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COMBINATORICS AND LATTICES

A few years ago, Boris VENKOV discovered that there are
some interesting connections between the relatively recent
theory of spherical designs on the one hand, and the
theory of extreme lattices initiated by Alexandre
KORKINE and Igor ZOLOTAREFF in their 1877 paper and
developed thirty years later by Georges VORONOIL.

A lattice is a discrete subgroup of a Euclidean space E, of
maximal rank, indeed n = dim E. A lattice A is extreme
if the density of the sphere packing canonically attached

to any lattice attains a local maximum at A.

Our spherical designs will live on the sphere of minimal
vectors of a lattice; more generally, we shall sometimes
consider the various layers; minimal vectors in the dual

lattice will often play an important role.
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THE NOTION OF A SPHERICAL DESIGN

Let S™~! be the unit sphere with center O, endowed with
the standard measure scaled to volume 1, let ¢ > 0 be an
integer, and let X C X be a finite set.

We say that X is a sphenca]) t-design if
[rar= 3 s
acEX
holds for all polynomials of degree at most t on E.

Equivalent definition: the integral above is zero for all
homogeneous, harmonic polynomials of degree at most t.

Example 1 “X is a 1-design” <= “0 is the center of
gravity of X 7.

Remark 1 Any symmetric set which is a 2t¢-design is a
(2t + 1)-design.

Remark 2 If n = 1, every 2-design is a t-design for all ¢.



DESIGN IDENTITIES

From now on, all designs are symmetric.

Theorem 1 Ifn > 2 and if t > 2 is even, the following

conditions are equivalent:
1. X 1is a t-design.

2. For all even p <t, there exists a constant c, such
that for all o € F,

Z (z - )P = cp(a - a)P/? (z - x)P/2,

reX

3. The itdentity above holds for p =t.

Moreover, when these conditions hold, we have

_ 1.3.5..(p—1)
P n(n+2)...(n+p—2) ‘X‘ .

C

[However, to consider all even integers p < t may prove useful.]



SOME NOTATION FOR LATTICES

The norm of x € Fis N(z) =z - x.

The minimum of A is m = mingea (o3 N(2).

The sphere of Ais S ={x € A | N(x) =m}. Let s = %
(2s is the kissing number of A).
The Gram matrix of a given basis B = (eq,...,e,) for A

is Gram(B) = (e; - ¢;). Let det(A) = det(Gram(B)).

The density of the sphere packing attached to A is

n/2

proportional to y(A)™/* where

min A
A) =
YA = Gy

is the Hermite invariant of A.

Dual version (A-MB +JM):
1/2

Y'(A) = (y(A) - v(A%)) " = ((min A) min(A*))
Here, A* is the dual lattice to A, namely
AN ={xeFE|VyeN z-yelZ}.

1/2



EXTREME LATTICES (I)

Formal definitions in the space End®(F) of symmetric
endomorphisms; for non-zero x € F, p, stands for the

orthogonal projection onto the line R z:
A is perfect if the p,, v € S span End®(F);

A is weakly eutactic if there is a relation

Id = ) cg Pz pr with real coefficients p,.

A is eutactic if there is a relation

with strictly positive coefficients p,..

A is strongly eutactic if there is a relation
with equal (strictly positive) coefficients p,.

Remark 3 If there exists a relation with rational p., A is

rational, i.e. proportional to an integral lattice.



EXTREME LATTICES (1)

Theorem 2 (KORKINE & ZOLOTAREFF, 1877)
1. “Extreme” = “Perfect”.
2. “Perfect” =—> “Rational”.

Theorem 3 (VORONOI, 1907)
“Extreme” <= “Perfect” + “Futactic”.

Theorem 4 (A-MB & JM;

VORONOI for perfect lattices;

Avner AsH for eutactic lattices)

In a given dimension, there are only finitely many weakly

eutactic lattices (up to similarity).

Problem Classify the weakly eutactic lattices in a given

dimension.
Known results:
n < 4: STOGRIN, 1974; A-MB + JM, 1996.

n = 5: BaTuT, MATH. COMP., 2001.



VENKOV’S THEORY (1)

Evaluating ) ¢ p. on a basis, one immediately

recognizes the notion of strong eutaxy. Hence:

Proposition
“A is strongly eutactic” <= “S(A) is a 2-design”.

Definition A is strongly perfect if S(A) is a 5-design.

Theorem 5 (VENKOV) A strongly perfect lattice A is

extreme.

Since a t-design is a t’-design for all ¢’ < ¢, the finiteness
theorem for weakly eutactic lattices implies that given

t > 2 and n, there are only finitely many n-dimensional
strongly perfect lattices. Classification ?

Remark 4 Up to dimension 5, the weakly, hence also the
strongly eutactic lattices have been classified. No direct

procedure is available.



VENKOV’S THEORY (II)

The two basic identities for 4-designs read

Y (z-a)? = (minA) N(a);

xeS/{+£1} "
38
Y (wra)t= (min A)? N(a)?.
xeS/{+£1} n(n + 2)
Consequences.

2
(1) “A strongly perfect” — ~'(A) > n;— .

[For 6-designs, the inequality is strict.]

(2) A integral of minimum m > 2 = n < 3(m? — 1).
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LOW DIMENSIONS AND ROOT LATTICES

The known classification of perfect lattices in
dimension n < 7 together with the upper bound for ~/
immediately show:

Theorem 6 Up to similarity, the strongly perfect lattices

m dimension n <7 are
Zv AQ? D47 EG? EZ7 E77 E:; .

For root lattices (integral lattices generated by vectors
of norm 1 or 2) and their duals, just add Eg to this list.
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OTHER CLASSIFICATION RESULTS
Dimension 8 — 11 (VENKOV, NEBE-V.). Eg, K}, K1,
Minimum 3 (VENKOV). V3Z, v2E%, Oyg, Ogz, Oas.

Minimum m < 5, 7-designs (J.M.).

7, Eg, O23 (the shorter Leech lattice, of minimum 3).
A16 (the Barnes-Wall lattice), Aoz, Aoy (the Leech

lattice), and the even unimodular lattices of minimum 4

and dimension 32; minimum 5 does not occur.

Remark 5 Let A of dimension n > 2, and let ¢ be the
largest even integer such that A is a t-design. Lattices are
known for which t = 0, 2,4, 6, 10.

Questions. Are there lattices witht =8 or ¢t > 117
With ¢t = 10 which are not even—unimodular of dimension
n=0mod 247

12



MODULAR LATTICES (I)

Let ¢ be a positive integer. We say that A is {-modular if
it is integral, and if there exists a similarity with
multiplier ¢ which maps A* onto A. We restrict ourselves
to even lattices and suppose that ¢ is a prime s. t.

(£+1) |24 (or £ =1). Work of QUEBBEMANN, relying on
the fact that the theta series of A is modular for the
Fricke group of level ¢ (twice larger than I'¢(¢)), then
shows the upper bound

min A < 2+ {%&LUJ.

Lattices whose minimum meets this bound are called

extremal.

Warning. Extremal is not extreme. However...

Remark 6 The dimension of an {-modular lattice

satisfies the congruence n = 0 mod 2, and even n =0
mod 4 if { =2 and n =0 mod 8 if £ = 1.
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MODULAR LATTICES (IT)

Applying the theory of modular forms with harmonic
coefficients, Christine BACHOC and Boris VENKOV proved
the following results (which indeed are valid for all layers):

(a) Strong perfection.
¢ =1,n=0mod 24: 11-design.
=1, n=8mod 24; /=2, n=0mod 16: 7-design.

=2, n=4mod 16; /=3, n=0or 2 mod 12;
¢ =5 n=16: 5-design.

(b) Strong eutaxy.

f=1,n=16mod 24; /=2, n=8mod 16; /=3, n=4
or6mod12; /=5 n=0mod 8; =7, n=0mod 6.
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THE BARNES-WALL SERIES

Given A integral and primitive, and o € Aut(A) with

0? = —1d, define a 2n-dimensional lattice by

N ={(z,y) e Ax A|y=ocx mod 2A}.

Applying inductively this construction and rescaling
conveniently the resulting lattices, we define an infinite
series of integral and primitive lattices, whose minima
double every two steps.

When A is unimodular, these lattices are alternatively

1- and 2-modular.

Starting from A = Z? and o(z,y) = (—y, z), we obtain
the Barnes-Wall series BWan: Dy, Eg, Ayg, ..., of minima
2,2,4,4,8,8, .... Using the description of their minimal
vectors in terms of the Reed-Muller codes, VENKOV has

proved:

Theorem 7 From n = 8 onwards, S(BWan) is a
7-design.

[Probably, all layers are 7-designs; this would be a
consequence of a slight improvement of results by

SIDEL’NIKOV’s in invariant theory.]
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Known strongly perfect lattices, I (1 <n < 19).

dim | nom | det s s® Im" | Type Rem.

1 7 1 1 1 1 | min. | 1— mod.
2 Ao 3 3 3 2 | min. | 3 —mod.
4 | Dy 4 12 12 | 2 | min. | 2 — mod.
6 Ee 3 36 27 | 4 | min.

7 | E; 2 63 28 | 3 | min. | A" equiang.
8 Es 1 120 120 | 2 | gen. | 1 —mod.
10 | Kip | 972 135 120 | 6 | min.

12 | K12 | 729 378 378 | 4 | gen. | 3 — mod.
14 | Qia | 2187 | 378 378 | 4 | min. | 3 — mod.
16 | Aig | 256 |2160 2160| 4 | gen. | 2 — mod.
— | O1s6 64 256 1008 | 4 | min.

— | N1e | 390625 | 1200 1200 | 6 | gen. | 5 — mod.
18 | Kig | 243 |3240 1080 | 6 | gen.

16




Known strongly perfect lattices, IT (20 < n < 24).

dim| nom | det s |m| s° |m"|Type Rem.
20 | Noo,”,”” 11024 | 1980 | 4 | 1980 | 4 | gen. | 2 — mod.
21 K 36 |13041| 4 | 112 | 27 | gen. | K'5; non f.p.
22 | Aas 12 124948 | 4 | 891 | 16 | gen.

22 | Agop 12°°.3] 4224 | 6 | 891 | 8 | min

— 029 3 1408 | 3 | 891 & | min.

— | My | 15 |22275| 4 | 275 | 36 | gen.

— | Mx2[5] [3%'.5] 7128 | 10| 275 | 12 | min.

23 | Ass 4 |146575| 4 | 2300 | 12 | gen.

— | Oas 1 2300|3230 | 3 | gen. | 1—mod.
— Moss 6 |37950| 4 | 276 | 15 | gen. | A" equiang.
— | M23[2] [2.3** 11178 10| 276 | 5 | min. | A*equiang.
24 Aoy 1 ]98280| 4 98280 | 4 | gen. 1 — mod.
— Nos | 3'2 113104| 6 [13104| 6 | gen. | 3 — mod.

17




TABLE FOR MINIMUM 3
Lower and upper bounds for s3(n), n < 24.
n 1 2 3 4 5 ) 7 8
sstm)> 1 ]2 46 10| 16 | 28 | 30

ssn)<| 124|610 16 | 28 | 30

n 9 |10 | 11 | 12 | 13 | 14 15 16
ss(n) >34 |40 | 52 | 68 | 88 | 112 | 160 | 256

s3(n) <| 34 | 63| 81 1103]129| 162 | 203 | 256

n 1718 | 19 | 20 | 21 | 22 23 24
s3(n) > 288 352|448 | 640 | 896 | 1408 | 2300 | 2301

s3(n) < |322 411|531 | 703 | 965 | 1408 | 2300 | 4991

Except for n = 8, 9, the proof relies on the theory of
spherical designs, which gives at once the results for

dimensions
23; 1and 22 =23 —1; 7Tand 16 =23 — 7.

The exact values found in dimensions n < 7 can be widely

extended; see next slide — --- --- ... —
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ODD MINIMUM

Let s,,(n) be the maximum of s on primitive, integral

lattices of minimum m.

Theorem 8 The values of s, (n) for m > 3 odd and

n <7 are:

n |1/2/3/ 4, 5|67 8] 9

m=3 |1{2/4]6 101628 30 | 34

m>5 (1246|1016 /27307347

(general) |13 /61220 |36 |63 | 120 | 136

Up to n = 7, the numbers in the first line are upper
bounds for s which hold for any lattice having no
hexagonal section with the same minimum (WATSON,
1972); these bounds are attained on convenient cross—

sections of v/2E%, of minimum 3.

For odd m > 5, consider the Vorono1 path K=

K.
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MiINIMUM 3, n <9

For these dimensions, we have obtained fairly precise
classification results as far as only large values of s

are concerned.
n=2>5 s=10,s =8(2), s =7 (4).
n==6.s=16,s =12,s =11(2),s = 10 (5).

n="7 s=28,s=18,s=17(2),s =16 (2) or s < 14.
n=28 s=30,s=29,5s =225=20(7),s =19(5).
n=9 s=34,s=32(3),s =31(27),s =30(27),0r
s < 28(7?).

[n=10. (??7) s=40(4),0r s < 38.]

m=5.n=7 s=27 (1)or (?) s <21,
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PROOFS FOR MINIMUM 3

Our first task was to bound min A* for integral,
well-rounded lattices of minimum 3. The exact bounds
are not known for n > 8. We have min A*=1if n =7,
minA* <1ifn <8 n#7 mnA* <3 ifn=09 (for
min A* < 1 expected).

Using these bounds, we were able to bound the number of
minimal vectors outside a hyperplane section and thus
use induction; these bounds were obtained by

constructing auxiliary root systems.

We also used a detail study of the index of a well-rounded
sublattice having the same minimum, considering

separately “high” and “low” indices.
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