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Combinatorics and lattices

A few years ago, Boris Venkov discovered that there are
some interesting connections between the relatively recent
theory of spherical designs on the one hand, and the
theory of extreme lattices initiated by Alexandre
Korkine and Igor Zolotareff in their 1877 paper and
developed thirty years later by Georges Voronöı.

A lattice is a discrete subgroup of a Euclidean space E, of
maximal rank, indeed n = dimE. A lattice Λ is extreme

if the density of the sphere packing canonically attached
to any lattice attains a local maximum at Λ.

Our spherical designs will live on the sphere of minimal
vectors of a lattice; more generally, we shall sometimes
consider the various layers; minimal vectors in the dual
lattice will often play an important rôle.
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see in particular the contributions of
Venkov, Bachoc–Venkov, Martinet,

Martinet–Venkov.

Further related papers:

Gabi Nebe–Venkov, The strongly perfect lattices in

dimension 10, J. TdN Bx, 12 (2000), 503–518.
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The notion of a spherical design

Let Sn−1 be the unit sphere with center O, endowed with
the standard measure scaled to volume 1, let t > 0 be an
integer, and let X ⊂ Σ be a finite set.

We say that X is a (spherical) t-design if∫
Σ

f dx =
1
|X|

∑
x∈X

f(x)

holds for all polynomials of degree at most t on E.

Equivalent definition: the integral above is zero for all
homogeneous, harmonic polynomials of degree at most t.

Example 1 “X is a 1-design” ⇐⇒ “ 0 is the center of
gravity of X”.

Remark 1 Any symmetric set which is a 2t-design is a

(2t+ 1)-design.

Remark 2 If n = 1, every 2-design is a t-design for all t.
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Design identities

From now on, all designs are symmetric.

Theorem 1 If n ≥ 2 and if t ≥ 2 is even, the following
conditions are equivalent:

1. X is a t-design.

2. For all even p ≤ t, there exists a constant cp such
that for all α ∈ E,∑

x∈X

(x · α)p = cp(α · α)p/2 (x · x)p/2.

3. The identity above holds for p = t.

Moreover, when these conditions hold, we have

cp = 1.3.5...(p−1)
n(n+2)...(n+p−2) |X| .

[However, to consider all even integers p ≤ t may prove useful.]
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Some notation for lattices

The norm of x ∈ E is N(x) = x · x.
The minimum of Λ is m = minx∈Λr{0} N(x).

The sphere of Λ is S = {x ∈ Λ | N(x) = m} . Let s = |S|
2

(2s is the kissing number of Λ).
The Gram matrix of a given basis B = (e1, . . . , en) for Λ
is Gram(B) =

(
ei · ej

)
. Let det(Λ) = det(Gram(B)).

The density of the sphere packing attached to Λ is
proportional to γ(Λ)n/2 where

γ(Λ) =
min Λ

det(Λ)1/n

is the Hermite invariant of Λ.

Dual version (A-MB +JM):

γ′(Λ) =
(
γ(Λ) · γ(Λ∗)

)1/2 =
(
(min Λ) min(Λ∗)

)1/2 .

Here, Λ∗ is the dual lattice to Λ, namely
Λ∗ = {x ∈ E | ∀ y ∈ Λ, x · y ∈ Z} .
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Extreme lattices (I)

Formal definitions in the space Ends(E) of symmetric
endomorphisms; for non-zero x ∈ E, px stands for the
orthogonal projection onto the line Rx:

• Λ is perfect if the px, x ∈ S span Ends(E) ;

• Λ is weakly eutactic if there is a relation
Id =

∑
x∈S ρx px with real coefficients ρx.

• Λ is eutactic if there is a relation
with strictly positive coefficients ρx.

• Λ is strongly eutactic if there is a relation
with equal (strictly positive) coefficients ρx.

Remark 3 If there exists a relation with rational ρx, Λ is

rational, i.e. proportional to an integral lattice.
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Extreme lattices (II)

Theorem 2 (Korkine & Zolotareff, 1877)

1. “Extreme” =⇒ “Perfect”.

2. “Perfect” =⇒ “Rational”.

Theorem 3 (Voronöı, 1907)

“Extreme” ⇐⇒ “Perfect” + “Eutactic”.

Theorem 4 (A-MB & JM;
Voronöı for perfect lattices;
Avner Ash for eutactic lattices)
In a given dimension, there are only finitely many weakly
eutactic lattices (up to similarity).

Problem Classify the weakly eutactic lattices in a given
dimension.

Known results:

• n ≤ 4: Štogrin, 1974; A-MB + JM, 1996.

• n = 5: Batut, Math. Comp., 2001.
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Venkov’s theory (I)

Evaluating
∑

x∈S px on a basis, one immediately
recognizes the notion of strong eutaxy. Hence:

Proposition
“Λ is strongly eutactic” ⇐⇒ “S(Λ) is a 2-design”.

Definition Λ is strongly perfect if S(Λ) is a 5-design.

Theorem 5 (Venkov) A strongly perfect lattice Λ is
extreme.

Since a t-design is a t′-design for all t′ ≤ t, the finiteness
theorem for weakly eutactic lattices implies that given
t ≥ 2 and n, there are only finitely many n-dimensional
strongly perfect lattices. Classification ?

Remark 4 Up to dimension 5, the weakly, hence also the

strongly eutactic lattices have been classified. No direct

procedure is available.
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Venkov’s theory (II)

The two basic identities for 4-designs read

∑
x∈S/{±1}

(x · α)2 =
s

n
(min Λ)N(α) ;

∑
x∈S/{±1}

(x · α)4 =
3s

n(n+ 2)
(min Λ)2N(α)2 .

Consequences.

(1) “Λ strongly perfect” =⇒ γ′(Λ) ≥ n+ 2
3

.

[For 6-designs, the inequality is strict.]

(2) Λ integral of minimum m ≥ 2 =⇒ n ≤ 3(m2 − 1).
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Low dimensions and root lattices

The known classification of perfect lattices in
dimension n ≤ 7 together with the upper bound for γ′

immediately show:

Theorem 6 Up to similarity, the strongly perfect lattices
in dimension n ≤ 7 are

Z, A2, D4, E6, E∗6, E7, E∗7 .

For root lattices (integral lattices generated by vectors
of norm 1 or 2) and their duals, just add E8 to this list.
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Other classification results

Dimension 8 – 11 (Venkov, Nebe–V.). E8, K ′10, K ′10
∗.

Minimum 3 (Venkov).
√

3 Z,
√

2 E∗7, O16, O22, O23.

Minimum m ≤ 5, 7-designs (J.M.).

Z, E8, O23 (the shorter Leech lattice, of minimum 3).
Λ16 (the Barnes-Wall lattice), Λ23, Λ24 (the Leech
lattice), and the even unimodular lattices of minimum 4
and dimension 32; minimum 5 does not occur.

Remark 5 Let Λ of dimension n ≥ 2, and let t be the

largest even integer such that Λ is a t-design. Lattices are

known for which t = 0, 2, 4, 6, 10.

Questions. Are there lattices with t = 8 or t ≥ 11 ?
With t = 10 which are not even–unimodular of dimension
n ≡ 0 mod 24 ?
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Modular lattices (I)

Let ` be a positive integer. We say that Λ is `-modular if
it is integral, and if there exists a similarity with
multiplier ` which maps Λ∗ onto Λ. We restrict ourselves
to even lattices and suppose that ` is a prime s. t.
(`+ 1) | 24 (or ` = 1). Work of Quebbemann, relying on
the fact that the theta series of Λ is modular for the
Fricke group of level ` (twice larger than Γ0(`)), then
shows the upper bound

min Λ ≤ 2 +
⌊

n(`+1)
48

⌋
.

Lattices whose minimum meets this bound are called
extremal.

Warning. Extremal is not extreme. However ...

Remark 6 The dimension of an `-modular lattice
satisfies the congruence n ≡ 0 mod 2, and even n ≡ 0
mod 4 if ` = 2 and n ≡ 0 mod 8 if ` = 1.
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Modular lattices (II)

Applying the theory of modular forms with harmonic
coefficients, Christine Bachoc and Boris Venkov proved
the following results (which indeed are valid for all layers):

(a) Strong perfection.

` = 1, n ≡ 0 mod 24 : 11-design.

` = 1, n ≡ 8 mod 24 ; ` = 2, n ≡ 0 mod 16 : 7-design.

` = 2, n ≡ 4 mod 16 ; ` = 3, n ≡ 0 or 2 mod 12 ;
` = 5, n = 16 : 5-design.

(b) Strong eutaxy.

` = 1, n ≡ 16 mod 24 ; ` = 2, n ≡ 8 mod 16 ; ` = 3, n ≡ 4
or 6 mod 12 ; ` = 5, n ≡ 0 mod 8 ; ` = 7, n ≡ 0 mod 6 .
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The Barnes-Wall series

Given Λ integral and primitive, and σ ∈ Aut(Λ) with
σ2 = − Id, define a 2n-dimensional lattice by

Λ′ = {(x, y) ∈ Λ× Λ | y ≡ σx mod 2Λ} .

Applying inductively this construction and rescaling
conveniently the resulting lattices, we define an infinite
series of integral and primitive lattices, whose minima
double every two steps.
When Λ is unimodular, these lattices are alternatively
1- and 2-modular.

Starting from Λ = Z2 and σ(x, y) = (−y, x), we obtain
the Barnes-Wall series BW2n : D4, E8, Λ16, ..., of minima
2, 2, 4, 4, 8, 8, .... Using the description of their minimal
vectors in terms of the Reed-Muller codes, Venkov has
proved:

Theorem 7 From n = 8 onwards, S(BW2n) is a
7-design.
[Probably, all layers are 7-designs; this would be a

consequence of a slight improvement of results by

Sidel’nikov’s in invariant theory.]
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Known strongly perfect lattices, I (1 ≤ n ≤ 19).

dim nom det s m s∗ m∗ Type Rem.

1 Z 1 1 1 1 1 min. 1−mod.

2 A2 3 3 2 3 2 min. 3−mod.

4 D4 4 12 2 12 2 min. 2−mod.

6 E6 3 36 2 27 4 min.

7 E7 2 63 2 28 3 min. Λ∗ equiang.

8 E8 1 120 2 120 2 gen. 1−mod.

10 K′10 972 135 4 120 6 min.

12 K12 729 378 4 378 4 gen. 3−mod.

14 Q14 2187 378 4 378 4 min. 3−mod.

16 Λ16 256 2160 4 2160 4 gen. 2−mod.

− O16 64 256 3 1008 4 min.

− N16 390625 1200 6 1200 6 gen. 5−mod.

18 K′18 243 3240 4 1080 6 gen.
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Known strongly perfect lattices, II (20 ≤ n ≤ 24).

dim nom det s m s∗ m∗ Type Rem.

20 N20,
′ ,′′ 1024 1980 4 1980 4 gen. 2−mod.

21 K′21 36 13041 4 112 27 gen. K′
∗
21 non f.p.

22 Λ22 12 24948 4 891 16 gen.

22 Λ22[2] 220.3 4224 6 891 8 min

− O22 3 1408 3 891 8 min.

− M22 15 22275 4 275 36 gen.

− M22[5] 321.5 7128 10 275 12 min.

23 Λ23 4 46575 4 2300 12 gen.

− O23 1 2300 3 2300 3 gen. 1−mod.

− M23 6 37950 4 276 15 gen. Λ∗ equiang.

− M23[2] 2.322 11178 10 276 5 min. Λ∗ equiang.

24 Λ24 1 98280 4 98280 4 gen. 1−mod.

− N24 312 13104 6 13104 6 gen. 3−mod.
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Table for minimum 3

Lower and upper bounds for s3(n), n ≤ 24.

n 1 2 3 4 5 6 7 8

s3(n) ≥ 1 2 4 6 10 16 28 30

s3(n) ≤ 1 2 4 6 10 16 28 30

n 9 10 11 12 13 14 15 16

s3(n) ≥ 34 40 52 68 88 112 160 256

s3(n) ≤ 34 63 81 103 129 162 203 256

n 17 18 19 20 21 22 23 24

s3(n) ≥ 288 352 448 640 896 1408 2300 2301

s3(n) ≤ 322 411 531 703 965 1408 2300 4991

Except for n = 8, 9, the proof relies on the theory of
spherical designs, which gives at once the results for
dimensions

23; 1 and 22 = 23− 1; 7 and 16 = 23− 7.

The exact values found in dimensions n ≤ 7 can be widely
extended; see next slide −→ · · · · · · · · · −→
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Odd minimum

Let sm(n) be the maximum of s on primitive, integral
lattices of minimum m.

Theorem 8 The values of sm(n) for m ≥ 3 odd and
n ≤ 7 are:

n 1 2 3 4 5 6 7 8 9

m = 3 1 2 4 6 10 16 28 30 34

m ≥ 5 1 2 4 6 10 16 27 30 ? 34 ?

(general) 1 3 6 12 20 36 63 120 136

Up to n = 7, the numbers in the first line are upper
bounds for s which hold for any lattice having no
hexagonal section with the same minimum (Watson,
1972); these bounds are attained on convenient cross–
sections of

√
2 E∗7, of minimum 3.

For odd m ≥ 5, consider the Voronöı path E∗7 E7.
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Minimum 3, n ≤ 9

For these dimensions, we have obtained fairly precise
classification results as far as only large values of s
are concerned.

n = 5. s = 10, s = 8 (2), s = 7 (4).

n = 6. s = 16, s = 12, s = 11 (2), s = 10 (5).

n = 7. s = 28, s = 18, s = 17 (2), s = 16 (2) or s ≤ 14.

n = 8. s = 30, s = 29, s = 22 s = 20 (7), s = 19 (5).

n = 9. s = 34, s = 32 (3), s = 31 (2?), s = 30 (2?), or
s ≤ 28 (?).

[n = 10. (??) s = 40 (4), or s ≤ 38.]

[m = 5, n = 7. s = 27 (1) or (?) s ≤ 21.]
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Proofs for minimum 3

Our first task was to bound min Λ∗ for integral,
well-rounded lattices of minimum 3. The exact bounds
are not known for n ≥ 8. We have min Λ∗=1 if n = 7,
min Λ∗ < 1 if n ≤ 8, n 6= 7, min Λ∗ < 4

3 if n = 9 (for
min Λ∗ ≤ 1 expected).

Using these bounds, we were able to bound the number of
minimal vectors outside a hyperplane section and thus
use induction; these bounds were obtained by
constructing auxiliary root systems.

We also used a detail study of the index of a well-rounded
sublattice having the same minimum, considering
separately “high” and “low” indices.
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