
ON WEAKLY EUTACTIC FORMS
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Abstract. We make precise some properties of the Hermite func-
tion in relation with Morse theory introduced by Avner Ash in his
papers [Ash1] and [Ash2] and with the cellular decomposition of
the space of positive definite quadratic forms. We also establish a
link between Ash’s and Bavard’s mass formulae.

1. Introduction

The space Symn(R) of n × n real symmetric matrices is equipped
with the scalar product

〈A,B〉 = Tr(AB).

With any column vector x ∈ Rn we associate the matrix xtx ∈ Symn(R),
and for a symmetric subset S of Rn, the perfection rank perf rkS of S
is the dimension, often denoted by r, of the span VS of xtx, x ∈ S/± .

Let C ⊂ Symn(R) be the open cone of positive definite matrices.
With a matrix A ∈ C we associate the quadratic form Q

x ∈ Rn 7→ txAx = 〈A, xtx〉 ,
its minimum minA on non-zero integral vectors, the set

S = S(A) = {x ∈ Zn | 〈A, xtx〉 = minA}
of its minimal vectors, and the (half) kissing number s = 1

2
|S|. We

shall often denote by VA the space VS(A). Set

K = {M ∈ C | minM ≥ 1}.
Let A ∈ ∂K (the boundary of K) be a matrix with minimum 1 and set
of minimal vectors S = S(A). The cell CA of A is the following subset
of ∂K:

CA = {M ∈ C | minM = 1 and S(M) = S} ,
with closure

CA = {M ∈ C | minM = 1 and S(M) ⊃ S} .
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We say that the cell CA′ is below the cell CA (notation: CA′ ≺ CA) if
S(A′) ⊂ S(A). The cell CA is open in its closure CA = ∪CA≺CA′ CA′ . The
cells and the faces of K are intimately related: the faces of K are the
closures of the cells; see Proposition 2.2.

With A ∈ ∂K, we also associate its Voronoi domain DA, the convex
hull of the half-lines R≥0 xtx, x ∈ S(A). All matrices in a given cell C
have the same Voronoi domain, that we denote by DC. We shall see
that given A ∈ ∂K, the map C 7→ DC is a one-to-one correspondence
between cells C ≺ CA and the faces of the polyhedral cone DA; see
Lemma 2.1. Note that M belongs to the affine span of CA if and only
if 〈M − A, xtx〉 is zero on xtx, x ∈ S(A), i.e. if and only if M − A is
orthogonal to DA. Thus, the perfection rank of A is

dimDA =
n(n+ 1)

2
− dim CA .

Eventually, recall that A is called weakly eutactic (resp. semi-
eutactic, resp. eutactic) if there are real numbers (resp. non-negative
numbers, resp. strictly positive numbers) ax, x ∈ S, such that

A−1 =
∑
x∈S/±

axx
tx .

In practice, we shall essentially consider well-rounded matrices (and
cells), those whose minimal vectors span Rn. Weakly eutactic matrices
are well rounded; see Proposition 3.8 for a more precise statement.

Let

γ(A) =
minA

(detA)1/n

be the Hermite function. In [Ash1], Ash proves that the “packing
function” P (A) = γ(A)−n is a topological Morse function whose non-
degenerate critical points are exactly the eutactic matrices A. In
[B-M1] we proved that each cell contains at most one weakly eutac-
tic matrix which (if any) is exactly the matrix at which the strictly
convex function γ (or 1

det
) attains its minimum on the cell. Our first

aim is to specify which kind of topological ordinary points are the
weakly eutactic, non-eutactic matrices. We make use of the notions of
semi- and weak eutaxy, which were introduced after Ash’s paper was
written (in [C-S], 1988, and [B-M1], 1996, respectively).

Theorem 1.1. Let A ∈ ∂K be a matrix of minimum 1, with set of
minimal vectors S. Let

HA = {M ∈ Symn(R) : 〈M − A,A−1〉 = 0}
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be the tangent hyperplane to the determinant surface at A, and define
the open half-spaces

H+
A = {M ∈ Symn(R) | 〈M − A,A−1〉 > 0} ,

H−A = {M ∈ Symn(R) | 〈M − A,A−1〉 < 0} .

Then:

(1) A is weakly eutactic if and only if its cell CA is contained in HA.

(2) A is semi-eutactic if and only if HA supports K (i.e. K ⊂ H+
A ).

(3) A is eutactic if and only if HA supports K and K ∩HA = CA.

More precisely, if A is weakly eutactic but not semi-eutactic, H−A con-
tains a cell below that of A, and if A is semi-eutactic but not eutactic,
HA contains a cell strictly below that of A, and indeed a unique maxi-
mal one, namely the relative interior of K ∩HA.
[Note that an example of a matrix A with HA supporting K but K∩HA % CA
was given by Ash in [Ash1] (it is the unique semi-eutactic, non-eutactic ma-

trix for n ≤ 4).]

Our second aim is to study the connection between the two known
“mass formulae with signs” which occur in our context (Ash, [Ash2];
Bavard, [Bv]). Both formulae take the form (for n ≥ 2)∑

C/∼

(−1)dim C

|Aut+(C)|
= χ(SLn(Z)) ,

but have distinct ranges of summation: all well-rounded cells up to
equivalence in Bavard’s formula, only those which contain a eutactic
form in Ash’s formula; see Section 3. (The right hand side is equal to

− 1
12 for n = 2 and to 0 for n ≥ 3.) We remark that on a well-rounded cell

without a weakly eutactic matrix, infC γ is attained at a unique matrix
A ∈ ∂C. We shall prove that this matrix is weakly eutactic, but not
eutactic.

Consequently, the difference of the left-hand sides of the formulae above
may be written in the form∑

A

∑
C/∼

(−1)dim C

|Aut+(C)|
= 0 ,

where A runs through the set of (equivalence classes of) weakly eutac-
tic, non-eutactic matrices, and C through the set EA of cells such that
infC γ is attained on A. This strongly suggests the following theorem:
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Theorem 1.2. For every weakly eutactic, non-eutactic matrix A,∑
C∈EA/∼

(−1)dim C

|Aut+(C)|
= 0 .

This theorem results in dimensions n ≤ 5 from Batut’s paper [Bt]
where he classifies cells and weakly eutactic matrices.

Theorem 1.1 is proved in Section 2, together with some comple-
ments. In Section 3, we reduce Theorem 1.2 to a purely combinatorial
statement, that we prove by applying a generalized Euler formula for
polytopes to an extension D′A of the Voronoi domain DA. Finally, a
short fourth section is devoted to algorithmic remarks.

2. Weak eutaxy and Morse theory

We still consider a positive definite matrix A, that we scale to min-
imum 1 (i.e., A ∈ ∂K), and denote by S = S(A) its set of minimal
vectors. Recall that the Voronoi domain of A is the convex hull DA
of the half-lines R≥0 xtx, x ∈ S. Thus A is weakly eutactic if A−1 lies
in VA, the real span of DA, and semi-eutactic (resp. eutactic) if A−1

lies in DA (resp. in the relative interior of DA).
Lemma 2.1 below shows that there is a one-to-one correspondence

between the set of non-zero faces of DA and the set of cells C ≺ CA.

Lemma 2.1. Let A ∈ ∂K with Voronoi domain DA, and let C ≺ CA.
Then its Voronoi domain DC is a face of DA; more precisely, if C 6= CA,
for every M ∈ C, the hyperplane H = (M − A)⊥ supports DA and
H ∩ DA = DC. Conversely, any face F of DA is the Voronoi domain
DC of the cell C ≺ CA of any matrix M = A+εF where F is orthogonal
to a supporting hyperplane of CA for F and ε > 0 is small enough. [In
the correspondence above, the improper face DA corresponds to CA.]

Proof. Let C � CA, M ∈ C, F = M − A and H = F⊥. For x ∈ S(A),
we have 〈F, xtx〉 = 〈M,xtx〉 − 1 ≥ 0 and equality holds if and only if
x ∈ S(M). For v =

∑
x∈S(A)/± ax x

tx ∈ DA (ax ≥ 0),

〈v, F 〉 =
∑

x∈S(A)rS(M)

ax 〈xtx, F 〉

vanishes if and only if the ax are zero on S(A)rS(M), i.e. if and only
if v ∈ DM . This shows that H supports DA with corresponding face
DM = DC. [Replacing M −A by its orthogonal projection to VA, we could

have assumed that F ∈ VA.]
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Conversely, let F be a proper face of DA with supporting hyperplane
H = F⊥ for some F with 〈F,DA〉 ≥ 0. Let M = A + εF where
ε > 0 is small enough to ensure that S(M) ⊂ S(A). For x ∈ S(A),
we have 〈M,xtx〉 = 1 + ε〈F, xtx〉 ≥ 1, with equality if and only if
xtx ∈ H∩DA = F . Hence F is the Voronoi domain of the cell of M . �

Proposition 2.2. The closures of the cells are the faces of K. In
particular, the smallest face of K containing a given matrix A ∈ ∂K
is the closure CA of its cell.

Proof. (1) Let C = CA the cell of a matrix A ∈ ∂K (thus minA = 1),
and let S = S(A). Set F = 1

s

∑
x∈S/± x

tx and let H = A + F⊥ the
affine hyperplane through A orthogonal to F . For all M ∈ K, we have

〈M − A,F 〉 =
1

s

∑
x∈S/±

(〈M,xtx〉 − 1) ≥ 0 (∗)

(because M ∈ K), which shows that K ⊂ H+, i.e. that H supports K.
Moreover, (∗) shows that M belongs to H if and only if 〈M,xtx〉 = 1
for all x ∈ S, i.e. minM = 1 and S(M) ⊃ S, or otherwise stated, that
M belongs to C. Finally, C = K ∩H is a face of K.

(2) Let F be a face of K, H a supporting hyperplane of K such
that F = K ∩H, and F ∈ H⊥ pointing towards K. Let A ∈ F , with
Voronoi domain DA and set of minimal vectors S. We first prove that
F belongs to DA.

Consider the cone Γ defined by the conditions 〈 − F, v〉 ≥ 0 and
∀x ∈ S, 〈xtx, v〉 ≥ 0. Let v ∈ Γ. For ε > 0 small enough, M =
A + εv belongs to K (we have S(M) ⊂ S(A) because ε is small and
〈M,xtx〉 = 1 + ε〈v, xtx〉 ≥ 1 for all x ∈ S). Since H supports K,
we have 〈F, v〉 ≥ 0, hence Γ is included in H. Since the dimension
of Γ is not maximal, Voronoi’s principe fondamental ([V], § 8, p. 113)
shows that the vectors −F, xtx, x ∈ S satisfy a relation of the form
ρ(−F ) +

∑
ρx x

tx = 0 with non-negative, not all zero coefficients ρ, ρx.
If ρ were zero, we would have

∑
ρx = 〈A,

∑
ρxx

tx〉 = 0 and ρ and the
ρx would be zero. Finally, we obtain a relation

F =
∑
x∈S

αx x
tx

with non-negative αx, which shows that F ∈ DA.
Let F ′ be the smallest face of DA containing F (maybe, DA itself),

and let S ′ = {x ∈ S | xtx ∈ F ′}. Actually F belongs to the relative
interior of F ′, and hence there is a relation F =

∑
x∈S′ λx x

tx with
strictly positive coefficients λx. Let M be a matrix in K. Then we have
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〈M − A,F 〉 =
∑

x∈S′ λx 〈M − A, xtx〉 with all terms 〈M − A, xtx〉 ≥ 0
(because M ∈ K), so that

H ∩K = {M ∈ K | ∀x ∈ S′, 〈M −A, xtx〉 = 0} = {M ∈ K | S(M) ⊃ S′}

is the closure of the cell C ′ ≺ CA associated with the face F ′. �

Remark 2.3. It results from the proof above that, with its notation, we
have

A ∈ Int(H ∩K)⇐⇒ H ∩K = CA ⇐⇒ F ∈ Int(DA) .

[The notation Int stands for the relative interior.]

Proof of Theorem 1.1.
1. We now locate with respect to HA the cell CA of A or equivalently

its affine span

Aff(CA) = {M | ∀x ∈ S, 〈M − A, xtx〉 = 0} = A+ V ⊥A .

(VA is the span of DA.) Then A is weakly eutactic if and only if A−1

belongs to VA, i.e. (by taking the orthogonal complements) if and only
if HA ⊃ CA, which proves the first statement of Theorem 1.1.

From now on, we assume that A is weakly eutactic.
2. (a) If A is semi-eutactic, write A−1 =

∑
ax x

tx with non-negative
ax. Let M ∈ K. For every x ∈ S(A), we have 〈M,xtx〉 ≥ 1,
〈A, xtx〉 = 1, hence 〈M − A, xtx〉 ≥ 0, whence 〈M − A,A−1〉 ≥ 0,

i.e. M lies in H+
A . This shows that HA supports K.

(b) If A is not semi-eutactic, since the closed convex cone DA is the
intersection of its supporting half-spaces (see [Br], I, Th. 4.5), there
exists a facet whose hyperplane separates A−1 and DA, i.e. a vector
F such that 〈F,A−1〉 < 0 and 〈F, xtx〉 ≥ 0 for all x ∈ S(A). The cell
corresponding to the facet above by Lemma 2.1 is contained in H−A ,
and in particular, HA does not support K.

From now on, we assume that A is semi-eutactic, and hence that HA

supports K.
3. (a) This time, we consider a eutaxy relation with strictly positive

coefficients ax. As in 2. (a), for any M ∈ K, we have 〈M − A,A−1〉 =∑
x∈S ax 〈M − A, xtx〉 with all 〈M − A, xtx〉 ≥ 0. Hence,

M ∈ HA ⇐⇒ ∀x ∈ S, 〈M − A, xtx〉 = 0⇐⇒ S(M) ⊃ S ,

which shows that K ∩HA = CA.
(b) If A is not eutactic, let F be a proper face of DA containing A−1.

There exists a eutaxy relation A−1 =
∑

xtx∈F ax x
tx with non-negative

ax. The cell C ≺ 6= CA associated with F is contained in HA: let M ∈ C;
〈M−A, xtx〉 is zero if xtx ∈ F , and then we have 〈M−A,A−1〉 = 0. �

We end this section with some more precisions on semi-eutaxy.
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Proposition 2.4. Suppose that A is semi-eutactic and let F be the
smallest face of DA containing A−1 (F = DA if A is eutactic). Let

T = {x ∈ S(A) | xtx /∈ F} .
Then for every eutaxy relation A−1 =

∑
x∈S ax x

tx with all ax ≥ 0, we
have ax = 0 on T , and there exists such a relation whose coefficients
are strictly positive on S(A)rT .

Proof. Let H be a supporting hyperplane of F and F ∈ H⊥ pointing
to DA. Write A−1 = B + C with

B =
∑
x∈SrT

ax x
tx and C =

∑
x∈T

ax x
tx .

Then 〈A−1, F 〉 = 〈B,F 〉 = 0, hence 〈C,F 〉 =
∑

x∈T ax 〈xtx, F 〉 = 0.
Since the 〈xtx, F 〉 are strictly positive on T , all ax are zero on T .

Since the face F is minimal among those which contain A−1, A−1

lies in the relative interior of F , which shows that it can be written
as a linear combination of the xtx, x ∈ SrT with strictly positive
coefficients. �

3. Ash’s and Bavard’s mass formulae with signs.

In this section, all matrices we consider are assumed to be scaled
to minimum 1, so that the determinant and Hermite functions are
connected by the relation det(M) = γ(M)−n.

Note that in Ash’s original formula∑
A eut. /∼

(−1)i(A)

|Aut+(A)|
= χ(SLn(Z)) ,

the index i(A) of the eutactic matrix A is the dimension of the smallest
face of K containing A, i.e. dim CA, as stated in the introduction; see
Proposition 2.2.

Lemma 3.1. A cell C is well rounded if and only if the determinant is
bounded above on C.

Proof. Hadamard’s inequality (see [M], Theorem 2.2.1) shows that the
determinant is bounded above on any well-rounded cell. Conversely,
suppose that C is not well rounded. Up to integral equivalence, we may
assume that the last coordinate of every x ∈ S is zero. Let M ∈ C, and
for λ ≥ 1, denote by Qλ the diagonal matrix with diagonal (1, . . . , 1, λ).
Then Mλ = tQλMQλ belongs to C and we have

detMλ = λ2 detM →
λ→∞

∞ . �
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We know that C is well rounded if and only if C is compact, that the
Hermite invariant γ has a minimum on C if and only if C is well rounded
(by the lemma above), and that this minimum is then attained at a
unique matrix M ∈ C, which is the unique weakly eutactic matrix in
its cell ([B-M1], Th. 3.4 and 3.5).

Theorem 1.1 shows that given a weakly eutactic, non-eutactic ma-

trix A there exist cells C � CA contained in the closed half-space H−A .
(The notation CA, HA, H

−
A , . . . is that of the previous section.) For such

cells, we prove (compare [Bt]):

Theorem 3.2. With the notation above, suppose A is weakly eutac-
tic non-eutactic, and let C � CA be a cell below the cell of A. Then
the (unique) minimum on C of the Hermite function is attained at A

if and only if C is included in the closed half-space H−A , and then C is
well rounded and contains no weakly eutactic matrix.

Conversely, for every well rounded cell C without a weakly eutactic
matrix, the minimum on C of γ is attained at a weakly eutactic, non-
eutactic matrix A.

Otherwise stated, there is a partition of the set of well-rounded cells
without a eutactic matrix, each part of which contains a unique cell
having a weakly eutactic matrix. (The parts are the sets EA for A
weakly eutactic, non-eutactic.)

Proof. Let A be a weakly eutactic, non-eutactic matrix. Recall the well
known formula in which F stands for any symmetric matrix:

det(A+tF ) = detA (1+t〈F,A−1〉+1

2
(〈F,A−1〉2−〈FA−1, FA−1〉) t2+O(t3)) .

(Formulae of this kind occur e.g. in [Ash1], Corollary to Proposition 3.)
Since A is positive definite and F is symmetric, the eigenvalues of FA−1

are real. Hence for small enough t > 0, we have det(A+ tF ) > det(A)

if A+ tF ∈ H+
A and det(A+ tF ) < detA if A+ tF ∈ H−A .

Let C � CA. Since A ∈ C ∩H+
A the first inequality above shows that

if the determinant is smaller than detA on C, then C is included in

H−A . In the other direction, if C ⊂ H−A , by the strict log-concavity of
the determinant, the inequality detM < detA holds on the whole cell.
By Lemma 3.1, C is well rounded, and since A belongs to C, the unique
maximum of the determinant on C is attained at A.

Conversely, let C be a well-rounded cell without a weakly eutactic
matrix. The unique matrix A at which the determinant attains its
maximum on C is weakly eutactic (because it is a maximum in its own
cell) and is not eutactic: otherwise H+

A would contain C, and this would
imply detM > detA on C, a contradiction.
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The last assertion is clear. �

We now establish some properties of the automorphism groups of
cells. Recall that the automorphism group Aut(C) of a cell C is the sta-
bilizer of C in GLn(Z). We denote by Aut+(C) the subgroup of Aut(C)
consisting of positive automorphisms. For every M ∈ C, Aut(M) is
a subgroup of Aut(C), and is equal to the whole group Aut(C) if M
is weakly eutactic ([Bt], Corollary 2.6). This accounts for the con-
nection between Ash’s original formula and the formulae stated in the
introduction.

From now on, A stands for a weakly eutactic, non-eutactic matrix
of minimum 1. Recall that EA = {C ≺ CA | infC γ = γ(A)}. We set
G = Aut(A) and G+ = Aut+(A).

Lemma 3.3. The group G = Aut(A) stabilizes EA, and every equiv-
alence between two cells of EA is the restriction of an automorphism
of A. In particular, for every C ∈ EA, Aut(C) can be identified with a
subgroup of G.

Proof. This is easily proved, using the fact that for every cell in EA, A
is the unique matrix at which infC γ is attained. �

The lemma above shows that in EA, two cells are equivalent under
GLn(Z) (or SLn(Z)) if and only if they belong to the same orbit under
G (or G+). Now for every C0 ∈ EA, we have

1

|Aut(C0)|
=

1

|Aut(A)|
∑

C∈EA, C∼C0

1 .

Thus Theorem 1.2 is equivalent to Theorem 3.4 below:

Theorem 3.4. For every weakly eutactic, non-eutactic matrix A,∑
C∈EA

(−1)dim C = 0 ,

where EA denotes the set of cells C such that infC γ is attained at A.

The proof of Theorem 3.4 will rely on Euler-type formulae for convex
polytopes. Traditionally one writes Euler’s formula for a p-dimensional
polytope P in the form

p−1∑
i=0

(−1)ini = 1− (−1)p

where ni denotes the number of i-dimensional proper faces. The con-
sideration of the improper two faces P and ∅, of dimensions p and −1
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respectively, allows us to write down this formula in a form which no
longer depends on p, namely

p∑
i=−1

(−1)ini = 0 .

This latter form has the following generalization:

Theorem 3.5. Let F1 and F2 % F1 be two faces of a given convex
polytope P . Then ∑

F1⊂F⊂F2

(−1)dimF = 0 .

Proof. This is Theorem 16.4 of [Br]. �

The theorem above has an evident counterpart for cones in vector
spaces, simply replacing the empty face by the origin, as one immedi-
ately sees by considering sections by a transverse hyperplane. Using
this device, we easily dispose of the case of semi-eutactic matrices.

Proof of Theorem 3.4 for semi-eutactic matrices. Proposition 2.4 and
Lemma 2.1 show that if A is semi-eutactic but not eutactic, there is
in HA a unique maximal cell C � CA, so that Theorem 3.5 applies
directly, taking F1 = DC and F2 = DA and using the correspondence
of Lemma 2.1. �

The existence of unique maximal cell C ≺ CA in H−A is no longer
true for general weakly eutactic matrices. To handle this case, we first
introduce an enlargement of the Voronoi domain.

Definition 3.6. Let D′A be the convex hull of the Voronoi domain DA
of A and the half-line R≥0A−1.

Since A is assumed to be weakly eutactic, A−1 belongs to the span of
DA. Hence DA and D′A ⊃ DA have the same dimension, and D′A = DA
if and only if A is semi-eutactic. As above, the consideration of a
transverse hyperplane through A−1 allows us to apply Theorem 3.5
to D′A.

In the remaining of this section, we assume that A is weakly eutactic,
but not semi-eutactic. We first give a new characterization of the set
EA.

Proposition 3.7. Suppose that A is weakly eutactic, but not semi-

eutactic, and let C ≺ CA. Then C is contained in H−A if and only if DC
is not a face of D′A.
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Proof. Suppose first that DC is not a face of D′A. If C 6⊂ H−A , there exists
M ∈ C ∩H+

A . By Lemma 2.1, there exists a supporting hyperplane H
of DA, orthogonal to F = M − A, and such that H ∩DA = DC. Since

M ∈ H+
A , we have 〈F,A−1〉 > 0. We then have D′A ⊂ H+

A , which shows
that H supports D′A. Let X ′ = λA−1 + X ∈ D′A (with λ ≥ 0 and
X ∈ DA). Then 〈X ′, F 〉 = λ〈A−1, F 〉+ 〈X,F 〉 (where 〈X,F 〉 ≥ 0 and
〈A−1, F 〉 > 0) vanishes if and only if X ′ = X belongs to DA ∩H = DC.
In other words, D′A ∩H = DC, a contradiction.

Conversely, suppose that DC is a face of D′A, and let H′ be a support-
ing hyperplane for D′A such that D′A∩H′ = DC. Let F ′ ∈ H′⊥ such that
〈F ′,D′A〉 ≥ 0. By Lemma 2.1, for ε > 0 small enough, M = A + ε F ′

lies in C. We have 〈F ′, A−1〉 ≥ 0, and indeed 〈F ′, A−1〉 > 0 (otherwise,
A−1 would belong to D′A ∩ H′ = DC, and A would be semi-eutactic),

hence M belongs to H+
A , and the cell is not included in H−A . �

Proof of Theorem 3.4 for weakly eutactic, non-semi-eutactic matrices.
The cone D′A is the convex hull of the extreme edges of DA and of the
half-line R≥0A−1. Hence its faces are either faces of DA or contain A−1.
We must show that the sum

Σ =
∑

F face ofDA
F not a face ofD′A

(−1)dimF

is zero. To this end, we introduce the sums

Σ′ =
∑

F face ofDA
F face ofD′A

(−1)dimF and Σ′′ =
∑

F face ofD′A
A−1∈F

(−1)dimF .

Applying thrice Euler’s generalized theorem3.5 to convenient cones and
faces, we successively obtain Σ′′ = 0, Σ′+ Σ′′ = 0, and Σ + Σ′ = 0. �

To finish this section, we generalize to D′A a well-known result of
Voronoi, namely that all edges R≥0 xtx, x ∈ S(A) are extreme for DA.
We first prove a result about eutaxy relations:

Proposition 3.8. In any eutaxy relation A−1 =
∑

x∈S(A)/± ax x
tx, the

set of x ∈ S(A) with ax > 0 spans Rn.

Proof. Let E be the span of x ∈ S(A), ax > 0, and let y ∈ E⊥. We
have

tyA−1y =
∑
x

ax (tyx)2 =
∑
ax<0

ax (tyx)2 .

The left hand side is ≥ 0 while the right hand side is ≤ 0, hence both
are zero, which implies y = 0 since A−1 is positive definite. This shows
that E = Rn. �
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Proposition 3.9. The extreme edges of D′A are R≥0A−1 and the
R≥0 xtx, x ∈ S(A).

Proof. It is clear that every extreme edge of D′A belongs to the set
{R≥0A−1} ∪ {R≥0 xtx, x ∈ S(A)}. Conversely, since A is not semi-
eutactic, R≥0A−1 is an extreme edge. Let now x ∈ S(A). If R≥0 xtx
were not extreme, there would exist a relation

xtx = λA−1 +
∑
y 6=x

λy
tyy

with non-negative coefficients λ, λy. By Voronoi’s theorem, λ is strictly
positive, so that we have a eutaxy relation with exactly one positive
coefficient (that of xtx), which contradicts Proposition 3.8. �

4. Algorithmic remarks.

In the preceding two sections, the eutaxy property was studied using
convexity. We now return to the notation introduced at the beginning
of the introduction, considering eutaxy for a matrix A through the
eutaxy coefficients ax, x ∈ S(A)/±. A perfection relation on S is an
equality

∑
x∈S/± ux x

tx = 0. The set of perfection relations is a real

vector space PS of dimension s − r (r denotes the perfection rank of
S), that we also denote by PA when S = S(A). If A is weakly eutactic,
the set RA of eutaxy relations for A is an affine space over PA.

To carry out calculations, we use an arbitrary basis for PA, say,∑
x∈S/± u

(i)
x xtx = 0, i = 1, . . . , s − r. For short, we write these rela-

tions
∑

x∈S/± Ux x
tx = 0, where Ux ∈ Rs−r is the column-matrix with

components u
(i)
x .

We denote by S0 the set of vectors x ∈ S such that Ux = 0. When
A is weakly eutactic, the eutaxy coefficients ax, x ∈ S0 do not depend
on the choice of a eutaxy relation. Thus the conditions ax < 0, ax = 0,
ax > 0 respectively define a partition S0 = S−0 ∪ S0

0 ∪ S+
0 of S0.

We intend to return somewhere else to the algorithmic aspects of
extractions of cells and just state below without a proof our main result,
which we shall use to construct cells of co-rank one below a given cell.
As we shall see in Proposition 4.2, these cells play a crucial rôle in the
determination of the set EA (defined above Theorem 1.2).

Theorem 4.1. Let A , r , s, S0 and {Ux, x ∈ S} ⊂ Rs−r be as above,
and let x1. . . . , xk ∈ S (k ≥ 1) be k minimal vectors. The following
conditions are equivalent:

(1) S ′ = Sr{±x1, . . . ,±xk} is the set of minimal vectors for a cell
C ′ of perfection rank r − 1.
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(2) The set {Ux1 , . . . , Uxk} has rank k−1 and there exists a relation∑k
i=1 ρi Uxi = 0 with strictly positive coefficients ρi.

Moreover, for any x ∈ S, there exist k − 1 ≥ 0 vectors x2, . . . , xk such
that x1 = x, x2, . . . , xk satisfy the conditions above, and k is equal to 1
if and only if x ∈ S0. �

The subset S0 of S plays a special rôle in various respects. First
Theorem 3.4 has an easy proof for any weakly eutactic, non-eutactic
matrices A with S−0 ∪ S0

0 6= ∅: indeed, given x0 ∈ S−0 ∪ S0
0 , cells below

CA belonging to H−A occur in pairs (C, C ′) with S(C) = S(C ′) ∪ {±x0},
which cancel in Theorem 3.4.

Actually, given C ⊂ H−A , for any set x1, . . . , x` ∈ (S−0 ∪ S0
0)rS(C),

the cell C ′ ≺ C with S(C ′) = S(C)r{±x1, . . . ,±x`} belongs to H−A . In
particular, if there exists a eutaxy relation whose coefficients ax are
strictly positive for all x ∈ SrS0, then there is a unique maximal cell
C ′ ≺ CA, namely the cell with minimal vectors Sr(S−0 ∪S0

0). In general,
such a cell does not exist when A is not semi-eutactic; see the end of
this section.

Moreover, it is an experimental fact that very often, there exists a
eutaxy relation R for which S−(R) = S−0 and S0(R) = S0

0 . This is
true for n ≤ 5 (because all cells with s > r contain a eutactic matrix
whereas S = S0 if s = r), and for all perfect matrices with n ≤ 7.

However semi-eutactic matrices with T % S0 (see Proposition 2.4)
exist in dimension 6, where an example is provided by a matrix with
s = 21, r = 17 and equal non-zero eutaxy coefficients (so that the cor-
responding minimal vectors constitute a spherical 3-design), found by
Elbaz-Vincent, Gangl and Soulé; see the talk by Elbaz-Vincent in [Ob].

Also, a perfect, semi-eutactic matrix with T % S0 is provided by a
Läıhem lattice (a perfect 8-dimensional lattice having a perfect
7-dimensional section with the same minimum). Gram matrices for
these lattices are displayed in [Bt-M] (use the command lh(i)), and Ja-
quet has listed those which are eutactic or semi-eutactic, non-eutactic
(all are weakly eutactic since they are perfect). (Jaquet’s unpub-
lished results have been recently confirmed by Cordian Riener ([Ri]),
who has tested for eutaxy all perfect 8-dimensional lattices — Du-
tour, Schürmann and Vallentin have recently announced that the list of
perfect, 8-dimensional lattices displayed in[Bt-M] is indeed complete.)
There are exactly 21 semi-eutactic, non-eutactic Läıhem lattices, and
for 20 of them, there exists a eutaxy relation for which S0 = S0

0 . For
the remaining lattice, namely lh(958), with s = 40, S0 reduces to S+

0 ,
and there exist minimal vectors y, z with Uz + Uy = 0 and a eutaxy
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relation with coefficients ay = az = 0. In this case, T = {±y,±z}, and
SrT is the set of minimal vectors of the unique cell C � CA contained
in HA.

Various examples of perfect, weakly eutactic, non-semi-eutactic ma-
trices A such that H−A contains cells C with S(A)rS(C) 6⊂ S0 have been
found among the Läıhem lattices. For instance, there are 154 Läıhem
lattices with s = 38 among which 5 (e.g., lh(183)) provide such a cell.

Proposition 4.2. Let A be a weakly eutactic matrix and let C � CA.
Denote by C1, . . . , Ck the cells of rank r − 1 such that C ≺ Ci ≺ CA.
Then

C ⊂ H−A ⇐⇒ ∀ i, Ci ⊂ H−A .

Proof. If C ⊂ H−A , then Ci ⊂ C is also contained in H−A .
Let us now prove the converse. For i = 1, . . . , k let Fi ∈ VA be “facet-

matrices” for Ci (see Lemma 2.1; we have 〈Fi, xtx〉 = 0 for x ∈ S(Ci)
and 〈Fi, xtx〉 > 0 for x ∈ S(A)rS(Ci)). Then for any M ∈ C there
exist, as we now prove, V ∈ V ⊥A and αi ≥ 0, i = 1, . . . , k such that

M = A+ V +
k∑
i=1

αiFi . (∗∗)

Indeed, let Fi = DCi (resp. F = DC) be the facets of DA (resp. the face
of DA) associated with the cells Ci (resp. with C); thus the Fi are the
facets of DA containing F . Denote by F the orthogonal projection to
VA of M − A, so that F⊥ is a supporting hyperplane of DA for F ; see
Lemma 2.1. We must prove that F is a positive linear combination of
the Fi. Let C = {v ∈ VA | ∀ i, 〈v, Fi〉 ≥ 0} and let v ∈ C. Replacing v
by a vector w of the form w = h v+ (1− h)u for some non-zero u ∈ F
and a small enough h > 0, we may assume that v belongs to DA.
We then have 〈v, F 〉 ≥ 0, so that the cone defined by the inequalities
〈v, Fi〉 ≥ 0 and 〈v,−F 〉 ≥ 0 is contained in the hyperplane F⊥. By
Voronoi’s “fundamental principle” used in the proof of Proposition 2.2,
−F and the Fi are positively dependent. Since the Fi are not positively
dependent (the cone C has maximal dimension by [Br], Corollary 11.7),
F is a positive combination of the Fi, say

∑
i αi Fi, and (∗∗) holds

taking V = (M −A)− F . By (∗∗), since V belongs to V ⊥A and A−1 to
VA, we have 〈M − A,A−1〉 = 〈F,A−1〉 ≤ 0. �

We now make more precise the case when s = r + 1. (As above, r
stands for the perfection rank of A.) There is (up to a scaling factor)
a unique perfection relation

∑
x∈S(A)/± ux x

tx = 0. We also chose a

eutaxy relation A−1 =
∑

x∈S(A)/± ax x
tx. The set S(A) can be written
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as a disjoint union S(A) = S0∪P+∪P− where P+ = {x ∈ S(A) | ux >
0} and P− = {x ∈ S(A) | ux < 0}. (Note that only the unordered set
{P+, P−} is intrinsic.)

Proposition 4.3. Let A with s(A) = r + 1. A cell C ≺ CA of rank
r − 1 is of one of the following two types:

(1) S(C) = S(A)r{±z}, z ∈ S0.
(2) S(C) = S(A)r{±x,±y}, x ∈ P+, y ∈ P−.

The cell C is contained in H−A (resp. in HA) if and only if z ∈ S−0
(resp. z ∈ S0

0) in case (1), and ax
ux
< ay

uy
(resp. ax

ux
= ay

uy
) in case (2).

Proof. The description of the possible cells C results directly from The-
orem 4.1. Let F such that 〈F, xtx〉 is zero if x ∈ S(C) and strictly
positive if x ∈ S(A)rS(C). We have

〈F,A−1〉 =
∑

±x∈S(A)rS(C)

ax 〈F, xtx〉 and
∑

±x∈S(A)rS(C)

ux 〈F, xtx〉 = 0 .

Recall (Lemma 2.1) that the position of C with respect to HA de-
pends on the sign of 〈F,A−1〉. In case (1), 〈F,A−1〉 has the sign of az.
In case (2), we have

〈F,A−1〉 = (−uy 〈F, yty〉) (
ax
ux
− ay
uy

)

so that 〈F,A−1〉 has the sign of ax
ux
− ay

uy
. �

Remark 4.4. Removing from S(A) vectors of S0 preserves the eutaxy

relation
∑

x∈P+∪P− uxx
tx = 0, while removing one pair (±x,±y), (x, y) ∈

P+ × P− destroys it. Thus iterating Construction 4.2 we obtain two types

of cells C ≺ CA of perfection rank rC = r − k, k ≥ 1: those obtained by

removing from S(A) k pairs ±z of vectors of S0, and those obtained by

removing k + 1 pairs ±x, with at least one of them in P+ and one of them

in P−.

We now give an example for which H−A contains two maximal cells
C ≺ CA. We take for A a Gram matrix for the lattice nap(4118)
(see [Bt-M] for the definition of the Napias lattices). Here, we have

r = 8(8+1)
2

= 36 and s = 37.

In the following we denote by [R] the cell below CA obtained by re-
moving from S(A) the vectors of R, and we shall use this notation to

describe the set EA = {C ≺ CA and C ⊂ H−A}. The perfection relation
of A reads

∑
x∈P+ xtx −

∑
x∈P− x

tx = 0, with |P+| = |P−| = 8 (we
count the pairs ±x). With the notation of Proposition 4.3 the set S0

0 is
empty, S−0 consists of a single pair ±z0, and the differences ax

ux
− ay

uy
for
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(x, y) ∈ P+×P− are strictly positive except for three pairs (±x1,±y1),
(±x2,±y2) and (±x1,±y2), with respective values −44,−44 and −444.
By Proposition 4.3, we see that among the 85 cells of rank 35 below

CA, only four are contained in H−A (actually, in H−A ): the cell [±z0] of
type (1) and the cells [±x1,±y1], [±x2,±y2] and [±x1,±y2] of type (2).
Let [R] ≺ CA be a cell of rank ≤ 34. The cells of rank 35 above [R] are
the [±z] and the [±x,±y] with x, y, z ∈ R, x ∈ P+, y ∈ P− and z ∈ S0.
Thus by Proposition 4.2 the cell [R] belongs to EA if and only if R is in-
cluded in one of the sets {±z0,±x1,±x2,±y2} or {±z0,±x1,±y1,±y2}.
[Indeed R must not contain both x2 and y1, since the cell [±x2,±y1]
is contained in H+

A .] Taking into account the general form of the
cells below CA (see Remark 4.4), we can complete the enumeration
of the cells belonging to EA. There are five cells of rank 34, namely
[±z0,±x1,±y2], [±z0,±x2,±y2], [±x1,±x2,±y2], [±z0,±x1,±y1] and
[±x1,±y1,±y2]; two cells of rank 33, namely [±z0,±x1,±x2,±y2] and
[±z0,±x1,±y1,±y2]; and no cell of rank ≤ 32. So, the set EA contains
1+4+5+2 cells, and Theorem 3.4 enables us to check this enumeration:

1− 4 + 5− 2 = 0 .
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