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Préhistoire

Soit q(X) = tX A X une forme quadratique définie
positive en n variables. Trouver une constante γn telle
qu’il existe X ∈ Zn avec (det(A) est le discriminant de q)

q(X) ≤ γn
min q

det(A)1/n
.

Lagrange (1770) : γ2 = 2√
3

.

Gauss (1831) : γ3 = 21/3 .

Hermite (6 août 1845, lettre à Jacobi) : γn existe, et
γn ≤ (4

3 )(n−1)/2 .

Korkine & Zolotareff (1872) : γ4 =
√

2 .a

Korkine & Zolotareff (1877) : γ5 = 23/5 .

Enfin Minkowski vint ...
afuture inégalité de Mordell (1944) : γn ≤ γ

(n−1)/(n−2)
n−1
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Réseaux permis

Soit E un espace euclidien. Un réseau de E est un
sous-groupe de E possédant une Z-base qui constitue une
base de E (sur R). On dit qu’un réseau Λ est permis

pour une partie A de E si Λ ∩A = {0} ou ∅. La
constante de réseau κ(A) de A est la borne inférieure des
déterminants des réseaux permis pour A (ou +∞).

N.B. On pose det(Λ) = det(ei · ej) où B = (e1, . . . , en)
est une base de Λ. C’est le carré du déterminant d’une
base de Λ dans une base orthonormée (ε1, . . . , εn) de E.

N.B. Aujourd’hui, l’origine sera toujours un point
intérieur de A =⇒ κ(A) > 0.
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Un point de vue révolutionnaire

Idée de base : il revient au même

• de majorer q(x)/disc(q)1/n sur Zn pour toute forme q ;

• de majorer q(x)/[disc(q) det(Λ)]1/n sur Λ pour
toute forme q et pour tout réseau Λ ;

• de majorer q(x)/[disc(q) det(Λ)]1/n sur Λ pour tout Λ,
mais pour une seule forme q,
par exemple x2

1 + x2
2 + · · ·+ x2

n sur E ' Rn.

• de minorer Γn = κ(Bn) (Bn : boule unité de Rn).
[On a Γn = γ

−n/2
n , cf. infra.]

Minkowski remarque que si le réseau est permis pour Bn,
il empile les boules de rayon 1

2 , empilement dont la
densité δ est au plus 1, et il estime δ par passage à la
limite. Cela remplace la majoration exponentielle en n de
γn due à Hermite par une majoration linéaire :(4

3

)(n−1)/2 devient par exemple 1 +
n
4
.

Plus tard, il remarque que l’argument des boules s’étend
aux domaines convexes symétriques.
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La majoration δ < 1 n’est pas bonne. Bien majorer δ a
conduit à d’importants progrès, d’abord par Blichfeldt.

Chabauty. Une ménagère achetant des pommes dans

Rn, lorsque n est grand, rapporte surtout du vide dans

son panier.

Empilements quelconques. Ambrose Rogers, 1964 ;
Cohn & Elkies, 2003.

Joint à de la combinatoire (designs sphériques), ce
résultat a conduit au

Théorème de Cohn & Kumar. γ24 = 4, valeur
atteinte uniquement sur le réseau de Leech.
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Hermite et Minkowski : produits

Dans une lettre à Jacobi, Hermite précise sa majoration ;
voici l’énoncé en termes de réseaux : un réseau Λ possède
une base telle que(

N(e1) · · ·N(en)
)1/n ≤

(4
3

)(n−1)/2 det(Λ) .

Minkowski : il existe des vecteurs e1, . . . , en indépendants

tels que (
N(e1) · · ·N(en)

)1/n ≤ γn det(Λ) .
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Fonctions distances

Il s’agit de fonctions F : E→ R≥0 continues, et
〈〈homogènes de degré d > 0〉〉 dans le sens suivant :

∀x ∈ E , ∀λ ∈ R , F(λx) = |λ|dF(x) .

À F, on associe A = {x ∈ E | F(x) < 1} et l’on étend
F à l’espace des réseaux par

F(Λ) = inf
x∈Λr{0}

F(x) .

On a alors
κ(A) = F(Λ)−n/d .

Exemple : en prenant F(x) = x · x (= ‖x‖2, noté N(x)),
on obtient

γn = Γ−2/n
n .
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Formes quadratiques indéfinies

Soit F(x) = |x2
1 + · · ·+ x2

r − x2
r+1 − · · · − x2

r+s| .

Quid de κ pour le domaine F(x) < 1 ? (n = r + s.)

Signatures (1,1)a et (2,1) : Markoff(v), 1879, 1903

Signatures (3,1) et (2,2) : Oppenheim, 1931, 1934

Conjecture (Oppenheim, 1929) ; théorème (Margulis,
1987). Une forme quadratique q indéfinie en au moins 3
variables qui n’est pas proportionnelle à une forme entière
prend des valeurs arbitrairement petites.

=⇒ κ = +∞ si n ≥ 5 .

Mieux (Dani & Margulis) : q(Z) est dense dans R.

La démonstration originale consiste à se ramener à un
théorème sur les groupes de Lie : soient G = SL3(R),
Γ = SL3(Z), H le stabilisateur de q = 2x1x2 + x2

3 dans
G. Si z ∈ G/Γ a une orbite Hz relativement compacte,
H/H ∩Gz est compact.

aSur le formes quadratiques binaires indéfinies, Mat. Ann. 15
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Réseaux associés aux corps de nombres

En complétant un corps de nombres K de signature
(r1, r2) pour une norme du maximum relativement à la
valeur abolue usuelle de Q, on obtient une R-algèbre

K̂ 'can. R⊗K ' Rr1 × Cr2 ,

munie de l’involution canonique induite par la
conjugaison complexe, que la 〈〈trace tordue〉〉 munit d’une
structure euclidienne :

x · y = Tr C/R (xy) .
[Attention: Tr(zz) = 2 zz, d’où des 2r2 ici et là.]

Un sous-module M de K, de rang n = [K : Q] et de type
fini s’identifie à un réseau de K̂ (on dira réseau algébrique

pour la signature (r1, r2)).

On pose N(M) = minx∈Mr{0} |NK/Q(x)| ;
c’est un nombre m strictement positif, ce qui va
permettre de construire par renormalisation des réseaux
permis pour les ensembles qui suivent.

Remarque. Quid des corps gauches ?
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Fonction distance et domaine
assocés à une signature

On prend E = Rn, et l’on pose

Nr1,r2(x) =
r1∏

i=1

|xi|
r2∏

j=1

(y2
j + z2

j ) ,

Ar1,r2 = {x ∈ Rn | Nr1,r2(x) < 2r2} ,
κr1,r2 = κ(Ar1,r2) ,

Br1,r2 = {x ∈ Rn |
∑
|xi|+ 2

∑
(y2

j + z2
j ) < 1} .

On a les inclusions (inégalités arithmético-géométriques)

• Ar1,r2 ⊂ Ar1+2,r2−1 (r2 > 0).

• n 2r2/n Br1,r2 ⊂ Ar1,r2 .

• B(0,
√

n) ⊂ Ar1,r2 .

À l’aide de l’inclusion (2) et de son théorème sur les
convexes symétriques, Minkowski démontre (lettre à
Hermite, janvier 1891, publiée aux C.R.A.S.) la
conjecture de Kronecker (Crelle 92, 1882) sur les
discriminants : K 6= Q =⇒ |dk| > 1.
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Théorème. Tout M ⊂ K de signature (r1, r2) contient
un élément x non nul tel que

|NK/Q(x)| ≤
( |dK(M)|

κr1,r2

)1/2

,

=⇒

toute classe d’idéaux de K contient un idéal a t.q.

NK/Q(a) ≤
( |dK|
κr1,r2

)1/2

.

Pour prouver la conjecture de Kronecker, il n’y a plus
qu’à minorer NK/Q(a) par 1 et κr1,r2 par κ(Br1,r2), puis
cette constante par un calcul de volume.
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Réseaux isolés et châıne de Markoff

En cherchant les minima locaux des déterminants des
réseaux permis pour un domaine A (↔ maxima locaux

pour F(Λ)/ det(Λ)d/n), on rencontre souvent des réseaux

isolés Λ0, i.e. tels dans tout voisinage assez petit de Λ0,
les réseaux permis se déduisent de Λ0 par automorphisme
de A et homothétie de rapport λ ≥ 1.

On évite alors des raisonnements 〈〈à ε près〉〉 dans
l’utilisation du théorème de compacité de Mahler.

C’est le cas du domaine associé à F(x,y) = |xy| (pour
lequel les énoncés ont une traduction en termes
d’approximation diophantienne) pour les réseaux avec
det(Λ) < 9, ceux de la châıne de Markoff :

d = 5,8,
221
25

, ..., de la forme 9− 4
m2

n

où le nombre de

Markoff mn est équivalent (Zagier) à
1
3

e2.35234...
√

n.

Du fait que 9 est un point d’accumulation, il y a
〈〈explosion〉〉 des réseaux permis de déterminant 9.

De ce point de vue, la dimension 2 pourrait être spéciale.

12



Corps totalement réels

n = 3 (Cassels et Swinnerton-Dyer, 1955).

Thm 1. Les réseaux algébriques sont fortement isolés.

Fortement : les valeurs de x1x2x3 sont denses dans R.

Les réseaux algébriques sont en fait isolés pour n ≥ 3
(Skubenko, 1981 ; Akramov, 1990). Cela est lié à l’égalité
dim Aut(F) = rang des unités.

Conjecture générale. Si n ≥ 3, à automorphisme et
homothétie près, tout réseau permis est algébrique.

Thm 2. Cette conjecture pour n = 3 entrâıne la

Conjecture de Littlewood :

∀α, β ∈ R, lim inf
q→+∞

q ‖qα‖ ‖qβ‖ = 0 .

N.B. Une démonstration fausse de la conjecture générale
a été publiée par Skubenko.

Remarque. La C. G. entrâıne vraisemblablement que
les minima successifs (isolés) forment une suite tendant
vers l’infini, et donc une majoration en o(

√
dK) pour les

normes minimales des idéaux dans une classe.
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Corps cubiques réels
(d’après H.P.F. S.-D., 1971)

Après avoir publié en 1941 une démonstration courte du
calcul de la constante de réseau, Davenport a prouvé en
1943 aux prix d’énormes difficultés que les premiers
minima sont 72, 92, puis > 82, . . . Swinnerton-Dyer a
réussi à programmer la recherche des 19 premiers
minima, jusqu’à 296, . . . : 72 = 49, 92 = 81, 148,
(63/5)2 = 158,76 (n.p.), 132 = 169, (91/7)2 = 132

(n.p.), ... Il apparâıt dans la liste des modules qui ne
proviennent pas de classes d’idéaux.

Discriminants.

n 3 4 5 6

Minkowski 20 113 678 4199

connu 49 500 3251 14762

conject. 49 725 14641 300125
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Autres signatures

Le résultat optimal n’est connu que pour n = 2 et 3,
atteint sur les réseaux associés aux entiers d’Eisenstein et
au corps cubique de discriminant −23. Une difficile
démonstration avec la preuve que le réseau est
〈〈faiblement〉〉 isolé a été donnée par Davenport et Rogers
en 1950.

Point de vue de Mordell. Pour les formes cubiques
binaires, les constantes de réseau sont associées aux
discriminants −23 et +49. Un argument de dualité
permet de ramener n = 3 à n = 2.

Un résultat général d’isolement 〈〈faible〉〉 a été publié (en
russe) par Akramov en 2002.

Discriminants (cas r1 ≤ 1).

n 3 4 5 6 8

Minkowski 12 43 258 985 25067

Sphere 13 64 390 2187 65536

conject. 23 117 1609 9747 1257728
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