Lattices, Abelian varieties and curves

Jacques Martinet

Université de Bordeaux, IMB

Talence, January 28, 2020

This talk completes a talk delivered in March 23, 2019 at Marseille-Luminy, under the title

Automorphisms of Lattices. Application to Curves,

at the meeting

Cohomology of Arithmetic Groups, Lattices and Number Theory: Geometric and Computational Viewpoint, CIRM, 25 - 29 March 2019.

Complex Abelian Varieties from a Euclidean viewpoint

These are the complex tori $\mathbb{T}:=\mathbb{C}^g/\Lambda$ on which there exists g algebraically independent meromorphic functions, a property equivalent to the existence of a projective embedding, and also to the fact that they carry the structure of an algebraic variety, and above all, to the existence of

Riemann form on \mathbb{T} ,

that is a positive, definite Hermitian form on \mathbb{C}^g , the *polarization*, whose imaginary part is integral on the lattice.

Such a form is well-defined by its real part, which gives \mathbb{C}^g the structure of a Euclidean space E (and also by its imaginary part, which is alternating).

Complex Abelian Varieties from a Euclidean viewpoint

These are the complex tori $\mathbb{T}:=\mathbb{C}^g/\Lambda$ on which there exists g algebraically independent meromorphic functions, a property equivalent to the existence of a projective embedding, and also to the fact that they carry the structure of an algebraic variety, and above all, to the existence of

Riemann form on \mathbb{T} ,

that is a positive, definite Hermitian form on \mathbb{C}^g , the *polarization*, whose imaginary part is integral on the lattice.

Such a form is well-defined by its real part, which gives \mathbb{C}^g the structure of a Euclidean space E (and also by its imaginary part, which is alternating).

To $x \mapsto i x$ corresponds $\pm u = u^{\pm 1} \in \operatorname{End}(E)$ with $u^2 = -\operatorname{Id}$, and the integrality property above reads

$$\forall x, y \in \Lambda \mid x \cdot u(y) \in \mathbb{Z} \iff u(\Lambda) \subset \Lambda^*$$
.

Given (E, Λ) , a *polarization* is now a linear map $u \in End(E)$ such that

$$u^2 = -\operatorname{Id}$$
 and $u(\Lambda) \subset \Lambda^*$.

and this is called *principal* when $u(\Lambda) = \Lambda^*$. We shall only consider *Principally Polarized Abelian Varieties*, PPAV for short.

Jacobians

We shall only need a formal definition, particular case of the more general notion of an Albanese variety attached to a compact, connected complex manifold (or to a projective algebraic variety).

Jacobians

We shall only need a formal definition, particular case of the more general notion of an Albanese variety attached to a compact, connected complex manifold (or to a projective algebraic variety).

In the setting of Riemann surfaces, its construction as a torus \mathbb{C}^g/Λ makes use of integrals defining the "periods"; in the setting of algebraic curves (Weil, over any field), it makes use of classes of degree-zero divisors on a curve.

Jacobians

We shall only need a formal definition, particular case of the more general notion of an Albanese variety attached to a compact, connected complex manifold (or to a projective algebraic variety).

In the setting of Riemann surfaces, its construction as a torus \mathbb{C}^g/Λ makes use of integrals defining the "periods"; in the setting of algebraic curves (Weil, over any field), it makes use of classes of degree-zero divisors on a curve.

If the automorphism group of a lattice Λ is "large enough", we may hope that Λ should be algebraic, i.e., that it gets a Gram matrix with entries in a number field when rescaled to a rational minimum.

Using this device we may obtain explicit examples of Jacobians *up to scale*. This will be achieved in this talk for a few curves of genus 2 and 3.

Torelli's Theorem

Analytic theory: Ruggiero Torelli (1913).

Algebraic geometry: André Weil (1957); special proofs for genera 2, 3, 4.

→ dichotomy for 2-dimensional PPAVs:

either products of elliptic curves or Jacobians.

Torelli's Theorem

Analytic theory: Ruggiero Torelli (1913).

Algebraic geometry: André Weil (1957); special proofs for genera 2, 3, 4.

⇒ dichotomy for 2-dimensional PPAVs: either products of elliptic curves or Jacobians.

Serre's formulation (in an appendix to a paper by Kristin Lauter).

```
Notation. (f: C \rightarrow C') \rightarrow (F_J: Jac(C) \rightarrow Jac(C')).
```

Theorem. Let $\mathcal{C}, \mathcal{C}'$ be curves of genus $g \geq 2$, with polarized Jacobians (J, u), (J', u'), and let $F : J \to J'$ be an isomorphism of polarized Abelian varieties. Then:

- 1. If C is hyperelliptic, there exists a unique isomorphism $f: C \to C'$ such that $f_J = F$.
- 2. If \mathcal{C} is not hyperelliptic, there exists an isomorphism $f: \mathcal{C} \to \mathcal{C}'$ and an integer $e = \pm 1$ such that $F = e \cdot f_J$, and (F, e) is uniquely defined by f.

```
In particular, in case 1 (resp. 2), \operatorname{Aut}(\operatorname{Jac}(\mathcal{C})) \simeq \operatorname{Aut}(\mathcal{C}) (resp. \operatorname{Aut}(\operatorname{Jac}(\mathcal{C})) \simeq \operatorname{Aut}(\mathcal{C}) \times \{\pm \operatorname{Id}\}.)
```

Hyperbolic geometry

By the Riemann uniformization theorem, the universal covering of a Riemann surface S of genus $g \ge 2$ is the upper half-plane H, of which S can viewed as a quotient by a group of automorphisms.

These data can be interpreted in the setting of hyperbolic geometry, groups of automorphisms of *S* being characterized as the finite quotients of some finitely presented group.

Such a group has a presentation of the form:

- Generators: $a_1, b_1, ..., a_g, b_g, c_1, ..., c_r$;
- Relations: $\prod [a_i, b_i] \cdot \prod c_j = 1$; $c_i^{m_j} = 1, i = 1, \dots, r$.

Hyperbolic geometry

By the Riemann uniformization theorem, the universal covering of a Riemann surface S of genus $g \ge 2$ is the upper half-plane H, of which S can viewed as a quotient by a group of automorphisms.

These data can be interpreted in the setting of hyperbolic geometry, groups of automorphisms of *S* being characterized as the finite quotients of some finitely presented group.

Such a group has a presentation of the form:

- Generators: $a_1, b_1, ..., a_g, b_g, c_1, ..., c_r$;
- Relations: $\prod [a_i, b_i] \cdot \prod c_j = 1$; $c_i^{m_i} = 1, i = 1, \dots, r$.

With these methods one can more or less decide whether a given finite group G is A group of automorphisms of some curve, but G need not be **THE** group of automorphisms of some curve.

Hyperbolic geometry

By the Riemann uniformization theorem, the universal covering of a Riemann surface S of genus $g \ge 2$ is the upper half-plane H, of which S can viewed as a quotient by a group of automorphisms.

These data can be interpreted in the setting of hyperbolic geometry, groups of automorphisms of *S* being characterized as the finite quotients of some finitely presented group.

Such a group has a presentation of the form:

- Generators: $a_1, b_1, \ldots, a_g, b_g, c_1, \ldots, c_r$;
- Relations: $\prod [a_i, b_i] \cdot \prod c_j = 1$; $c_i^{m_i} = 1, i = 1, \dots, r$.

With these methods one can more or less decide whether a given finite group G is A group of automorphisms of some curve, but G need not be **THE** group of automorphisms of some curve.

One can prove bounds for the order of automorphism groups.

Hurwitz: $|\operatorname{Aut}(C)| \leq 84(g-1)$.

If this bound is not sharp: $|Aut(C)| \le 48(g-1), ...$

The Craig Lattices

Data. p: an odd prime; n = p - 1; $\zeta = e^{2\pi i/p}$; $K = \mathbb{Q}(\zeta) \subset \mathbb{C}$; $\mathfrak{P} = (1 - \zeta) \subset \mathbb{Z}_K$; T: the bilinear form $\frac{1}{p}\operatorname{Tr}_{K/\mathbb{Q}}(x\overline{y})$ on K.

 $\mathbb{A}_n^{(i)}$ is \mathfrak{P}^i viewed as a lattice in $E := \mathbb{R} \otimes K$. $[\mathbb{A}_{p-1}^{(1)}]$ is the root lattice \mathbb{A}_{p-1} .

The Craig Lattices

Data. p: an odd prime; n = p - 1; $\zeta = e^{2\pi i/p}$; $K = \mathbb{Q}(\zeta) \subset \mathbb{C}$;

 $\mathfrak{P} = (1 - \zeta) \subset \mathbb{Z}_K$; T: the bilinear form $\frac{1}{p} \operatorname{Tr}_{K/\mathbb{Q}}(x\overline{y})$ on K.

 $\mathbb{A}_n^{(i)}$ is \mathfrak{P}^i viewed as a lattice in $E := \mathbb{R} \otimes K$. $[\mathbb{A}_{p-1}^{(1)}]$ is the root lattice \mathbb{A}_{p-1} .

Remarks. Up to scale,

- **1.** $i \mapsto i + \frac{p-1}{2}$ is a period.
- 2. $i \mapsto \frac{p+1}{2} i$ is a duality,

2' and in particular, $\mathbb{A}_{p-1}^{(p+3)/4}$ is symplectic.

[Use multiplication by the Gauss sum $S = \sum_{i=1}^{p-1} {p \choose i} \zeta^i$; note that $S^2 = -p$.]

The Craig Lattices

Data. p: an odd prime; n = p - 1; $\zeta = e^{2\pi i/p}$; $K = \mathbb{Q}(\zeta) \subset \mathbb{C}$;

 $\mathfrak{P} = (1 - \zeta) \subset \mathbb{Z}_K$; T: the bilinear form $\frac{1}{p} \operatorname{Tr}_{K/\mathbb{Q}}(x\overline{y})$ on K.

 $\mathbb{A}_n^{(i)}$ is \mathfrak{P}^i viewed as a lattice in $E := \mathbb{R} \otimes K$. $[\mathbb{A}_{p-1}^{(1)}]$ is the root lattice \mathbb{A}_{p-1} .

Remarks. Up to scale,

- **1.** $i \mapsto i + \frac{p-1}{2}$ is a period.
- 2. $i \mapsto \frac{p+1}{2} i$ is a duality,

2' and in particular, $\mathbb{A}_{p-1}^{(p+3)/4}$ is symplectic.

[Use multiplication by the Gauss sum $S = \sum_{i=1}^{p-1} {p \choose i} \zeta^i$; note that $S^2 = -p$.]

Theorem (CRAIG). $\min A_n^{(i)} \geq 2i$.

Theorem (ELKIES). Equality holds if $i = \frac{p+3}{4}$.

Proof. Identify $i = \frac{p+1}{4}$ with a Mordell-Weil lattice over a global function fields!

$\dim \Lambda = 6$, $|\operatorname{Aut}(\Lambda)| \supset C_7$ (1)

Gram matrices depend on two parameters:

$$A = \begin{pmatrix} 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ t_1 & 2 & t_1 & t_2 & t_3 & t_3 & t_3 \\ t_2 & t_1 & 2 & t_1 & t_2 & t_3 \\ t_3 & t_2 & t_1 & 2 & t_1 & t_2 \\ t_3 & t_3 & t_2 & t_1 & 2 & t_1 \\ t_2 & t_3 & t_2 & t_1 & 2 \end{pmatrix} \text{ where } t_1 + t_2 + t_3 = -1,$$

for parameters t_i such that $\min A = 2$.

These conditions define a hexagonal domain \mathcal{D} with vertices $A_1, B_1, A_2, B_2, A_3, B_3$, representing alternatively the Craig lattices $\mathbb{A}_6^{(1)} \simeq \mathbb{A}_6$ and $\mathbb{A}_6^{(2)}$.

$\dim \Lambda = 6$, $|\operatorname{Aut}(\Lambda)| \supset C_7$ (1)

Gram matrices depend on two parameters:

$$A = \begin{pmatrix} 2 & t_1 & t_2 & t_3 & t_3 & t_2 \\ t_1 & 2 & t_1 & t_2 & t_3 & t_3 & t_3 \\ t_2 & t_1 & 2 & t_1 & t_2 & t_3 \\ t_3 & t_2 & t_1 & 2 & t_1 & t_2 \\ t_3 & t_3 & t_2 & t_1 & 2 & t_1 \\ t_2 & t_3 & t_2 & t_1 & 2 \end{pmatrix} \text{ where } t_1 + t_2 + t_3 = -1,$$

for parameters t_i such that $\min A = 2$.

These conditions define a hexagonal domain \mathcal{D} with vertices $A_1, B_1, A_2, B_2, A_3, B_3$, representing alternatively the Craig lattices $\mathbb{A}_6^{(1)} \simeq \mathbb{A}_6$ and $\mathbb{A}_6^{(2)}$.

Automorphisms. Aut(
$$\mathbb{A}_6$$
) = Aut(\mathbb{A}_6^*) = {± Id} × S_7 ;
Aut ($\mathbb{A}_6^{(2)}$) = {± Id} × PGL₂(7), better understood as {± Id} × (PSL₃(2) · 2); Aut⁺ ($\mathbb{A}_e^{(2)}$) \simeq {± Id} × PSL₃(2).

 $\mathbb{A}_6^{(2)}$: unique symplectic structure, with centralizer $\{\pm \operatorname{Id}\} \times \operatorname{PSL}_3(2)$.

⇒ defines a PPAV with automorphism group this centralizer.

$$\dim \Lambda = 6$$
, $|\operatorname{Aut}(\Lambda)| \supset C_7$ (2)

Orbits under $\pm \sigma$. Three at vertices, two on edges, one in $Int(\mathcal{D})$.

$\dim \Lambda = 6$, $|\operatorname{Aut}(\Lambda)| \supset C_7$ (2)

Orbits under $\pm \sigma$. Three at vertices, two on edges, one in $Int(\mathcal{D})$.

Automorphisms. Aut = D_{14} and Aut⁺ = C_{14} , except for \mathbb{A}_6 and \mathbb{A}_6^* (2 × S_7) and $\mathbb{A}_6^{(2)}$ (2 × (PSL₃(2) · 2 \simeq 2 × PSL₂(7)).

$\dim \Lambda = 6$, $|\operatorname{Aut}(\Lambda)| \supset C_7$ (2)

Orbits under $\pm \sigma$. Three at vertices, two on edges, one in $Int(\mathcal{D})$.

Automorphisms. Aut = D_{14} and Aut⁺ = C_{14} , except for \mathbb{A}_6 and \mathbb{A}_6^* (2 × S_7) and $\mathbb{A}_6^{(2)}$ (2 × (PSL₃(2) · 2 \simeq 2 × PSL₂(7)).

Duality. 3 to 1 from A_i to A_0 : $\left(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}\right)$, representing \mathbb{A}_6^* indeed the barycenter of the A_i 's (and of the B_i 's), 1 to 1 on B_i , 2 to 1 on edges, 1 to 1 in $\operatorname{Int}(\mathcal{D})$ except 1 to 3 at A_0 and 1 to 2 on the images of pairs A - B - A of edges.

$\dim \Lambda = 6$, $|\operatorname{Aut}(\Lambda)| \supset C_7$ (2)

Orbits under $\pm \sigma$. Three at vertices, two on edges, one in $Int(\mathcal{D})$.

Automorphisms. Aut = D_{14} and Aut⁺ = C_{14} , except for \mathbb{A}_6 and \mathbb{A}_6^* (2 × S_7) and $\mathbb{A}_6^{(2)}$ (2 × (PSL₃(2) · 2 \simeq 2 × PSL₂(7)).

Duality. 3 to 1 from A_i to A_0 : $\left(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}\right)$, representing \mathbb{A}_6^* indeed the barycenter of the A_i 's (and of the B_i 's), 1 to 1 on B_i , 2 to 1 on edges, 1 to 1 in $\operatorname{Int}(\mathcal{D})$ except 1 to 3 at A_0 and 1 to 2 on the images of pairs A - B - A of edges.

These are arcs of hyperbola connecting the B_i 's to A_0 . Example:

$$t_1^2 - 4t_1t_2 - 3t_2^2 - 3t_1 - 8t_2 - 3 = 0$$
,

or

$$t_1 = \frac{-3t^2 - 50t + 25}{-6t^2 + 40t + 50}, \ t_2 = \frac{17t^2 - 20t - 25}{-6t^2 + 40t + 50}$$

Note that $0 \mapsto (\frac{1}{2}, -\frac{1}{2})$ and $1 \mapsto (-\frac{1}{3}, -\frac{1}{3})$.

$\dim \Lambda = 6$, $|\operatorname{Aut}(\Lambda)| \supset C_7$ (3)

Known matrices in \mathcal{D} for symplectic lattices: B_i , representatives for $\mathbb{A}_6^{(2)}$. Any other isodual lattice must lie in $\operatorname{Int}(\mathcal{D})$, off the arcs of hyperbolas. Choose a connected components $\mathcal{D}' \subset \mathcal{D}$ of this complementary set, and guess in \mathcal{D}' on one matrix M the set of minimal vectors of M^{-1} . This then holds in the whole connected component

It turns out that we may choose

$$\pm\{e_3^*, -e_1^* + e_4^*, -e_2^* + e_5^*, -e_3^* + e_6^*, -e_4^*, e_1^* - e_5^*, e_2^* - e_6^*\}$$

(seven vectors adding to zero). Corresponding parameters (adding to -1):

$$u_1 = e_3^* \cdot (-e_1^* + e_4^*), u_2 = e_3^* \cdot (-e_2^* + e_5^*), u_3 = e_3^* \cdot (-e_3^* + e_6^*).$$

We obtain

$$u_1 = \tfrac{-5t_1^2 - 8t_1\,t_2 + t_2^2 + t_1 - 2t_2 + 1}{t_1^2 + 3t_1\,t_2 + 4t_2^2 + 4t_1 + 6t_2 - 3} \ \ \text{and} \ \ u_2 = \tfrac{2t_1^2 + 6t_2\,t_1 + t_2^2 + t_1 + 5t_2 + 1}{t_1^2 + 3t_1\,t_2 + 4t_2^2 + 4t_1 + 6t_2 - 3} \ .$$

Solving the system $\{u_1 = t_1, u_2 = t_2\}$, we find

$$t_1 = -(1 + 6\theta + \theta^2)/2 = -0.176... t_2 = \theta = -0.109...,$$

where $\theta = -1 - 2\cos(4\pi/7)$, the only choice for which $(t_1, t_2) \in \mathcal{D}$.

PPAV for dim $\Lambda = 6$, $|Aut(\Lambda)| \supset C_7$

With the data above we may associate a similarity class of lattices, with field of definition $\mathbb{Q}(2\cos\frac{2\pi}{7})\subset\mathbb{C}$, having a unique class of symplectic isodualities. Let Λ_0 be such a lattice. We have proved that there exist

exactly two isomorphism classes of PPAVs having an automorphism of order 7.

PPAV for dim $\Lambda = 6$, $|Aut(\Lambda)| \supset C_7$

With the data above we may associate a similarity class of lattices, with field of definition $\mathbb{Q}(2\cos\frac{2\pi}{7})\subset\mathbb{C}$, having a unique class of symplectic isodualities. Let Λ_0 be such a lattice. We have proved that there exist

exactly two isomorphism classes of PPAVs having an automorphism of order 7.

Consider the projective curves H (hyperelliptic) and K (Klein's quartic):

$$H: y^2 z^5 = x^7 + z^7$$
, $K: x^3 y + y^3 z + z^3 x = 0$,

and their respective automorphisms of order 7

$$\sigma_1: (x,y,z) \mapsto (\zeta x,y,z) \text{ and } \sigma_2: (x,y,z) \mapsto (\zeta x,\zeta^4 y,\zeta^2 z).$$

PPAV for dim $\Lambda = 6$, $|Aut(\Lambda)| \supset C_7$

With the data above we may associate a similarity class of lattices, with field of definition $\mathbb{Q}(2\cos\frac{2\pi}{7})\subset\mathbb{C}$, having a unique class of symplectic isodualities. Let Λ_0 be such a lattice. We have proved that there exist

exactly two isomorphism classes of PPAVs having an automorphism of order 7.

Consider the projective curves H (hyperelliptic) and K (Klein's quartic):

$$H: y^2 z^5 = x^7 + z^7$$
, $K: x^3 y + y^3 z + z^3 x = 0$,

and their respective automorphisms of order 7

$$\sigma_1: (x,y,z) \mapsto (\zeta x,y,z)$$
 and $\sigma_2: (x,y,z) \mapsto (\zeta x,\zeta^4 y,\zeta^2 z)$.
Observe that K has an automorphism of order 3, whereas $|\operatorname{Aut}^+(\Lambda_0)| = 14$.

This shows that there are two curves having an automorphism of order 7: H, with lattice Λ_0 and $\operatorname{Aut}(H) = C_{14}$, and K, with lattice $\Lambda_6^{(2)}$. In this latter case, the Hurwitz bound shows that $\operatorname{Aut}(K)$ has index 2 in $\operatorname{Aut}^+(\Lambda_6^{(2)})$, hence is equal to $\operatorname{PSL}_3(2)$, since this group is simple.

Of course all that concerns K was known to Klein!

$$|G| = 9$$

We again find a hexagonal domain, but for which A_i , B_i represent alternatively the perfect lattices \mathbb{E}_6 and \mathbb{E}_6^* .

Lattices having a dual containing two orbits of minimal vectors lie on six arcs of conics connecting consecutive vertices. Their complementary set in $Int(\mathcal{D})$ is the union of six, pairwise equivalent connected components ...

End of slide REMOVED

At the date of the talk, because of a scaling error. I had missed a lattice defined (up to scale) over $\mathbb{Q}(\zeta_9)$ corresponding to the ordinary curve of genus 3

$$X^3Y + Y^3Z + Z^4$$

Dimension 4: an overview

We intend to make a somewhat crude classification of the possible actions of a group $G \subset SO(E)$.

Reducible lattices, some of which define product of elliptic curves, are considered apart.

Next there is not a lot to say about "small" groups: G 2-elementary $\implies |\operatorname{Aut}^+(\Lambda)| \le 8$, $|\operatorname{Aut}_u(\Lambda)| \le 4$.

Now let G contain an element σ of order $m \ge 3$. Then $\varphi(m) \le 4$.

$$\varphi(m) = 4$$
: $m = 5$ or 10, 8, 12.

$$\varphi(m) = 2 : m = 3, 4.$$

Dimension 4: an overview

We intend to make a somewhat crude classification of the possible actions of a group $G \subset SO(E)$.

Reducible lattices, some of which define product of elliptic curves, are considered apart.

Next there is not a lot to say about "small" groups: G 2-elementary $\Rightarrow |\operatorname{Aut}^+(\Lambda)| \leq 8$, $|\operatorname{Aut}_u(\Lambda)| \leq 4$.

Now let G contain an element σ of order $m \ge 3$. Then $\varphi(m) \le 4$.

$$\varphi(m) = 4$$
: $m = 5$ or 10, 8, 12. $\varphi(m) = 2$: $m = 3, 4$.

One must consider more closely minimal polynomials of σ (alias canonical decompositions of the representation over \mathbb{Q}). Negating σ if need be we are left with

Cyclotomic: $\phi_5, \phi_8, \phi_{12}$; ϕ_3, ϕ_4 . Non-cyclo.: $X^3 - 1$, $(X^2 + 1)(X - 1)$ (and $(X^2 + X + 1)(X^2 + 1)$).

Dimension 4: an overview

We intend to make a somewhat crude classification of the possible actions of a group $G \subset SO(E)$.

Reducible lattices, some of which define product of elliptic curves, are considered apart.

Next there is not a lot to say about "small" groups: G 2-elementary $\implies |\operatorname{Aut}^+(\Lambda)| \le 8$, $|\operatorname{Aut}_u(\Lambda)| \le 4$.

Now let G contain an element σ of order $m \geq 3$. Then $\varphi(m) \leq 4$.

$$\varphi(m) = 4$$
: $m = 5$ or 10, 8, 12. $\varphi(m) = 2$: $m = 3, 4$.

One must consider more closely minimal polynomials of σ (alias canonical decompositions of the representation over \mathbb{Q}). Negating σ if need be we are left with

Cyclotomic: ϕ_5 , ϕ_8 , ϕ_{12} ; ϕ_3 , ϕ_4 .

Non-cyclo.:
$$X^3 - 1$$
, $(X^2 + 1)(X - 1)$ (and $(X^2 + X + 1)(X^2 + 1)$).

In this latter case, only scaled copies of $\mathbb{A}_2 \otimes \mathbb{A}_2$ and \mathbb{D}_4 , and orthogonal sums of 2-dimensional lattices (some with two non-equivalent polarizations) are isodual.

<ロ > ← □

Consider the matrices

$$A(t) = \begin{pmatrix} 2 & t & -t-1 & -t-1 \\ t & 2 & t & -t-1 \\ -t-1 & t & 2 & t \\ -t-1 & -t-1 & t & 2 \end{pmatrix}, \text{ and } P = \begin{pmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 \end{pmatrix},$$

and the Moebius transformation $\alpha: t \mapsto \frac{2t+1}{t-2}$. Then the map

$$[-rac{1}{2},0] o\operatorname{\mathsf{Sym}}_4(\mathbb{R}):t\mapsto \mathit{A}(t)$$

parametrizes the set of 4-dimensional lattices of minimum 2 having an automorphism σ of order 5. On $(-\frac{1}{2},0)$ the group $Aut(\Lambda)$ is dihedral of order 20. We have

$${}^{t}PA(\alpha(t)) P = 5 \frac{1-t-t^{2}}{2+t} A(t)^{-1} \text{ and } {}^{t}P = -P,$$

so that duality exchanges t and $\alpha(t)$. The unique isodual lattice corresponds to the value $\theta := 2 - \sqrt{5}$ of t. This defines a unique PPAV,

Consider the matrices

$$A(t) = \begin{pmatrix} 2 & t & -t-1 & -t-1 \\ t & 2 & t & -t-1 \\ -t-1 & t & 2 & t \\ -t-1 & -t-1 & t & 2 \end{pmatrix}, \text{ and } P = \begin{pmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 \end{pmatrix},$$

and the Moebius transformation $\alpha: t \mapsto \frac{2t+1}{t-2}$. Then the map

$$[-rac{1}{2},0] o\operatorname{\mathsf{Sym}}_4(\mathbb{R}):t\mapsto \mathit{A}(t)$$

parametrizes the set of 4-dimensional lattices of minimum 2 having an automorphism σ of order 5. On $(-\frac{1}{2},0)$ the group $\operatorname{Aut}(\Lambda)$ is dihedral of order 20. We have

$${}^{t}PA(\alpha(t)) P = 5 \frac{1-t-t^{2}}{2+t} A(t)^{-1} \text{ and } {}^{t}P = -P,$$

so that duality exchanges t and $\alpha(t)$. The unique isodual lattice corresponds to the value $\theta := 2 - \sqrt{5}$ of t. This defines a unique PPAV,

which is the Jacobian of the curve C_5 of equation $y^2 = x^5 + 1$.

Consider the matrices

$$A(t) = \begin{pmatrix} 2 & t & -t-1 & -t-1 \\ t & 2 & t & -t-1 \\ -t-1 & t & 2 & t \\ -t-1 & -t-1 & t & 2 \end{pmatrix}, \text{ and } P = \begin{pmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 \end{pmatrix},$$

and the Moebius transformation $\alpha: t \mapsto \frac{2t+1}{t-2}$. Then the map

$$[-rac{1}{2},0] o\operatorname{\mathsf{Sym}}_4(\mathbb{R}):t\mapsto \mathit{A}(t)$$

parametrizes the set of 4-dimensional lattices of minimum 2 having an automorphism σ of order 5. On $(-\frac{1}{2},0)$ the group $\operatorname{Aut}(\Lambda)$ is dihedral of order 20. We have

$${}^{t}PA(\alpha(t)) P = 5 \frac{1-t-t^{2}}{2+t} A(t)^{-1} \text{ and } {}^{t}P = -P,$$

so that duality exchanges t and $\alpha(t)$. The unique isodual lattice corresponds to the value $\theta := 2 - \sqrt{5}$ of t. This defines a unique PPAV,

which is the Jacobian of the curve C_5 of equation $y^2 = x^5 + 1$.

This also shows that $|Aut(C_5)|$ is not larger than $|Aut^+(\Lambda)| = 10$.


```
E = \mathbb{R}^n, equipped with its Canonical basis \mathcal{B} = (\varepsilon_1, \dots, \varepsilon_n). Lattice \mathbb{Z}^n \subset E. Aut(\mathbb{Z}^n) \simeq 2^n \cdot S_n.
```

Now n=2m is even. Let \mathcal{E}_4 of equation $y^2=x^3+x$. $u_i,\ i=1,3,\ldots,n-1: \varepsilon_i\mapsto \varepsilon_{i+1},\ \varepsilon_{i+1}\mapsto -\varepsilon_i$, otherwise ε_j invariant. $u=\prod_i u_i$ is a symplectic automorphism, unique up to conjugacy.

 $\Longrightarrow \mathbb{Z}^n$ defines a unique PPAV, namely \mathcal{E}_4^m ,

 $\operatorname{Aut}_u(\mathbb{Z}^n) \simeq 4^m \cdot S_m$; order: 4, 32, 384, . . .

\mathbb{D}_4

- \mathbb{D}_n , n > 4: the even sublattice of \mathbb{Z}^n .
- *H*: Usual quaternions over Q.
- \mathfrak{O} : order $\mathbb{Z}[1, i, j, k]$.
- \mathfrak{M} : Hurwitz's order $\langle \mathfrak{D}, \omega := \frac{-1+i+j+k}{2} \rangle$.
- \mathbb{D}_4 , embedded into \mathfrak{O} , is the subset of \mathfrak{O} or of \mathfrak{M} of quaternions having an even reduced norm. This identifies \mathbb{D}_4^* with \mathfrak{M} .
- $\mathfrak{M}^*\mapsto \mathfrak{M}^*/\{\pm 1\}\simeq A_4$ defines the non-trivial double cover \tilde{A}_4 (or \hat{A}_4) of A_4 .
- The left multiplication φ by (j + k) (of square -2) maps \mathbb{D}_4^* onto \mathbb{D}_4 .
- $\Longrightarrow \frac{1}{\sqrt{2}} \mathbb{D}_4$ is symplectic.

Again, this structure is unique up to conjugacy.

Right multiplications by \mathfrak{M}^* and conjugacy by $\frac{j+k}{\sqrt{2}}$ commute with φ

 \Longrightarrow $\operatorname{Aut}_{\varphi}(\mathbb{D}_4)$ contains a group \mathcal{G} of order 48, actually the whole automorphism group. This groups extends \tilde{A}_4 , hence is one of \tilde{S}_4 or \hat{S}_4 , indeed $\tilde{S}_4 \simeq \operatorname{GL}_2(3)$. [Note that $\operatorname{PGL}_2(3) \simeq S_4$.]

Consider the matrices

$$\textit{A}(\textit{t}) = \left(\begin{smallmatrix} 2 & \textit{t} & 0 & -\textit{t} \\ \textit{t} & 2 & \textit{t} & 0 \\ 0 & \textit{t} & 2 & \textit{t} \\ -\textit{t} & 0 & \textit{t} & 2 \end{smallmatrix} \right) \;, \; 0 \leq \textit{t} \leq 1 \;, \; \; \text{and} \; \; \textit{P} = \left(\begin{smallmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{smallmatrix} \right).$$

Then the map

$$[0,1] o \mathsf{Sym}_4(\mathbb{R}) : t \mapsto \mathcal{A}(t)$$

parametrizes the set of 4-dimensional lattices of minimum 2 having an automorphism σ of order 8. On (0,1) the group $Aut(\Lambda)$ is dihedral of order 16. We have

$${}^{t}PA(t)P = A(-t), A(t)A(-t) = 2(2-t^{2})I_{4}, \text{ and } {}^{t}P = -P,$$

so that all lattices Λ_t are symplectic. Up to conjugacy, there are two symplectic isodualities, namely u, defined by P, and $v = u\tau\sigma^2$, with centralizers $\langle \tau\sigma^2, -\operatorname{Id} \rangle \simeq C_2 \times C_2$ and $\langle \tau, \sigma^2 \rangle \simeq D_4$, respectively. The 2-dimensional PPAVs with lattice Λ_t , 0 < t < 1, do not have automorphisms of order 8.

The Bolza curve

By the previous three slides there exist exactly two PPAVs having an automorphism of order 8. One is $\mathcal{E}_4 \times \mathcal{E}_4$. The Bolza curve Bo, defined by the equation

$$y^2=x(x^4+1)\,,$$

has the automorphism $(x, y) \mapsto (\zeta_8^2 x, \zeta_8 y)$. Hence,

its Jacobian is the PPAV attached to the uniquely polarized lattice $\frac{1}{\sqrt{2}} \mathbb{D}_4$.

We have thus proved that $Aut(Bo) \simeq GL_2(3)$, though automorphisms of order 3 (known to Bolza) are not visible on the equation above.

Cyclotomic groups of order 3 and 4

To complete the description of all possible automorphisms of curves and of their associated lattices, there only remains to consider

- (1) the orthogonal sums of isometric 2-dimensional lattices equipped with a *twisted* polarization (i.e., exchanging the two components), and
- (2) the cyclotomic actions of order 3 and 4.

Case (1) gives rise to curves with automorphism group $\mathbb{C}_2 \times C_2$ except D_4 if the 2-dimensional lattice has a unique symmetry, and a group of order 24 in the hexagonal case. This group is attained on the curve $y^2 = x^6 + 1$ (map (x, y) onto $(\zeta_6 x, y)$, (x, -y), and $(1/x, y/x^3)$.)

Case (2) is displayed in the next four slides.

Cyclotomic lattices, σ of order 3 (1)

(t_1,t_2)	Aut	±	orb	Groups
(1,0)	$(2^4 \cdot S_4) \cdot C_3$	_	1	PSL ₂ (3)
(1,-1/2)	$C_2 \times ((D_3 \times D_3) \cdot C_2)$	_	1	D_6
(1,-1/3)	$D_6 imes D_3$	_	1	D_6
(0,0)	$(D_6 \times D_6) \cdot C_2$	_	2	$(C_6 \times C_6) \cdot C_2, C_3 \cdot D_4$
(1/2,0)	D ₁₂	+	3	D_4, D_6 (twice)
(1/2, -1/4)	$D_6 imes C_2$	+	2	$C_2 \times C_2, D_6$
(1/2, -1/3)	D_6	+	2	$C_2 \times C_2, D_6$

Table: Order 3, W-R

Some lattices:

$$(1,0)$$
: \mathbb{D}_4 ; $(1,-1/2)$: $\mathbb{A}_2\otimes\mathbb{A}_2$; $(0,0)$: $\mathbb{A}_2\perp\mathbb{A}_2$.

Large groups:

$$(1,0)$$
: 48; $(0,0)$: 72, 24.

Cyclotomic lattices, σ of order 3 (2)

(t_1,t_2)	Aut	±	orb	Groups
(1,0)	$D_6 \times D_3$	_	1	D_6
(1,-1/2)	$D_6 \times C_2$	+	2	$C_2 \times C_2, D_6$
(1,-1/3)	D_6	+	2	$C_2 \times C_2, D_6$
(0,0)	$D_6 \times D_6$	_	1	D_6
(1/2,0)	D_6	+	2	$C_2 \times C_2, D_6$
(1/2, -1/4)	D_6	+	1	C_2
(1/2, -1/3)	C_6	+	1	C_2

Table: Order 3, non-W-R

Cyclotomic lattices, σ of order 4 (1)

(t_1,t_2)	Aut	±	orb	Groups
(1,-1)	$(2^4 \cdot S_4) \cdot C_3$	_	1	PSL ₂ (3)
(1,0)	$(D_6 \times D_6) \cdot C_2)$	_	2	$(C_6 \times C_6) \cdot C_2, C_3 \cdot D_4$
(1,-1/2)	D ₁₂	+	3	D_4, D_6 (twice)
(0,0)	$C_2^4 \cdot S_4$	_	1	$(C_4 \times C_4) \cdot C_2$
(1/2,0)	ord. 32, exp. 4	_	2	D ₄ (twice)
(1/2, -1/2)	D ₈	+	2	$C_2 \times C_2, D_4$
(1/2, -1/3)	D_4	+	3	$\mathit{C}_2 imes \mathit{C}_2$ (twice), D_4

Table: Order 4, W-R

Some lattices:

$$(1,-1): \mathbb{D}_4; \qquad (0,0): \mathbb{Z}^4.$$

Large groups:

$$(1,-1):48;(0,0):32.$$

Cyclotomic lattices, σ of order 4 (2)

(t_1,t_2)	Aut	土	orb	Groups
(1,-1)	$D_4 \cdot D_4$	_	1	D_4
(1,0)	$D_4 \cdot (C_2 \times C_2)$	_	2	D ₄ (twice)
(1,-1/2)	D_4	+	3	$C_2 imes C_2$ (twice), D_4
(0,0)	$D_4 imes D_4$	_	1	D_4
(1/2,0)	D_4	+	3	$C_2 imes C_2$ (twice), D_4
(1/2, -1/2)	D_4	+	1	C_2
(1/2, -1/3)	C_4	+	2	C_{2} (twice)

Table: Order 4, non-W-R

Automorphisms of curves

Theorem. Let G be one of the groups

$$C_2, C_2^2, D_4, C_{10}, D_6, H_{12} \times C_2$$
, and $GL_2(3)$,

of orders 2, 4, 8, 10, 12, 24, and 48, respectively.

Then a group is the automorphism group of some curve \mathcal{C} of genus 2 if and only if it belongs to the list above.

Moreover, for each of the orders 10, 24 and 48, the curve \mathcal{C} is unique up to isomorphism, and may be defined by the equations $y^2 = x^5 + 1$, $y^2 = x^6 + 1$ and $y^2 = x^5 + x$, respectively.

Proof. Only the last assertion needs a proof.

We observe that, disregarding products of elliptic curves, there are *two* groups of order divisible by 3 and larger than 12. One of them corresponds to the Bolza curve. There just remains the lattice $\frac{1}{\sqrt{3}}(\mathbb{A}_2 \perp \mathbb{A}_2)$ with a twisted polarization which accounts for the curve $y^2 = x^6 + 1$.