

Réseaux et designs sphériques

Jacques Martinet

(Laboratoire **A2X**, Uni. Bordeaux 1)

Besançon, le 16 octobre 2003

Colloque en l'honneur de

Georges GRAS

COMBINATORICS AND LATTICES

A few years ago, Boris VENKOV discovered that there are some interesting connections between the relatively recent theory of **spherical designs** on the one hand, and the theory of **extreme lattices** initiated by Alexandre KORKINE and Igor ZOLOTAREFF in their 1877 paper and developed thirty years later by Georges VORONOÏ.

A **lattice** is a discrete subgroup of a Euclidean space E , of maximal rank, indeed $n = \dim E$. A lattice Λ is **extreme** if the density of the sphere packing canonically attached to any lattice attains a local maximum at Λ .

Our spherical designs will live on the sphere of minimal vectors of a lattice; more generally, we shall sometimes consider the various layers; minimal vectors in the **dual lattice** will often play an important rôle.

REFERENCES

Basic book: Réseaux euclidiens, designs sphériques et groupes, L'Enseignement Mathématique, Monographie **37**, J. Martinet, ed., Genève, 2001; see in particular the contributions of VENKOV, BACHOC–VENKOV, MARTINET, MARTINET–VENKOV.

Further related papers:

GABI NEBE–VENKOV, *The strongly perfect lattices in dimension 10*, J. TdN Bx, **12** (2000), 503–518.

A.-M. BERGÉ–MARTINET, *Symmetric Groups and Lattices*, Monatshefte Math. (2003), to appear.

MARTINET–VENKOV, *On integral lattices having an odd minimum*, preprint, 42. pp.

THE NOTION OF A SPHERICAL DESIGN

Let S^{n-1} be the unit sphere with center O , endowed with the standard measure scaled to volume 1, let $t > 0$ be an integer, and let $X \subset \Sigma$ be a finite set.

We say that X is a *(spherical) t -design* if

$$\int_{\Sigma} f dx = \frac{1}{|X|} \sum_{x \in X} f(x)$$

holds for all polynomials of degree at most t on E .

Equivalent definition: the integral above is zero for all *homogeneous, harmonic polynomials* of degree at most t .

Example 1 “ X is a 1-design” \iff “0 is the center of gravity of X ”.

Remark 1 Any symmetric set which is a $2t$ -design is a $(2t + 1)$ -design.

Remark 2 If $n = 1$, every 2-design is a t -design for all t .

DESIGN IDENTITIES

From now on, all designs are symmetric.

Theorem 1 If $n \geq 2$ and if $t \geq 2$ is even, the following conditions are equivalent:

1. X is a t -design.
2. For all even $p \leq t$, there exists a constant c_p such that for all $\alpha \in E$,

$$\sum_{x \in X} (x \cdot \alpha)^p = c_p (\alpha \cdot \alpha)^{p/2} (x \cdot x)^{p/2}.$$

3. The identity above holds for $p = t$.

Moreover, when these conditions hold, we have

$$c_p = \frac{1 \cdot 3 \cdot 5 \dots (p-1)}{n(n+2)\dots(n+p-2)} |X|.$$

[However, to consider all even integers $p \leq t$ may prove useful.]

SOME NOTATION FOR LATTICES

The *norm* of $x \in E$ is $N(x) = x \cdot x$.

The *minimum* of Λ is $m = \min_{x \in \Lambda \setminus \{0\}} N(x)$.

The *sphere* of Λ is $S = \{x \in \Lambda \mid N(x) = m\}$. Let $s = \frac{|S|}{2}$
($2s$ is the *kissing number* of Λ).

The *Gram matrix* of a given basis $\mathcal{B} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ for Λ is
is $\text{Gram}(\mathcal{B}) = (e_i \cdot e_j)$. Let $\det(\Lambda) = \det(\text{Gram}(\mathcal{B}))$.

The density of the sphere packing attached to Λ is
proportional to $\gamma(\Lambda)^{n/2}$ where

$$\gamma(\Lambda) = \frac{\min \Lambda}{\det(\Lambda)^{1/n}}$$

is the *Hermite invariant* of Λ .

Dual version (A-MB +JM):

$$\gamma'(\Lambda) = (\gamma(\Lambda) \cdot \gamma(\Lambda^*))^{1/2} = ((\min \Lambda) \min(\Lambda^*))^{1/2}.$$

Here, Λ^* is the *dual lattice* to Λ , namely

$$\Lambda^* = \{x \in E \mid \forall y \in \Lambda, x \cdot y \in \mathbb{Z}\}.$$

EXTREME LATTICES (I)

Formal definitions in the space $\text{End}^s(E)$ of symmetric endomorphisms; for non-zero $x \in E$, p_x stands for the orthogonal projection onto the line $\mathbb{R}x$:

- Λ is *perfect* if the p_x , $x \in S$ span $\text{End}^s(E)$;
- Λ is *weakly eutactic* if there is a relation $\text{Id} = \sum_{x \in S} \rho_x p_x$ with real coefficients ρ_x .
- Λ is *eutactic* if there is a relation with strictly positive coefficients ρ_x .
- Λ is *strongly eutactic* if there is a relation with equal (strictly positive) coefficients ρ_x .

Remark 3 If there exists a relation with rational ρ_x , Λ is *rational*, i.e. proportional to an integral lattice.

EXTREME LATTICES (II)

Theorem 2 (KORKINE & ZOLOTAREFF, 1877)

1. “Extreme” \implies “Perfect”.
2. “Perfect” \implies “Rational”.

Theorem 3 (VORONOÏ, 1907)

“Extreme” \iff “Perfect” + “Eutactic”.

Theorem 4 (A-MB & JM;
VORONOÏ for perfect lattices;

Avner ASH for eutactic lattices)

In a given dimension, there are only finitely many weakly eutactic lattices (up to similarity).

Problem Classify the weakly eutactic lattices in a given dimension.

Known results:

- $n \leq 4$: ŠTOGRIN, 1974; A-MB + JM, 1996.
- $n = 5$: BATUT, MATH. COMP., 2001.

VENKOV'S THEORY (I)

Evaluating $\sum_{x \in S} p_x$ on a basis, one immediately recognizes the notion of strong eutaxy. Hence:

Proposition

“ Λ is strongly eutactic” \iff “ $S(\Lambda)$ is a 2-design”.

Definition Λ is *strongly perfect* if $S(\Lambda)$ is a 5-design.

Theorem 5 (VENKOV) *A strongly perfect lattice Λ is extreme.*

Since a t -design is a t' -design for all $t' \leq t$, the finiteness theorem for weakly eutactic lattices implies that given $t \geq 2$ and n , there are only finitely many n -dimensional strongly perfect lattices. **Classification?**

Remark 4 Up to dimension 5, the weakly, hence also the strongly eutactic lattices have been classified. No direct procedure is available.

VENKOV'S THEORY (II)

The two basic identities for 4-designs read

$$\sum_{x \in S/\{\pm 1\}} (x \cdot \alpha)^2 = \frac{s}{n} (\min \Lambda) N(\alpha);$$
$$\sum_{x \in S/\{\pm 1\}} (x \cdot \alpha)^4 = \frac{3s}{n(n+2)} (\min \Lambda)^2 N(\alpha)^2.$$

Consequences.

(1) “ Λ strongly perfect” $\implies \gamma'(\Lambda) \geq \frac{n+2}{3}$.

[For 6-designs, the inequality is strict.]

(2) Λ integral of minimum $m \geq 2 \implies n \leq 3(m^2 - 1)$.

LOW DIMENSIONS AND ROOT LATTICES

The known classification of perfect lattices in dimension $n \leq 7$ together with the upper bound for γ' immediately show:

Theorem 6 *Up to similarity, the strongly perfect lattices in dimension $n \leq 7$ are*

$$\mathbb{Z}, \mathbb{A}_2, \mathbb{D}_4, \mathbb{E}_6, \mathbb{E}_6^*, \mathbb{E}_7, \mathbb{E}_7^*.$$

For root lattices (integral lattices generated by vectors of norm 1 or 2) and their duals, just add \mathbb{E}_8 to this list.

OTHER CLASSIFICATION RESULTS

Dimension 8 – 11 (VENKOV, NEBE–V.). \mathbb{E}_8 , K'_{10} , K'_{10}^* .

Minimum 3 (VENKOV). $\sqrt{3}\mathbb{Z}$, $\sqrt{2}\mathbb{E}_7^*$, O_{16} , O_{22} , O_{23} .

Minimum $m \leq 5$, 7-designs (J.M.).

\mathbb{Z} , \mathbb{E}_8 , O_{23} (the shorter Leech lattice, of minimum 3).

Λ_{16} (the Barnes-Wall lattice), Λ_{23} , Λ_{24} (the Leech lattice), and the even unimodular lattices of minimum 4 and dimension 32; minimum 5 does not occur.

Remark 5 Let Λ of dimension $n \geq 2$, and let t be the largest even integer such that Λ is a t -design. Lattices are known for which $t = 0, 2, 4, 6, 10$.

Questions. Are there lattices with $t = 8$ or $t \geq 11$?

With $t = 10$ which are not even-unimodular of dimension $n \equiv 0 \pmod{24}$?

MODULAR LATTICES (I)

Let ℓ be a positive integer. We say that Λ is ℓ -modular if it is integral, and if there exists a similarity with multiplier ℓ which maps Λ^* onto Λ . We restrict ourselves to even lattices and suppose that ℓ is a prime s. t.

$(\ell + 1) \mid 24$ (or $\ell = 1$). Work of QUEBBEMANN, relying on the fact that the theta series of Λ is modular for the *Fricke group* of level ℓ (twice larger than $\Gamma_0(\ell)$), then shows the upper bound

$$\min \Lambda \leq 2 + \left\lfloor \frac{n(\ell+1)}{48} \right\rfloor.$$

Lattices whose minimum meets this bound are called *extremal*.

Warning. *Extremal is not extreme.* However ...

Remark 6 *The dimension of an ℓ -modular lattice satisfies the congruence $n \equiv 0 \pmod{2}$, and even $n \equiv 0 \pmod{4}$ if $\ell = 2$ and $n \equiv 0 \pmod{8}$ if $\ell = 1$.*

MODULAR LATTICES (II)

Applying the theory of modular forms with harmonic coefficients, Christine BACHOC and Boris VENKOV proved the following results (which indeed are valid for *all* layers):

(a) Strong perfection.

$\ell = 1, n \equiv 0 \pmod{24}$: 11-design.

$\ell = 1, n \equiv 8 \pmod{24}; \ell = 2, n \equiv 0 \pmod{16}$: 7-design.

$\ell = 2, n \equiv 4 \pmod{16}; \ell = 3, n \equiv 0 \text{ or } 2 \pmod{12}$;

$\ell = 5, n = 16$: 5-design.

(b) Strong eutaxy.

$\ell = 1, n \equiv 16 \pmod{24}; \ell = 2, n \equiv 8 \pmod{16}; \ell = 3, n \equiv 4$
or $6 \pmod{12}; \ell = 5, n \equiv 0 \pmod{8}; \ell = 7, n \equiv 0 \pmod{6}$.

THE BARNES-WALL SERIES

Given Λ integral and primitive, and $\sigma \in \text{Aut}(\Lambda)$ with $\sigma^2 = -\text{Id}$, define a $2n$ -dimensional lattice by

$$\Lambda' = \{(x, y) \in \Lambda \times \Lambda \mid y \equiv \sigma x \pmod{2\Lambda}\}.$$

Applying inductively this construction and rescaling conveniently the resulting lattices, we define an infinite series of integral and primitive lattices, whose minima double every two steps.

When Λ is unimodular, these lattices are alternatively 1- and 2-modular.

Starting from $\Lambda = \mathbb{Z}^2$ and $\sigma(x, y) = (-y, x)$, we obtain the *Barnes-Wall series* BW_{2^n} : \mathbb{D}_4 , \mathbb{E}_8 , Λ_{16} , ..., of minima 2, 2, 4, 4, 8, 8, Using the description of their minimal vectors in terms of the *Reed-Muller codes*, VENKOV has proved:

Theorem 7 *From $n = 8$ onwards, $\mathcal{S}(\text{BW}_{2^n})$ is a 7-design.*

[Probably, all layers are 7-designs; this would be a consequence of a slight improvement of results by SIDEL'NIKOV's in invariant theory.]

Known strongly perfect lattices, I ($1 \leq n \leq 19$).

dim	nom	det	s	m	s^*	m^*	Type	Rem.
1	\mathbb{Z}	1	1	1	1	1	min.	1 – mod.
2	\mathbb{A}_2	3	3	2	3	2	min.	3 – mod.
4	\mathbb{D}_4	4	12	2	12	2	min.	2 – mod.
6	\mathbb{E}_6	3	36	2	27	4	min.	
7	\mathbb{E}_7	2	63	2	28	3	min.	Λ^* equiang.
8	\mathbb{E}_8	1	120	2	120	2	gen.	1 – mod.
10	K'_{10}	972	135	4	120	6	min.	
12	K_{12}	729	378	4	378	4	gen.	3 – mod.
14	Q_{14}	2187	378	4	378	4	min.	3 – mod.
16	Λ_{16}	256	2160	4	2160	4	gen.	2 – mod.
–	O_{16}	64	256	3	1008	4	min.	
–	N_{16}	390625	1200	6	1200	6	gen.	5 – mod.
18	K'_{18}	243	3240	4	1080	6	gen.	

Known strongly perfect lattices, II ($20 \leq n \leq 24$).

dim	nom	det	s	m	s^*	m^*	Type	Rem.
20	$N_{20},',''$	1024	1980	4	1980	4	gen.	2 – mod.
21	K'_{21}	36	13041	4	112	27	gen.	K'^*_{21} non f.p.
22	Λ_{22}	12	24948	4	891	16	gen.	
22	$\Lambda_{22[2]}$	$2^{20} \cdot 3$	4224	6	891	8	min	
–	O_{22}	3	1408	3	891	8	min.	
–	M_{22}	15	22275	4	275	36	gen.	
–	$M_{22}[5]$	$3^{21} \cdot 5$	7128	10	275	12	min.	
23	Λ_{23}	4	46575	4	2300	12	gen.	
–	O_{23}	1	2300	3	2300	3	gen.	1 – mod.
–	M_{23}	6	37950	4	276	15	gen.	Λ^* equiang.
–	$M_{23}[2]$	$2 \cdot 3^{22}$	11178	10	276	5	min.	Λ^* equiang.
24	Λ_{24}	1	98280	4	98280	4	gen.	1 – mod.
–	N_{24}	3^{12}	13104	6	13104	6	gen.	3 – mod.

TABLE FOR MINIMUM 3

Lower and upper bounds for $s_3(n)$, $n \leq 24$.

n	1	2	3	4	5	6	7	8
$s_3(n) \geq$	1	2	4	6	10	16	28	30
$s_3(n) \leq$	1	2	4	6	10	16	28	30
n	9	10	11	12	13	14	15	16
$s_3(n) \geq$	34	40	52	68	88	112	160	256
$s_3(n) \leq$	34	63	81	103	129	162	203	256
n	17	18	19	20	21	22	23	24
$s_3(n) \geq$	288	352	448	640	896	1408	2300	2301
$s_3(n) \leq$	322	411	531	703	965	1408	2300	4991

Except for $n = 8, 9$, the proof relies on the theory of spherical designs, which gives at once the results for dimensions

23; 1 and $22 = 23 - 1$; 7 and $16 = 23 - 7$.

The exact values found in dimensions $n \leq 7$ can be widely extended; **see next slide** → · · · · · →

ODD MINIMUM

Let $s_m(n)$ be the maximum of s on primitive, integral lattices of minimum m .

Theorem 8 *The values of $s_m(n)$ for $m \geq 3$ odd and $n \leq 7$ are:*

n	1	2	3	4	5	6	7	8	9
m = 3	1	2	4	6	10	16	28	30	34
m ≥ 5	1	2	4	6	10	16	27	30?	34?
(general)	1	3	6	12	20	36	63	120	136

Up to $n = 7$, the numbers in the first line are upper bounds for s which hold for any lattice having no hexagonal section with the same minimum (WATSON, 1972); these bounds are attained on convenient cross-sections of $\sqrt{2}\mathbb{E}_7^*$, of minimum 3.

For odd $m \geq 5$, consider the Voronoï path $\mathbb{E}_7^* \longrightarrow \mathbb{E}_7$.

MINIMUM 3, $n \leq 9$

For these dimensions, we have obtained fairly precise classification results as far as only large values of s are concerned.

$n = 5$. $s = 10, s = 8$ (2), $s = 7$ (4).

$n = 6$. $s = 16, s = 12, s = 11$ (2), $s = 10$ (5).

$n = 7$. $s = 28, s = 18, s = 17$ (2), $s = 16$ (2) or $s \leq 14$.

$n = 8$. $s = 30, s = 29, s = 22$ $s = 20$ (7), $s = 19$ (5).

$n = 9$. $s = 34, s = 32$ (3), $s = 31$ (2?), $s = 30$ (2?), or $s \leq 28$ (?).

[$n = 10$. (?) $s = 40$ (4), or $s \leq 38$.]

[$m = 5, n = 7$. $s = 27$ (1) or (?) $s \leq 21$.]

PROOFS FOR MINIMUM 3

Our first task was to bound $\min \Lambda^*$ for integral, well-rounded lattices of minimum 3. The exact bounds are not known for $n \geq 8$. We have $\min \Lambda^* = 1$ if $n = 7$, $\min \Lambda^* < 1$ if $n \leq 8, n \neq 7$, $\min \Lambda^* < \frac{4}{3}$ if $n = 9$ (for $\min \Lambda^* \leq 1$ expected).

Using these bounds, we were able to bound the number of minimal vectors outside a hyperplane section and thus use induction; these bounds were obtained by constructing auxiliary root systems.

We also used a detail study of the index of a well-rounded sublattice having the same minimum, considering separately “high” and “low” indices.