Théorie des nombres et applications

C.I.R.M., 30 novembre — 4 décembre 2009

Jacques Martinet. Hermite versus Minkowski. Let Λ be a lattice in an n-dimensional Euclidean space E, of determinant D. Define the invariant $H(\Lambda)$ (resp. $M(\Lambda)$) as the minimum of $\left(\frac{N(e_1)\cdots N(e_n)}{D}\right)^{1/n}$ where $e_1,\ldots,e_n\in\Lambda$ constitute a basis for Λ (resp. for E) and then their supremum H_n and M_n on the set of all lattices. Upper bounds for H_n (resp. M_n) were given by Hermite (resp. by Minkowski); Minkowski's bound is simply the Hermite constant which has been intensively studied since it was defined. In the talk, we shall prove that H_n/M_n is equal to $\max(1,\frac{n}{4})$ for $n \leq 8$, a result conjectured by Achill Schürmann, and which might well be still correct for n = 9. (For n > 9, H_n is strictly larger than $\frac{n}{4}$.)