimensions 4 and 5 was solved by Korkine and
Zolotareff in a series of three papers published in Mathematische Annalen
between 1872 and 1877, in which they indeed determine all perfect forms
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in dimension n < 5 (although without using the word “perfect”, which was
introduced by Voronoi some thirty years later).

The translation in terms of lattices was done by Minkowski, who realized
that estimating the minima of the set of all real (positive definite) quadratic
forms on one particular lattice (for instance on Z™, which is the aim of the
classical theory) is essentially the same problem as estimating the minima
on the set of all lattices in R™ on one particular form (for instance, those of
22 + .-+ + 2, which defines the canonical Euclidean structure on R").

This extremely original idea, of fundamental importance despite its sim-
plicity, constitutes the birth certificate of the geometry of numbers, a new
branch of mathematics whose autonomous existence can be reasonably dated
to 1896, the year Minkowski’s book Geometrie der Zahlen appeared.

As for the Hermite constant, Minkowski’s geometrical methods prove the
existence of upper bounds which are linear in n, whereas the arguments that
Hermite used to prove existence give only exponential bounds.

Minkowski never considered perfect forms, and the next step was made
by Voronoi; it consists of three articles published in Crelle’s journal between
1907 and 1909. It is his first article which chiefly interests us: Voronoi proves
here his finiteness theorem referred to above, characterizes the extreme forms
among perfect forms (they must have the additional property of being eu-
tactic), and develops an algorithm with which he recovers the classification
results found thirty years earlier by Korkine and Zolotareff.

Unfortunately, Voronoi died in 1908, leaving his research unfinished. He
was clearly working on the case of dimension 6, where he had found the
first non-eutactic perfect form, but one had to wait half a century for the
completion of the 6-dimensional classification, obtained by Barnes in 1957.
Barnes also discovered many other perfect lattices, including the lattice K1,
and together with G.E. Wall also found A;5 and A;6. These are the densest
lattices known in dimensions 11, 15 and 16 and are widely believed to be the
critical lattices in these dimensions.

We must mention two important results that were obtained in the period
between the works of Voronoi and Barnes. The first is the determination by
Blichfeldt in 1935 of the Hermite constant in dimensions 6, 7 and 8 (and
the reduction by Mordell in 1944 of the calculation of s to that of v7); the
other is Coxeter’s 1951 paper on root lattices and their relatives, and the
discovery in a joint work with Todd of the K lattice, which they showed to
be extreme, and which is very likely the densest 12-dimensional lattice.

After Barnes, among various work devoted to local methods, I would like
to mention the following:

e Watson’s work, extending the methods of Korkine and Zolotareff in or-
der to attempt to classify perfect lattices in dimensions 6 and 7.

e Kaye Stacey’s work (1975), which obtained an essentially correct list of
the 7-dimensional perfect lattices. However, she was unable to establish that
her list was complete, for lack of an efficient identification algorithm; her re-
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sults were confirmed by Jaquet in 1990. Barnes and Jaquet worked with the
Voronoi algorithm, whereas Stacey used the of Korkine-Zolotareff-Watson
methods.

e The construction of important lattices, by Leech (in particular, the
fundamental 24-dimensional lattice which bears his name), by Conway and
Sloane (for instance, the “laminated lattices” A,), by Quebbemann in
dimension 32, ..., all of which are perfect.

o The systematic study by Conway and Sloane of perfect lattices up to
dimension 7.

e The definition by Bergé and Martinet of new notions of perfection and
extremality restricted to special classes of lattices (e.g., lattices which are
extreme with respect to a given automorphism group or with a given section,
or as isodual lattices, or dual-extreme lattices — an analogue of the Hermite
invariant for which a lattice and its dual play a joint rdle).

*
* %

We begin with a chapter on general properties of lattices. The second
chapter on inequalities is more technical and is not used much before Chap-
ter 6. The story really begins in Chapter 3,! where we introduce the notions
of extremality, perfection and eutaxy of a lattice, and the analogous notions
involving the pair consisting of a lattice and its dual. It is thus quite possible
to start reading the book at the third chapter. This chapter is a particular
case of a more general theory to be developed in Chapter 10, where we shall
consider families of lattices which are orbits under the action of a closed sub-
group of the general linear group. However, the basic techniques developed in
Chapter 3 will play a fundamental réle, and a detailed study of the classical
situation may prove useful for understanding Chapter 10.

Chapter 4 is devoted to root lattices, whose réle in numerous domains of
mathematics (group theory, Lie algebras, etc.) is well-known. It is followed
by a fifth chapter dealing with various lattices which are easily constructed as
modifications of root lattices. Both these chapters contain many applications
of the theory developed in Chapter 3. Moreover, the families of lattices that
we construct in these two chapters contain almost all perfect lattices up to
dimension 6. (The complete list is obtained by considering two extra families
of lattices, which we construct in Chapter 8.)

Chapter 6 is devoted to the classification of perfect lattices. We give com-
plete proofs up to dimension 5, but content ourselves with a description of the
known results in dimensions 6 and 7 and a few indications for dimension 8,
since classification is not known from n = 8 onwards. The proofs we give in
this chapter originate from the work of Korkine and Zolotareff, although we
must emphasize that they proved more than they stated: for instance, the

! We also introduce here the notion (not mentioned in the French edition) of a
strongly eutactic lattice, which plays an important réle in the study of spherical
designs.
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necessary condition s(A) > "("2+ D suffices to ensure perfection (and even
extremality) up to dimension 5, except for 5-dimensional lattices possessing
a D4-section with the same norm, where one must assume the existence of
five directions of minimal vectors outside the section.? We also describe all
dual-extreme lattices up to dimension 4 (the classification is not known from
n = 5 onwards), but we do not give the complicated proof of the classification
in dimension 4.

Chapter 7 is devoted to the classical Voronoi algorithm. Now we drop
the language of lattices for that of quadratic forms, which is here more con-
venient. (However, the lattice point of view shows up in certain places, and
Voronoi himself sometimes used it without saying so.) We describe Voronoi’s
procedure, which allows one to attach to every perfect form (defined up to
proportionality by giving it a fixed minimum on Z™) a polyhedral convex
cone, its Voronoi domain, and to every facet of this cone a new perfect form,
which is contiguous to the original one (through the given facet), giving in
this way the set of equivalence classes of perfect forms a structure of a fi-
nite, connected graph. Following Voronoi, we use this method to recover the
classification of perfect forms of dimension n < 5 that we established in the
preceding chapter.

The reader could learn the Voronoi algorithm by directly reading Chap-
ter 13, ignoring the first four sections of Chapter 7. However, the remark we
made above about Chapters 3 and 10 applies to Chapters 7 and 13. Note also
that reading Chapters 6 and 7 directly after Chapter 3 (in any order) is also
possible for a reader having some acquaintance with the zoology of lattices
constructed in Chapters 4 and 5.

Chapter 8 is a continuation of the constructions of lattices given in Chap-
ters 4 and 5 that were interrupted by two chapters on classification problems.
We consider here constructions of a more algebraic nature, making use of
orders in semi-simple algebras, essentially in fields with complex multiplica-
tion or quaternion fields. This chapter contains various original results. The
constructions of Barnes and Coxeter—Todd, which make use of the ring of
Eisenstein integers, are described and generalized in Sections 8.4 and 8.5, af-
ter some analogous constructions making use of the Hurwitz order have been
performed in Sections 8.2 and 8.3. This is followed by sections describing new
constructions relying on the structure of some left ideals in quaternion skew-
fields whose centres are no longer the field of rational numbers. Numerous
classical lattices are endowed in this way with various algebraic structures,
and new lattices, often unimodular, are obtained; a résumé of the original re-
sults of this chapter appeared in the proceedings of the Paris Number Theory
Seminar of 1992-1993.

Chapter 9, which is based on results by A.-M. Bergé and myself, deals with
classifications of lattices (or of pairs of a lattice and its dual) according to

2 Here is one important difference from the French edition: following [Mar5], we
have written much simpler proofs, relying on methods of Watson.
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properties of their minimal vectors. As an application, we prove a finiteness
theorem which contains results of Voronoi (on perfect lattices) and Avner
Ash (on eutactic lattices), and also a dual version due to A.-M. Bergé of
Voronoi’s finiteness theorem. This subdivision of lattices into finitely many
minimal classes, which contains the classification of perfect lattices (those
for which the minimal class reduces to their similarity class), is known only
for n < 5 (resp. only for n < 3 in case of pairs (A4, 4*)). We present the
proofs in dimensions n < 4 (resp. n < 3). Some results of Watson about the
kissing number have a natural interpretation in terms of minimal classes; it
would be interesting to extend at least partially these classification results
beyond dimension 5. (Minimal classes are kind of “orbifold” ; they correspond
to the cell decomposition in the space of positive definite quadratic forms;
this cell decomposition has been considered by the Russian school, notably
by Stogrin, Baranovskii, and Ryshkov.)

Chapter 10 gives a broad generalization® of Voronoi’s characterization of
extreme lattices as those which are both perfect and eutactic. Notions of
perfection and eutaxy for a subspace T of the space End®(E) of all sym-
metric endomorphisms were defined in Chapter 3. We consider here families
of lattices that constitute a homogeneous space under the action of a closed
(possibly connected) subgroup G of GL(E), which we also assume to be in-
variant under transposition. Being a Lie subgroup of GL(E), G possesses a
tangent space at the identity, and Voronoi’s theory generalizes, working in
the symmetrized set T C End’(E) of this tangent space.

The preceding theory is applied in Chapter 11 to two examples of a great
practical importance.

The first one, studied in the first four sections, is that of G-lattices, the set
of lattices in E whose automorphism group contain a given finite subgroup G
of the orthogonal group O(E). The idea of considering such lattices originates
in algebraic number theory, G' being a Galois group acting on units modulo
torsion.

Our second example, studied in the remainder of the chapter, is that
of lattices endowed with a given isometry o onto their duals. The case of
symplectic lattices (i.e., such that 02 = —1d) is of particular importance in
the theory of complex Abelian varieties.

In Chapter 12, we consider the following two questions: How can one
classify the sections of a given lattice? And how can one characterize the
perfection and eutaxy properties of a lattice for which we know a priori a
section?

These problems somewhat resemble those which were examined in Chap-
ter 10, and it might well be possible to unify the two theories by considering

3 Notions of perfection and eutaxy, which generalize those we consider in this book,
have been developed recently by Bavard within the framework of Riemannian
geometry.
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lattices which are parametrized by submanifolds with boundary in the vector
space of endomorphisms. No such theory is yet available.

In Chapter 13 — the last largely theoretical one — we consider extensions of
the classical classical Voronoi algorithm that was studied in Chapter 7. The
theory is applied relative to a subspace 7 of End”(E), but is in practice useless
unless the contiguity algorithm stabilizes an interesting class of lattices. This
is the case with G-lattices in the sense of Chapter 11: 7 is the subspace
consisting of elements of End’(E) which commute with G and the operation
of “T-contiguity” transforms a G-lattice into a new G-lattice; this property
also holds for the family of lattices possessing a given section with the same
minimum. Unfortunately, we are able to generalize the Voronoi algorithm only
to families which constitute a cone* inside an affine subspace of End®(E). To
discover an algorithm for families such as those of symplectic lattices would
be of a great interest for the solution of classification problems.

We have collected in the final chapter, Chapter 14, some numerical data
(Gram matrices of perfect or eutactic lattices, tables of invariants of some
remarkable lattices). Numerical complements are also available on the WEB;
see the Batut—-Martinet Catalogue of Perfect Lattices

http://www.math.u-bordeaux.fr /~martinet /
and the Nebe-Sloane database
http://www.research.att.com/~njas/lattices/;

see also the tables in Chapter 6.

The book ends with two appendices, the first one of an algebraic nature
written on request of certain colleagues who wished a guide to algebraic con-
structions of lattices. It is certainly not an accident if so many “beautiful”
lattices, especially in even dimensions, and above all in dimensions divisible
by 4, possess rich algebraic structures, and the search for algebraic construc-
tions is indeed still an active domain in lattice theory. The second appendix is
a short account of the connections which exist between the theory of lattices
and that of spherical designs.®

* *

Every chapter except the first and the last contains numerous exercises,
some of which are not in the French edition. Their numbers vary from chapter
to chapter. In general they can be solved by hand, but in a few cases computer
programs (especially those for finding minimal vectors) can be used to avoid

* Recently, Bavard has considered in [Bav3] a generalization which deals with
symplectic lattices in the Siegel space parametrized by the Poincaré upper half-
plane.

5 This appendix is new; the first appendix is a contraction of the four appendices
of the French version. This is partially compensated for by an expansion of
Section 8.1.
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tedious calculations. For the sake of simplicity, those chapters involving heavy
computational methods contain only few exercises.

Each chapter except the last (and the appendices), ends with “notes”,
where we quote some results which could not be incorporated within the
chapter. The notes also include a number of historical remarks. They have
been extended to include results discovered after the French edition was writ-
ten.

* *

This book is devoted to the study of local methods in lattice theory.
I have chosen to centre it on the perfection property. I realized while writing
it that eutaxy, which appears at first sight to be just a minor restriction,
is just as important as perfection. Moreover, the discovery of the existence
of an amazing number of 8-dimensional perfect lattices® in comparison with
smaller dimensions (3, 7, and 33 in dimensions 5, 6, and 7), strongly suggests
that the eutaxy property could be used for limiting the number of lattices
that must be considered when classifying extreme lattices. For this reason,
the eutaxy property also plays a major role in this book.

Venkov has recently discovered that the theory of modular forms can be
used to prove a priori that certain lattices are extreme, or at least eutactic;
the proofs rely on the theory of spherical designs. We shall not give a detailed
study of this theory, about which nothing had been written at the time the
French edition was printed. However, an appendix, of a purely descriptive
nature, has been added to the English edition; the proofs can be read in the
recent article [Ven3].

Another recent breakthrough was made independently by Elkies and
Shioda, who constructed dense lattices using algebraic geometry. They obtain
integral lattices for which they can determine the minimum and the determi-
nant, and even the kissing number. However, up to now, this theory has not
yielded results concerning perfection nor eutaxy.

*
* %

The notion of an integral lattice, although it appears here and there in
this book (perfect lattices are proportional to integral lattices, as one knows
since the time of Korkine, Zolotareff, and Voronoi), was not at the heart of
our study. As a consequence, the content of this book is essentially disjoint
from that of Conway and Sloane’s “bible” (Sphere Packings, Lattices and
Groups [C-S], [C-S’], [C-S”]), which remains a necessary tool for any one
who wishes to study lattices.

6 10916 were known at the time this introduction was translated
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