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INTRODUCTION

L'une des motivations de cette étude était de produire une table étendue de réseaux
parfaits en dimension 8. Pour cela, on a mis au point un algorithme capable de trouver
les réseaux parfaits a section hyperplane parfaite.

Pourquoi les réseaux parfaits?

En géométrie des nombres, la constante d'Iermite entre en jeu dans de nombreuses
inégalités (comme par exemple les minorations de régulateurs). Cette constante corres-
pond aux empilements réguliers de sphéres les plus denses. Korkine et Zolotareff (1873)
introduisent la notion de réseau extréme, c’est-a-dire réalisant un maximum local de la
densité ; ils montrent en outre qu'un tel réseau est parfait (pour la définition voir 0.6). En
1908 Voronoi démontre que les réseaux parfaits sont en nombre fini & similitude pres pour
une dimension donnée. D'olt 'intérét de chercher les réseaux parfaits.

Parmi les réseaux parfaits pourquoi avoir choisi ceux & section hyperplane parfaite ?

On voudrait utiliser comme moyen de rechercher un algorithme décrit par Voronoi, et
qui permet de trouver par contiguité tous les réseaux parfaits en dimension n donnée,
Cette méthode a été appliquée avec succes pour n < 7, les travaux s’échelonnant de 1908
2 1990 {date & laquelle on obtient la liste définitive des 48 réseaux parfaits).

Maiheureusement dés que n dépasse 7, les calculs augmentent si rapidement de taille et
de volume qu'ils deviennent prohibitifs pour les ordinateurs actuels. Avant ce travail on
ne connaissait qu'une vingtaine de réseaux parfaits en dimension 8 (c¢.f 0.6).

Une variante de l'algorithme est alors d’imposer & ces réseaux parfaits une section
hyperplane parfaite. Cela présente Pavantage de simplifier énormément la méthode ce
qui se traduit par une économie considérable en temps d'éxécution.

Mis en oeuvre en dimension 8, ce procédé s'est avéré fécond puisqu’il a fourni un millier
de réseaux parfaits en un temps raisonnable (étendant ainsi de fagon considérable la liste
des réseaux parfaits en dimension 8 connue A ce jour!) Il convient de signaler & ce propos
que Jaguet vient d’obtenir I'énumération des 48 réseaux contigus du réseau de racines D,

Cette these est composée de quatre chapitres :

Le premier rappelle d’abord quelques notions bien counues sur les réseaux, puis passe
directernent au probléme des réseaux & section donnée. I’étude de la densité de ces réseaux
conduit notamment & introduire une notion de perfection qui coincide avec la notion clas-
sique lorsque la section elle-méme est parfaite.

Le deuxieme consiste essentiellement en une adaptation de Palgorithme de Voronoi 2



notre situation propre. Si habituellement les calculs se font dans un espace euclidien de
n(n+ 1)

I3

dimension , on verra pourquoi la dimension tombe & n si 'on impose au réseau

parfait d’avoir une section hyperplane parfaite. On montre que cet algorithme fournit au
bout d'un temps fini tous les réseaux cherchés.

Le troisieme chapitre est purement algorithmique. C'est la partie la plus vécue de ce tra-
vail. Les notions qui étaient jusque la abstraites “bougent” et “s’affichent” & I'écran. Sont
décrits tous les programmes qui onf permis I'établissement de la table, particulierement
ies algorithmes de contiguité, d'isométrie au sens restreint, et de tri.

Le quatrieme chapitre exploite le catalogue des réseaux obtenus en dimension 8 & partir
des 30 réseaux parfaits en dimension 7 autre que les 3 réseaux de racines. Nous faisons un
inventaire des réseaux trouvés (résultat explosif : il y en a 1171!). La richesse de la table
nous permet de répondre & certaines questions jusque 14 en suspens. La thése s’acheve par
une analyse des nouveaux réseaux (“radiographies” | étude duale, ...).

I restera a traiter le cas des 3 réseaux de racines, By, Dy, et A;. Pour trouver les
contigus de %7, le temps d'exécution du programme de Jaquet a dépassé les 100 jours
CPU sur un “VAX 8530". Dans notre cas, la présence du célebre reseau Fg, exigera la
mise au point d'un programme plus performant.

N.B._ Les chapitres sont divisés en paragraphes. Les paragraphes ont une numérotation
qui se suit a travers toute la thése. Cela permet des renvois plus précis et plus brefs
(exemple : c.f. 2.3 | voir le §2 au numéro 3).



Chapitre I

POSITION DU PROBLEME

0. Rappels

Rappelons brigvement quelques définitions, propriétés et notations concernant les ré-
seaux parfaits euclidiens.

On se donne un espace euclidien E de dimension n. Le produit scalaire de x et y dans E
est noté x.y . Le nombre réel |z} = /. représente la distance euclidienne de x i 'origine
0 de E; & ne pas confondre avec la norme N(x) = x.x qui est le carré de cette distance.

0.1 Réseaux, norme, vecteurs minimaux, discriminant, déterminant.

Un réseau A de E est un Z-module libre engendré par une base B = { ey, e, ..., e, } de
E; il est donc de rang n. B est encore appelée base du réseau.

La norme de A est le nombre

7 [ T{m
N(8) = inf M),
o]

(et par analogie on pose ||A]] = +/N(A)).

Tout vecteur x de A tel que N{z) = N(A) est appelé vecteur minimal. 1l est clair que
st x est minimal, -x I'est aussi. [’ensemble des vecteurs minimaux de A,

S(4)={ z € A N(z) = N(4) }

) . . : : 1 N
(appelé aussi sphére de A), a donc un cardinal pair. On note s{A) = §|S(A)|,ou LS(A)]
représente le cardinal de l'ensemble S(A).

S5i &€ ={e1,69,...,e, } est une base orthonormée de B, le discriminont du réseau A est
le réel positif
A(A) = A(elae}la 'H)en) = ldetg(el) €950 en)l .

7



On montre facilement que A(A) est indépendant de la base orthonormée choisie; il représente
le volume du parallélotope P = { 3.0, cie; | 0 < a; < 1} construit sur la base 8.

On appelle déterminant de A, le carré du discriminant, i.e : det{A) = A(A),
Les inégalités suivantes relient ce déterminant et les normes des vecteurs de bage :

* Inégalité de Hadamard : Si ey, eq, ..., e, sont n vecteurs indépendants d'un réseau A
de E, alors

det(A) < N(ey).N(eg)..Niey).

* Inégalité d'Hermite : Tout résean A de E possede une base { e;,¢ey,.., e, } vérifiant

n n2- 1)

4
N(ei1).N(es)...N(e,) < (§> det(A).
L N(AY . . , . :
On en déduit que le rapport y(A) = W appelé fonction d’Hermite (Ilermite
de "
n—1
AN _ )
1850), est majoré par 3 . Clest le maximum 7, de cette fonction {appelé constante

d’Hermite) qui a conduit Korkine et Zolotareff (c.f. [1]) & la notion de réseau parfait dont
on parlera plus loin.

0.2 Matrice de Gram d’un réseau.
La malrice de Gram de A suivant la base 93, est la matrice des produits scalaires €;.€;
notée Gram(A, B).

Elle est évidemment symétrique, et son déterminant est égal & det(A).

0.3 Lexique réseaux-formes quadratiques-matrices symétriques.

Nous donnons maintenant la correspondance réseaux - formes quadratiques - matrices
symétriques :

Soit (A,®) un réseau de E rapporté & la base B. On note A4 = {a;;) la matrice
Gram{A,B) et q la forme quadratique sur R™ de matrice A. Cette forme est définie
positive, et par abus de langage la matrice A est dite définie positive.



Si x est un élément de If et

&1

¢

la matrice de ses composantes dans la base 8, alors on a

glé) = N(z) ="AL = ai;lil;.

Le déterminant de A n'est autre que le discriminant de la forme quadratique.

On a
N(A) = min )
()= _min4(©
et les représentations £(1), {9y, ..., £(sy dans R™ des vecteurs minimaux (2 & 2 non opposés)
Z1, %2,..., Ts de A dans la base B sont les vecteurs minimauz de ¢ (et par abus de langage,
de lo matrice 4).
De méme, N(A) est appelée minimum de q ( ou de A).

0.4 Changement de base et équivalence.

* Soit B’ une autre base de A et P € Gl,(Z) la matrice de passage de B 4 B’. (On
rappelle que G1,,(Z) est le groupe des matrices entieres d'ordre n de déterminant +1),

Si f

‘.

gl —_ ‘ c Zn
3

représente un élément x de A dans B, et

&1
€2

é— — : e Z'rl
ET&

représente le méme élément x dans B, alors on a :

{=P¢

Dot
Gram(A,B') = '"PAP
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'P étant la transposée de P. Donc & un réseau A correspond une classe d'équivalence sous
Gl.{Z) de matrices.

¥ Si A" est un réseau isométrique & A, ie A' = uA pour v € O(E) (groupe orthogonal de

), alors
Gram{A' | uB) = (ule)ule;)) = (eie;) = Gram(A,B).

D'ou & une classe d’isométrie de réseaux est associée une classe d'équivalence (par
Gl,(Z)) de matrices symétriques, et ceci définit une bijection.

0.5 Endomorphismes symétriques.

On utilisera les notations classiques des objets mathématiques courants tels que :
* End(E) : ensemble des endomorphismes de E.
* Tr(u) : trace de 'endomorphisme u de End(E).
On sait que Tr(uv) = Tr(vu) V u,v € End{E).
* Yy fransposé de w

Il est défini par
Yu(z)y = zuly) V z,y € E.

On rappelle que *(uv) = *v'u, et Y{u+v) = 'u + ‘v,
* End®*(E) : Pespace des endomorphismes symétriques de E, i.e.

End*(E)={uec End(E)|'u=1u}

Il est bon de remarquer que si v € End(E), alors 'uu et (‘un — Id), sont dans
End*(E); en particulier 8i u € End*(E),u’ aussi.

‘Tout v € End®(E) a ses valeurs propres A; réelles et il est toujours diagonalisable dans
une base orthonormée de E. Siles A; sont > 0, on dit que u est positif (comme 'uu par
exemple}; si les les A\; sont > 0, on dit qu'il est défini positif, et dans ce cas il existe un
unique /u € End*(E) & valeurs propres > 0, tel que (/u)? = «, et les valeurs propres de

Vi sont les /A,
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0.6 Réseaux parfaits.

Nous allons définir maintenant la notion de réseau parfait introduite par Korkine et
Zolotareft (c.f. {1]).

Soit € E; on désignera par ¢, la forme linéaire w — u(z).z sur End*(F). On
dit qu'un réseau A de E est paerfait, s'il vérifie 'une des propriétés suivantes qui sont
équivalentes :

De{u)=0Ve e S(A) = u=0.

ii)La matrice de Gram 4 = Gram(A, B) est déterminée de fagon unique par la donnée
de son minimum N(A) et des composantes 1)1 €(2)5 s Esy dans B des vecteurs minimaux
de A non 2 & 2 opposés, via le systeme

t&(f)AE(f} = ‘N(A)a { = .1:2= vy 8

On termine ici ce résumé de rappels. Il est loin d’étre complet, mais on ne manquera
pas d’en énoncer d'autres si c’est nécessaire.

Revenons & notre étude. Voronoi a démontré qu’en dimension n, il n'y a qu'un
nombre fini de réseaux parfaits & similitude prés. Leur dénombrement a été fait jusqu’en
dimension 7 :

Cest ainsi qu'on a le tableau suivant :

dimension n 1121341651617 |8

nombre de réseaux parfaits & équivalence prés| 1|11 23171337

Pour les dimensions 1, 2, 3, 4, 5, on doit essentiellement les résultats A& Korkine et
Zolotarefl {1872-1877, c.f.[l]}; pour la dimension 6 c'est & Barnes (1957, cf. [2]); en
dimension 7, il faut citer Stacey(1976, c.f. [3]), et Jaquet(1990, c.f. [4]).

Pour la dimension n 2 8 on ne connaissait que trés peu de réseaux parfaits, et les
méthodes de calcul deviennent trop lourdes.

L’objet de ce travail est d’en donner un catalogue pour la dimension 8, en se limitant
& ceux qui sont au-dessus des 33 réseaux parfaits existants en dimension 7.
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1. Réseaux a section hyperplane donnée

Nous allons aborder maintenant le coeur du sujet.

Soit & un espace euclidien de dimension n. On considére un réseau Ay de dimension
n-1, inclus dans E, S = S{Ag) 'ensemble de ses vecteurs minimaux, et I Phyperplan de E
engendré par Ag .

Notons R I'ensemble des réseaux A de E de méme norme m que Ay

(i.e: N(A)= N(Ag)=m), et tels que AN H = Ay,

Il est clair que 'on a Sy C S{A) (ensemble des vecteurs minimaux de A ).

s Probléeme :

On étudie les réseaux A de ¢ qui réalisent un maximum local de la fonction d'Hermite
v(A) dans 2% (on rappelle que y(A) = —1—%%3«;)
ae ™

Cette notion est stable par les isométries f € O(F), qui conservent la famille R, c’est-
a~dire qui vérifient f(Ag) = Ay.

o Description de R :
D’abord une remarque : Soit A’ un élément de R; on a A'NH = Ay ; on montre

! - »
facilement que le Z-module de type fini Q = A,";} 7 est sans torsion, donc libre avec une

base {e}.

En effet : soit & € KT%H”’": etsoitneZ, n#0tel quenz=0. Ona:
nz=0=nzeANNH=A=>nmeH=2ecH=zecANH =7 =0.
Q= K’ﬁwg est bien sans torsion.

On arrive ainsi & la conclusion suivante :

518y = {e1,eg,...,e,_1} est une base de Ay, on peut la compléter en une base {e1, €0, 01,6}
de A’

Deésormais, posons A un élément fizé de R, et B = {e1,es,..., 01,6, } une base de
A complétant DBy, Caractérisons maintenant les éléments de 9 relativement & certains
¢iéments u de GI{E) (groupe linéaire de E).

Pour ne pas alourdir certaines expressions dans les démonstrations, on conviendra
d’écrire parfois uA au lieu de w(A); de méme quon écrira indifféremment Sy pour S{Ao)
et 5 pour S{A).
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1.1 Proposition.
Soit le groupe G = {u € GUE)| uly = Idy}.
Alors : R = {u(A),u € G,N{uA) =m}.

Démonstration.

Notons B = {ud,u € G, N(ud) = m}.
. Ona? cA.

En effet, u étant un élément de GI{E}, uA est bien un réseau de E. Reste & montrer que
uA est dans MR, c’est-A-dire que uA N H = Ag.

Montrons uANH C Ay :

Soit z € wA N H. On a x=uly) avec y € A,donc v~} {z) = ¥; comme u™* € G et que x
appartient aussi & I, on a x=y donc z € A. D'on z € AN H = Ay.

Linclusion Ag ¢ (uA N H) est évidente :

Soit z € Ag. Comme Ay = I N A,z appartient & A et & H, donc w{z) =z (u € G),
d'oll z € uAyp.

Doncz € uA N H.

- Réciproquement : a-t-on R ¢ R'?

Soit A" € M. D’apres ce qui préceéde, A" admet une base B’ de la forme

B = {e1,e2,..., 01,651
Définissons 'application linéaire u par :
ule;) =e;, 1<ig<n—1
u(en) = €, '
Alors u est dans G; de plus uA est le réseau de base B’ = w(W), ¢’est donc A’

Donc A’ est dans 9 puisque N{A") = m.
c.q.f.d.

Les matrices de Gram des réseaux Ay, A, et ©A dans R se noteront :

0 Ay = Gram{Ag, Boy) = (e5.€j)1<i<n—1 ;
125

jgn-1

¢4 = Gmm(A, SB) o (ei.ej)1$7'<n =
1£5<

<ign

€n€1 ... .. €n.En
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/
6.1 ¢ 6‘."(‘

!
€y.€,,

e A" = Gram{uA,uBlu e ¢ =

f i
€61 o €,

T

Les matrices A et A’ ont toutes les deux le bloc Ay an méme endroit. On dira d’'une
matrice ayant cette forme, qu’elle a un coimn Ay.

2. Réseaux m-parfaits

On suppose ici que A € MR réalise un maximum local pour la fonction . Etudions une
propriété de ses vecteurs minimaux.

2.1 Notation :

On note :
a)Sx le sous-espace des endomorphismes symétriques v de I tels que o(H) ¢ 0+
b)S;; le sous-ensemble des endomorphismes v de Sy & valeurs propres strictement
positives,

2.2 Proposition.
1) Soitwe &G Alors v = tyu ~Id € Sy.
2)Réciproquement : si v € Sy et si Id +v € 8§, alors u € G tel que 'uu = Id + .

Démonstration. 1) :
a) Soit u € G et v = ‘uu — Id. Montrons que v est symétrigue. On a :

Hluw — Id) = "(fun) = 'Id = 'y Yy~ Id = tuu — Id.

b)Montrons v(H) C H+ : soitc e H, ye H. Ona:

i

("ww — Id)(a).y = (fuu(z) — 2).y = tau(e).y — 2.y
=u({r)uly) —zy =2y -2y =0

v(z).y

c.q.f.d



15

2)
Id+4v possede des valeurs propres réelles strictement positives, d'apres la définition de Sj-;.
I existe donc un endomorphisme symétrique w & valeurs propres strictement positives tel
que w? = Id+v. Soit {€1,€2,...,€n=1 }, une base orthonormée de H complétée en une base
{e1,€2, .., €n=1,&x} orthonormée de E.
Définissons un automorphisme g : E — F par g(e;) = w(e) Vi = 1,2,...,n — 1 et
9(en) = Un, Uy, vecteur de norme 1 orthogonal 4 tous les w(e;) pouri =1, 2, ..., n-1.
La famille {w{e1), w(e2), ..., w(en-1), wn} est orthonormale.
En effef, pouri,j <n—1,
wie)w(e;) =e,w’(e;) (car w symétrique)
=cei.(Id+v)(e;) = enle; +v(e;)] = ey + ei.0{e;)
=¢.6; (car v(H)C HY)

Montrons que g € O(E}. Soient x ,y dans E.
T = Aep + Aaga + ..+ Anén
y = bier + Bagz .+ fuga
oy = AP+ Ay A+ A Ba
g(z) = Mwler) + Jowley) + ... + Aw(en)
9(y) = Brwler) + Paw(ez) + ... + Brwlen)
9(z).9(y) = MG + Aafa + . + Anfn
D'ou g(z).9(y) = z.y
Donc ¢g~! aussi est dans O(E).
Ho lw)g™lw = twtg g7 w = twgg " lw = tuw = w? = Id+ v
¢! est dans G :
Soit x € H; o = A1 + Aogo + ...+ At
g7 wlz) = Mg wler) + g wler) + o Ang T wlen) = Mg g(e1) + Mg glen) +
o+ Ang T g(Enm1) = Arer + dagr + o+ Ay
=z
On prendra f = g~
c.q.f.d

‘et alors u =g lw

2.3 Définition.
A € R est dit R-parfait si on a l'implication suivante :
v E Sy }

vz)e =0z e S(A) e

2.4 Remarques.

1351 I'on substitue dans 2.3, & Sy Pensemble de tous les endomorphismes symétrigues
de IZ, on retrouve la notion classique de perfection introduite par Korkine et Zolotareff. De
plus, tout réseau parfait appartenant & R est R-parfait.
2)La condition qui définit la M-perfection peut s'énoncer ainsi :
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les formes linéaires o, : v — v{x).2 sur Sy engendrent le dual (Sy)* de Sy.

3)Seuls interviennent les z € S — Sy, car si z € H, v(z).x = ( pour tout v € Sy.

On peut donc dans 2.4, remplacer " V2 € S{A) " par " V 2 € S(A) — S{Ag) .

4)Les isoméiries de I qui stabilisent le réseau Ay (section des réseaur de B par 1), con-
servent celte notion de R-perfection.

Ln effet soit A € 0% un résean M-parfait, et f € O(F) tel que f{Ay) = Ay. Pour v € Sy,
on a ‘fuf € Sg; (pour h € H B € Hyon o 'fef(R).R = vf(R). f(R') = 0 car I stabilise
H).

)Comme f est une isométrie, il est clair que S(f(A)) = f(S(A)).
Montrons que f{A) est RB-parfait .
soit v € Sz, D'apres ce qui précede on a les équivalences :

vy =0V ye S(fA)) @ of(z) flz) =0V zeS(A) & ‘fofz)a=0Y ze S(A)

Puisque tfvf € Sy, et puisque A est R-parfait on en déduit *fof = 0, donc v = 0,

2.5 Théoréme.
Si A € R réalise un maximum local de v, alors A est Bi-parfait.

Pour la démonstration on utilisera le lemme suivant, :

2.6 Lemme,

Sion pose 'uu = I'd + cv, ¢ > 0 assez petit, alors on a les équivalences :
a)detCuu)y =1 uc O(F) s v=0
b) det(*uu) > 1< Tr(v) >0

Soit Py(X) = X" - X" 1+ T, X" 2 4 .+ (=1)"T,, le polynome caractéristique de v,
ot T1 (= T'r(v)), T, ..., 15 sont les fonctions symétriques élémentaires des valeurs propres
AL; Az, oy A {nON nécéssairement distinctes) de v.

De Pégalite det(X1d —v) = X" — A X! + 4 (=1)"T, on déduit par division par
AT

1 1 1 7,
det{ld ~ —v) =111 = +Th— 4 ..+ (=1},
e( JYU) 1){-}- ,3X2”‘f“ -r( ) T
. 1
D’ol en posant e = % :
(1) det(fd +ev) = 1+ The + The? + ... + T,e"
(2) det(Id + ev) = 1 + Ty= + Tye? + o(e?)

Démonstration.
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a)
On a évidemment
u € O(E) <= uu = Id <= v = (.

Supposons det{*uu) = 1. D’aprés (1}, on a Ty, 7%, ..., Tt nuls. Done P,(X) = X™ et comme
v est symétrique (donc diagonalisable) v=0.
Réciproquement : si v = 0, 'uu = Id, donc det(*uu) = 1

b)
Supposons det(*uu} > 1, et montrons 77 > 0.
SZ T1 E 0:

Ty <0 dlapres (2), det{Id + ev) = det{(Tuu) < 1.

-) 17 = 0, alors on peut montrer que Ty < 0 :

2Ty = 2> k=M.t A0 = 7+ ) = =+ D).

A

Comme *uy est symétrique, donc v aussi, les \; sont reéls. Donc 5 A? > 0.
oA} = 0 entrainerait A; = 0 Vi. Donc v=0, d’olt d’apres a) det(tuu) = 1 ce qui est exclu.
On a donc Y. A% > 0, donc 7y < 0. La formule (2) devient

det(Id +ev) = 14 ¢*Ty 4 o(e?) avec Ty < 0

D’ol det{*uu) < 1 pour ¢ assez petit. Ce qui est absurde.
c.q.f.d.

Démonstration du théoréme 2.5 :

Soit A un réseau de R réalisant un maximum local de v. Supposons v dans Sy tel que Vz €
S(A), v(z).x = 0. Montrons que v = 0.
Supposons que v # 0. Alors pour € > 0, assez petit, /d + ev a ses valeurs propres positives
(si A1, Ag,...,Andésignent les valeurs propres de v, celles de Id + ev sont 1 + ey, 1 +
EAg, cony 1 4 E)\n).
Par 2.3, 3 u € G tel que 'uu = Id 4 v
Considérons le réseau uA. On montre que N(uA) = N{A):
soit z € .5, On a:

N(u(z)) = uw(z)w{z) = ‘uuz = (Id+ev)(z)z = 2.z + ev(z)z =m

Or pour ¢ assez petit les vecteurs minimaux de uA proviennent de ceux de A, c’est 4 dire
N{uA) = n“gg N(u{z)) = m.
Donc par 1.1, le réseau uA est dans R,
Par ailleurs det(uA) = det(*uu). det{A) : En effet, soit £ une base orthonormée de E; on
rappelle que det A = (4 (A))? = (dete B)?.
Alors det uA = (detg uB)?
= (detg %.(det(%) u‘B)z
= (detg %)2.(d6t(93) u%)z
= det A.(det(%) ?1433)2
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= (detu)?. det A
m m Y(A)

Y(uA) = T = I i~ I

(detud)x  (dettwu)~(detA)=  (detluw)=
Puisque #A est dans 93 et que y(A) est un maximum local dans R, on doit avoir :
1(uh) € v(A) pour £ assez petit, c'est & dire det fuw 2 1.
D'apres 2.6, puisque v # 0, on a det'uu > 1 et alors Tr(v) > 0.
En résumé, tout v # 0 de Sy vérifiant v(z).z = 0 Vz € S(A) doit avoir T'r(v) > 0. Comme
-v vérifie les mémes hypothéses que v, on doit avoir & la fois Tr(v) et Tr(-v) positives
strictement, ce qui est absurde.
c.q.f.d.

2.7 Théoréme.

Ay parfait
0 par; } = A parfait

AR —parfait

Démonstration.

Notons Sy Yensemble des v € End*E tel que w(H) C H et w(H1) = {6} et montrons
qu’il est est supplémentaire de Sy dans End* F.

Soit en effet £ = {e1,£9,...,€n-1,€,} une base orthonormée de E avec €1,¢4, ..., 0.1,
dans H, et solent vy € & et w € Sy.

Leurs matrices dans £ sont de la forme :

mat(vg, &) = et mat(w, &) =

|
i
Ao |
|
.
0 .. .0 Moo e

ou les A; sont dans R et Ay est une matrice symétrique d’ordre n-1.

A partir de cette remarque on déduit facilement la démonstration du théoréeme :
Soit v € End*(E) tel que v(z).z =0V z € S{A). Montrons que v = 0,

On peut écrire d’aprés ce qui précede :

v=1) +wavec w € Sy, et vy €S8p.

Or par hypothése v(2z).2 = 0 Vz € S(A); on en déduit pour tout € S(A)

(vo +wi{z).x = 0, c'est-d-dire vo(z).2 + w(z).x = 0. Ceci est vrai en particulier pour tout
T E S(Ag).

Or pour un tel 2, qui est dans H, on a w(z} € H+ (par définition de Sy ) donc en particulier
wze.r =0V 2 € S(Ag). Dol Von déduit vyz.z = 0V 2 € S(Ay). Comme la restriction de
vy & H est dans Dnd*H, la perfection de Ay permet de conclure que cette restriction est
nuile, donc aussi vg.
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On a donc v = w, dolt wz.x = 0 ¥V 2 € S(A), ce qui impligue w = 0 puisque A est R-
parfait. Donc v = 0 et A est parfait.
c.q.f.d.

Remargue : Si l'on pose {v,v") = Tr{vv') = T'r{v'v), on vérifie facilement que cela
définit un produit scalaire dans End*E (voir §3).

Le sous-espace Sy de End*E est alors égal & Sy, supplémentaire de Sy dans End*E.

En effet, en gardant les notations précédentes, soient w € Sy et v € End*E de matrice
{a;;) dans €. On a :
('U, 'LU) - 2(a'lnAl + a'2n)\2 + . a’(n——l)n)\n—l) + ann)\n v (AI)A2p reey )\n) € R",

D’ott les équivalences :

VESET & (W) =0V w eSSy & a1y = a9, = ... = Un—-1)n = Gnn = 0 & v € 8.

On a vu que seuls interviennent pour la M-perfection, les vecteurs minimaux de A qui
sont hors de H. La caractérisation suivante précise leur rdle :

2.8 Théoréme.

Soit A € R. Alors :

Pour que A soit R-parfait il faut et il suffit que les vecteurs minimaux de A hors de I
engendrent E,

Démonstration.
Soit & = {e1,€2,...,€n1,En} une base orthonormée de B complétant une base orthonormée
{€1,€2,..,€n—1} de H. Si v € Sy, on a vu que sa matrice est de la forme :

!
-
mat(v, &) = 0 }

]

Ao

T
de sorte que pour x dans I, x s'écrivant & = E Bz i€y O A
(=3
e (v) = v(z).z, et aprés calcul

(3) (,Q;L»(’l’) - ﬁm,n(zﬁw,l}‘l ot Bﬁw,nv—lAn—-l + 6ar,nAn)~

a)Condition nécessaire :
Supposons A R-parfait et montrons que les x en dehors de H engendrent F. En effet, sinon
ils appartiendraient tous & un hyperplan d’équation

OE]X]_ + CL’-,LXn = (
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oll les a; ne sont pas tous nuls (les X; étant les composantes de x suivant la bage (eih1gign):
Prenons v défini par la matrice suivante :

o

%

mat(v, &) = v }
<x ™—_—

S T Qp

D’apres la formule (3), on a p.(v) = 0V z € 5, et pourtant v # 0; ce qui contredit
I’hypothese A MR-parfait.

b)Condition suffisante :
Supposons que les x hors de H engendrent E, et montrons que A est M-parfait. $'il n'en
¢tait pas ainsi, il existerait un v € Sy, non nul tel que @, {(v) =0V z € S,

Si

mat{v, &) =
Al e An
est la matrice de v dans la base £, avec les A; non tous nuls, la formule (3) donne, pour
t=3 Buiec €S —H, ol f,, nest pas nul (x n'appartient pas A II )
2ﬁ:c,l>‘1 + ...+ Eﬁm,n—l)\n—-l + ﬁm,n}\n =0
Ainsi, tous les vecteurs minimaux hors de H appartiendraient & 'hyperplan de Ib d’équation

2M1 X7 A+ 220 X1 + A X, = 0 ce qui contredit Phypothese.
c.q.f.d.

De 2.7 et 2.8 résulte immédiatement un critére de perfection :

2.9 Corollaire. Soit Ay un réseau parfait d’un hyperplan H de E, et soit A un réseau de
E de méme norme, et tel que AN H = Ag. Alors pour que A soit parfait, il faut et il suffit
que ses vecteurs minimaux hors de H engendrent E.

Voronoi a montré qu'il existe un nombre fini de réseaux parfaits (3 similitude prés) en
dimension et norme données. Il a de plus mis au point un algorithme qui permet de les
déterminer tous & partir de I'un d’entre eux. Dans la pratique la manipulation se fera avec
les matrices de Gram.



Chapitre II

THEOREMES A LA « VORONOT »

3. Espace et domaine de Vorono?

On sait que les valeurs propres A; d'une matrice réelle symétrique A sont réelles, et que
les valeurs propres de A% sont Jeg poes
Partant de cette remar

que, on démontre facilement que dans l'espace vectorie] des ma-
trices carrées symétriques

réelles d'ordre 1, Papplication

(4,B) — Trace(4,B) = Tr(AB) = Tr{BA)

est un produit scalaire qu'on notera (A, B).

3.1 Définition.

On appelle espace de Voronoi

les ace euclidien Vor des matrices
D
d ’Ol‘dl’(f

réelles symétriques
1 muni du produit scalaire (4, B) = Tr(A, B).

s , . on{n+41
Cet espace euclidien Vor est de dimension —(«——v-)

4

3.2 Représentation dans Vor d’un vecteur de R*,

&1

Tout £ = i de R™ peut &tre représenté dans Vor par la matrice

¢
S TR
X = gl = 66 & L ge,

f’nlgl §n.§2 cee En2

21



et il est facile de voir que dans Vor, (4, X) = 1£AL.

Revenons & la notion de perfection de réseau, et donnons une autre interprétation a
Paide de matrice A symétrique réelle d’ordre n.

3.3 Définition.
La matrice A est dite parfaite si elle correspond & une matrice de Gram d'un réseau
parfait A dans une base du réseau.

Cette notion est évidemment stable par équivalence. Pour exprimer cette condition,
nous représentons un ¢lément x de I dans la base B = {ei,es,...,e,} du réseau par la
matrice X = £'£ € Vor commeil a été dit dans 3.2 (£ est la matrice unicolonne représentant
x dans R™ ) et un endomorphisme symétrique v de I par la matrice

M = (v(e;).e;) = (v(ej)e;) € Vor

On a alors :

v = EME = Tr(*eMe) = Tr((%M)E) = Tr(E('eM)) = Tr((€')M) = (X, M)

[Noter que lorsque v = Id, et donc M = A, on retrouve la formule de 3.2)
La condition ve.x = 0 exprime donc que X = £*€ est orthogonal & M dans Vor.

3.4 Proposition.
La matrice A est parfaite si et seulement si les matrices X (les X représentant dans Vor
les vecteurs minimaux de A) engendrent Uespace Vor.

Démonstration.

La perfection de A au sens classique (c.f. 2.3 et 2.4), signifie que le sous-espace de Vor
orthogonal & l'espace engendré par les X = £ lorsque x décrit S(A) est nul; donc les
matrices X lorsque x décrit S{A) engendrent Vor.

c.q.f.d.

VYoronol a alors associé & chaque matrice parfaite un cone convexe d'intérieur non vides

3.5 Définition.

Notons X3, Xy, ..., N, les représentations dans Vor des vecteurs minimaux de A. On
appelle domaine de Voronoi Dy, de la matrice A, I'enveloppe convexe des demi-droites
engendrées par les (X;) e

i=1,2,00,8

Dy = {ZA{X{, A2 0, A€ R}
i=1
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On va voir par la suite que ces donaines coustituent un “pavage” de espace de Voronof,

4. Contiguité de réseaux parfaits

Définissons d’abord la contiguité de deux matrices parfaites
Soit A une matrice parfaite de minimum m(A), S(A) l'emsemble des matrices X = £1¢
représentant ses vecteurs minimaux dans Pespace de Voronoi, et © 4 le domaine de Voronoi

. : . onln+1
de A, Comme A est parfaite, D4 est de dimension —-(-~«~+~ml

On considéere une face d’appul § hyperplane de D4, et B un vecieur de face COrrespon-
dant & 9, i.e:
(B,X)=0VXenet (B,X) >0VX € S(4)- 5.
On considére alors pour ¢ > 0, Ag = A+ 0B € Vor .
Pour tout X = £'¢, on a (Ag, X) = (4, X) + 6(B, X); donc :

- 51 X €8, (4¢,X) =m(A4)
—~ si X € S(4) ~ 6, (4, X} > m(A).

(Voir figure 2 de P'annexe I).

On démontre que (c.f [8] ou [9] ou [10]) :

Vensemble {0 | {Aq¢,X) = m(A)} est borné et que pour 0y = sup{0}, la matrice Ag,
est parfaite :

en effet, il existe Xo ¢ 9 tel que pour & > o, (4o, Xo) < m(A) et (de, Xp) = m(A4),
donc Xy € S(Ag,) qui engendre alors Vor (car S(A4q,) D (HU{Xy)})

Dot la notion de contiguité que nous allons définir en donnant quelques propriétés.

4.1 Définition.
La matrice parfaite Ag, (de méme norme que A) donnée ci-dessus, s’appelle la contigué
de A par la face perpendiculaire & B (ou contigué de A par la face B (abus de langage)).

¢ Voronoi (1908 c.f. [8]} a démontré que le graphe de contiguité ainsi défini est connexe.
Par ailleurs la relation de contiguité est compatible avec l'éguivalence (i.e si Ag, est la
contigué de A par la face de D 4 perpendiculaire B, 'PAg P est la contigué de 4' = tPAP
par la face de D4 perpendiculaire & *PBP); et si I'on supprime A chaque étape les matrices
équivalentes & une matrice déja rencontrée, le graphe ainsi obtenu est fini et donne (3
equivalence prés), toutes les matrices parfaites de dimension n.

Voronoi lui-méme a retrouvé par cet algorithme les listes (3 équivalence pres) de formes
quadratiques parfaites en dim < 5 dues & Korkine-Zolotareff; et Barnes a repris en 1956
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ces méthodes pour établir la liste des 7 formes parfaites en dimension 6. Jaquet vient de
résoudre le cas de la dimension 7, et a établi que la liste des 33 formes établies par Stacey
est complete (c.f. [4],¢)

La suite du paragraphe est consacrée & une adaptation de cet algorithme pour établir la
liste des formes quadratiques parfaites de dimension & qui prolongent chacune des 33 formes
4 part les formes O, V7, Zy (dans la terminologie de Korkine-Zolotareff, qui correspondent
aux systémes de racines A7, Dy, E7). On expliquera au §11 pourquoi les réseaux de racines
n'ont pas été traités.

4.2 Interprétation de I'ensemble R dans I'espace de Voronol.

Reprenons 'ensemble P défini au §1, et faisons un certain nombre de remarques.
P LR X q
On note Vorp Vespace de Voronoi de dim(—'f—}lﬁ, plongé dans I'espace Vor (de dimension
.1 .
b)) de 1a fagon suivante :
ses éléments sont de la forme

o ... .. ¢

ot le coin (*) représente une matrice symétrique réelle d’ordre n-1.
Cest un sous-espace de Vor de codimension n. Son supplémentaire orthogonal dans Vor
est 'espace des matrices symétriques de la forme

| o

| e
0 f
|
|

a1 (799

de dimension n.
(Compte tenu des dimensions, il suffit de vérifier que la trace du produit de deux matrices
ayant chacune les formes précitées, est nuile),

On se donne maintenant un réseau parfait Ay de dimension n-1 rapporté i une base
{e1,es, ..., €1}, de matrice de Gram 4y appartenant & Vorg. Les réseaux de M ont dans
une base B = {e;, ey, ..., &, } convenable une matrice de Gram avec un coin Ay, ¢’est-a-dire
de ia forme



@
a4

(c.f.81).

&

aq Un

Soit B’ = {ef, e}, ..., e, } une autre base du réseau A, avec {e}, ey, ..., e}, _;} base de Ay.
La matrice de passage P € Gl,,(Z) de B & B’ est de la forme

) P=

0 .. .. P

ott Py € Gl_1(Z) est la matrice de passage de {ey,es,...,en1} & {e], €}, ..,el,_,} et ou
les p; sont des entiers, et p, = +1 (car det P = det Py.p, ).

4.3 Définition.
On dira que deux matrices de Gram

|

]
g | e
|

# * * #

sont Ap-Equivalentes s'il existe P de la forme (1) tel que : A" = *PAP.

Ainsi au réseau A est associée la classe de Ag-équivalence de A.

Soit maintenant f € O(E) une isométrie telle que f(Ag) = Ap. Dans la base f(B), le
réseau f(A) a pour matrice A = Gram(A,B) (cf. §1), donc on obtient :

une bijection enire classes d’équivalence de résecauz par les isoméiries conservant Ay, et
classes de Ag-équivalence de mairices de Gram.

Soit A un réseau MR-parfait de matrice de Gram
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O.l e an
A est parfaite (c.f. 2.7).
On note

Da={>_ NXi N2 0)
i=1

son domaine de Voronoi |, les X; étant les représentations dans Vor des vecteurs mininmaux
de A.

Les matrices parfaites Ag = 4 + 0B contigués de A et qui représentent des réseaux de
M sont de la forme

| b
| b2
Ao |
|
S N
b .. . bn
Par différence on voit que les vecteurs de face de D 4 & considérer sont de la forme
| o
| e
B = 0 | ,
l
aq (199

c’est & dire sont dans Vorg™ {(d’aprés 4.2);
autrement dit les faces d’appui de © 4 que nous considérons sont celles qui contiennent
Vorg.

Ainsi nous sommes amenés & travailler dans un sous-espace de dimension n de Uespace

41
de Voronoi (de dimension EL?E;"—) ).

Précisons la correspondance :

§1

Soit § (C Z") 'ensemble des vecteurs minimaux € = | ° | de A. Quitte & remplacer

n
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£ par —£, on suppose &, = 0. Pour &, = 0, on trouve ensemble Sy des vecteurs minimaux
de Ao.

4.4 Proposition,
Soit

] (47

un vecteur non nul de Vorg™.
Pour que B soit un vecteur de face du domaine D 4, il faut et il suffit que hyperplan H g

de R™ d’équation

20101 + 2609 + ... F 2050 _1%p1 F QpTn =0

soit engendré par des vecteurs minimaux £ de A, et que tous les vecteurs minimaux de A
soient d’'un méme cété de Hpg.

Démonstration.

Pour £ € S, on note X = ¢%; B est un vecteur de face de D4 si et seulement si
I’hyperplan B+ est engendré par les X qu’il contient et si 'on a (B, X} > 0V X représentant
un vecteur minimal de A. L'hyperplan B+ de Vor contient déja les représentations X des
vecteurs de Sy,

Puisque Ay est parfaite, ces vecteurs engendrent Vorg (qui est de codimension n-1 dans
By,

Pour que B+ soit une face de D4 il faut et il suffit que les représentations X des vecteurs
de § — Sy contenues dans B+ engendrent un sous-espace de dimension n-1 supplémentaire
de Vorg {dans B+).

&1
Pour ¢ = : dans S, on a (B, X} = £,(2a1&) + .. + 20418001 + 0,.E,,) de sorte que
n
X € Bt équivaut & : &, = 0 (i.e £ € Sy) ou bien 2a181 + ... + 2€n-165-1 + Anbn =0 (ie ¢
appartient & I'hyperplan Hg de R™).

Soit S1 € (S — Sp) un systéme de n-1 vecteurs minimaux de . Le sous-espace de B+
engendré par les (€'€)¢es, est en somme directe avec Vorg si et seulement si le systéme
Sy est de rang n-1 (i.e : est une base de Hg). En effet les conditions suivantes sont
équivalentes pour (Ag)ees, € R

(1) D Aeflé € Vorg

el
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(2) \V/j o 1,2,...,?1, Z }‘Egjgft = ()
£es
(3) Vi=1,2m, > (Aa); =0
£ES
() S ek =0
EES)

Quant & la condition (B, X) > 6V £ € S, elle équivaut (puisque &, 20V € € §), 3
20/151 o+ 2i'i'anwlé‘"n--l + an&n 2 0 Vf & S~ '90

c.q.f.d.

4.5 Proposition. Soit 49 = A + 0B la matrice parfaite contigué de la matrice parfaite
A (supposée de norme entiére m) pour le vecteur de face B. Alors 0 est rationnel,

Démonstration. :

&
Soit m le minimum de 4 = (a;;). On a pour £ = €8,
6
> ekl = (A €'y =m.

Comme A est parfaite, ce systéme a une solution unigue A = (a;;) (en effet si A’ est
une autre solution, alors (4 — A',£%) = 0V £ € §; or les €'¢ engendrent Vor. Donc
A~ A" e Vort = {0}).

Les a;; sont donc solutions d’un systéme de Cramer 3 coefficients entiers, et ils sont
rationnels. Comme Ay est parfaite et gue son minimum m est entier, Ag est rationnelle
également.

D'aprés 4.4 les coefficients a; de B sont solutions d'un systéme linéaire & coefficients
entiers £, &, ..., &, £ décrivant S; on peut donc les choisir entiers . ¢ est donc rationnel.

c.q.f.d.

4.6 Proposition. La relation de contiguité entre matrices M-parfaites est com patible avec
la Ag-équivalence.

Démonstration.
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soit A une matrice R-parfaite, et Ay = A -+ 0B la contigué de A par une face B de D4
orthogonale & Vorg. Soit A’ = 'PAP une matrice Ap-équivalente & A. Elle est évidemment,
R-parfaite, et 'on a :
‘PAGP ='PAP + 0 'PBP,

olt *PBP est un vecteur de face de D4, qui compte tenu des conditions (1) sur P est
encore orthogonale & Vory. Comme ‘P Ay P est parfaite, c'est la contigué de A’ pour cette
face.

c.q.f.d.

5. Connexité du graphe de contiguité

Ce §5 va s'articuler autour des vecteurs de faces que nous sonumes amenés i considérer.
Pour certaines des . démonstrations ci-dessous, on peut trouver une démonstration pius
générale dans [7].

5.1 Proposition.

1)A est M-parfaite si et seulement si les projections orthogonales p(X) de ses vecteurs
minimaux X sur Voryg™ engendrent Vorol (seuls interviennent en fait les vecteurs X cor-
respondant aux x ¢ S{Ay),) les autres ayant une projection nulle.

2)Soit A R-parfaite. Notons C,4 le cone convexe engendré dans V orgt par les demi-
droites RYp(x), z € S(A).

Alors Jes vecteurs de faces de Cy sont des vecteurs de faces du domaine de Voronoi © 4.

Démonstration.

1)5upposons d'abord A R-parfaite. Comme Ay est parfaite, d’aprés le théoreme 2.7,
A est parfaite au sens classique. Donc les X correspondant aux z € S(A) engendrent
Vor = Vorg™ @ Vorg. Soit M € Vorg™: M ¢ Vor, donc :

M= 3" dAxX =3 Axp(X)+ };/\xpl(x )
~ ,

x&S(A)

ou p1 est la projection orthogonale sur Vory.
Comme M € Vorgh, et que la somme est directe, Z Axpi(X) =0 Don :
X
M=) dxp(X).

X

Réciproquement, supposons que les p{X) engendrentVoryt; Soit M € Vor, et soit My =
p(M) sa projection sur M € Vory™. Par hypothése, il existe des coefficients Ay € R tels
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que M; = Z Axp(X). Donc M — Z Ax X appartient & Vorg. Comme Ay est
@ S(Ag) 2@ S5(Ag)
parfaite, il existe des coefficients py € R tels que M — Z Ax X = Z Lix X.
2§ 5(Ag) wES5(Ag)
Les X engendrent bien Vor, et par suite A est parfaite, donc R-parfaite.

2}Le connexe Cy engendré dans Vorg™ par les demi-droites R p(X) est la projection
du domaine © 4 car

Ca={D_dxp(X),Ax 2 0} =p(> AxX,Ax > 0) = p(Da4)
Soit B un vecteur de face de (4 dans Vorg™.

(a) Puisque B est dans Vorg™, alors son orthogonal B+ dans Vor contient Vorg qui
est engendré par des vecteurs mininmaux de A (car Ay est partaite).

(b) B étant un vecteur de face de Cy dans Vory™®, donc B+ contient un hyperplan
P de Vorg® engendré par des p(X), X représentant z € S{A4).

D’aprés {(a) et (b), B = Vory @ P est engendré par des vecteurs minimaux X de A.
Tous les vecteurs minimaux X sont tels que (B,p(X)}) > 0 car B est vecteur de face de (4.
Mais (B, X) = (B,p(X)), car B € Voryg™ . Donc pour tout X minimal, (B, X} > 0. B+
est donc une face d’appui de D 4.
c.q.f.d.

5.2 Corollaire.

Soit I une matrice € Vor, telle que p(F) ¢ D 4. Alors, il existe un vecteur de face
B e Voryt de D4, tel que(B,F) < 0.
Démonstration.

En effet :
p(F) ¢ Da e p(F) ¢ Ca.

Il existe donc un vecteur de face B du convexe Cy donc de D4 tel que (p(F), B = (F, B)
soit négatif.

Enongons un résultat qu'on utilisera dans la démonstration du théoreéme de connexité
u'on appellera ici lemme de Voronot.
q
c.q.f.d.

5.3 Lemme (Voronofi}.
Solent F une matrice définie positive, K et m deux constantes strictement positives.
Alors 'ensemble des matrices parfaites A de minimum m vérifiant (A, F) < K, est fini.
Vorono, écrit & la page 134 de son article [8] a) :
«il est aisé de démontrer que le nombre des formes v; parfaites ayant le minimum m et

vérifiant
(o) = (fr1) =
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est fini », mais ne fait pas la démonstration,

Pour un bon nombre de lecteurs {dont moi méme), 'aisance dont parle Voronol n’est
pas du tout certaine. Aussi, voild une démonsration du lemme (c.f. [10]) avec Uhypothese
(A, F) < K plus générale que celle de Voronol.

D’abord deux remarques :
Remarque 1.
Soit M = {m;;) une matrice symétrique positive (i.e de valeurs propres yi; > 0). On a :

1
Emaxmt) maz |{mi;| < |MF € Tr(M) € nomaz(p)

Démonstration.
Fimaz(p;) Z,u,, Or sz =Tr(M) Zm” Mais Zm” n.amet |mq;| .

Finalement ma,x(,uq) n.max |mgl, i nmm:(,u,f) mazx |m;|

2
E m?'j .

'zln
j-»

*) On a max |my;| <

par suite :
mat |my;| < || M|

1O0mn a
Zﬂt Zﬂn +QZ“P‘J'
2<g
Dol I'inégalité 3 ;% < (3 ue)?, soit encore Tr(M?) < (TrM)?, d'oit
M| <Tr(M) (= Z!Li) < n.maz(p;).
=1
c.q.f.d.

Remarque 2.
Soit M = (mi;) une matrice symétrique positive (i.e i valeurs propres 2 0 ) et B une
matrice symétrique définie positive (i.e & valeurs propres > 0 }. Alors :

1041 < .00, B). | B
Démonstration.
Comme toute matrice symétrique réelle est semblable & une matrice diagonale, on peut
supposer B diagonale car :
Soient C, D, Q, trois matrices de Vor avec @ une matrice inversible.

On a :
Tr(Q'CQRATIDQY)=Tr(Q™*CDQ) = Tr(DQQR™'C) = Tr(DC) = Tr{CD)
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Ce qui veut dire (C, D) = (Q71CQ, Q' DQ) : la transformation T — Q~1TQ conserve le
produit scalaire. Soit alors

A 0. 0.
I TP .y
B = o o , avec A; > (0
0.. 0 An

(M,B) =3 5., Aimy;. Comme M est positive, les mysont 2 0.

==l
o . 1 1
car TrM 2 ||M|| d’aprés la remarque 1. Or min{);) = — et " est valeur propre
maz{—) ¢
A
de B~ Donc d’aprés la remarque 1,
1 }. 1
- maa: — < ||B7Y| i.e maz(=) < n HB”’“IH.
A Ai
D’ou
1 M
(34,3) 3 1] (min) > e - > L
macc(x)
c.q.f.d.

Passons & la démonstration du lemme de Voronot.
La connaissance des vecteurs minimaux d'une matrice parfaite permet de retrouver cette
matrice de facon unigue. Ils'agit donc de montrer que 'ensemble des matrices X représentant
dans Pespace de Voronot les vecteurs minimaux des matrices A vérifiant les conditions du
lemme est fini. I suffit pour cela de montrer que les matrices X vérifiant (A4, X) =m
sont bornées pour la norme |.|| (et donc notamment pour la norme sup(coefficients de la
matrice}).

Or d’apres la remarque 2, on a

X0 < nom A7

Reste donc & montrer que || A est borné,
Notons Ar, Ay, ..., A, les valeurs propres de A, et supposons 0 < A € Xy < ... € A,
1 1
Alors, — 2 -~ 2 ... 2 —
AT X T,
o . .
On a —1H < n.r d’apres la remarque 1. Pour minorer A;, nous allons utiliser la
1
constante d'Hermite via le determinant de A :

sont les valeurs propres de A1,
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det A = Ay Az A < A (n AN

1 nllA n—1
{car A; < n || 4| d’aprés la remarque 1} ce qui donne — < (n]Al

e @1 DAL SLLITE
N S T det A 1

N
a7 < ”-i % nwl..__.

Al det A
. . minA .1 '
Mais d’aprés le théoreme d'Hermite y{A4) = 1— < Yo, ON arrive & T A < :n”'
(det A)n
n |l AR . nll A ”"'1. ™ B
L'inégalité HA“lH < n(—ulmm entraine A_1H < ! ]?lﬂn 1 . Or (A, 1) € K, ce

det A
qui implique, grice 4 la remarque 1 appliquée & M = A et B = F,

JAll < n(4, F)| P

P < K
Donc en posant X' = n. I, || F71|, on arrive finalement &
¥

bt
m—1 Tn ‘

X € noman™ K™ . -

?

majoration indépendante de A.

Comme les coefficients de X sont entiers, les matrices X possibles forment un engemble
fini, et par suite 'ensemble des matrices A est un ensemble fini.

c.q.f.d.

5.4 Proposition.

Etant données A et F définies positives dans R, avec A R-parfaite, il existe un chemin
Ao, Ar, ..., Ay de matrices M-parfaites contigués de proche en proche (A; contigué & A;pq)
telles que p(F) € p(D4,) = Cy,.

Démonstration. :

*8ip(F) € p(Dy), prendre 4, = A

* 81 p(F) ¢ p(Da), alors p(F) ¢ Dy, et par suite daprés 5.2, il existe un vecteur de
face de D4, By € Vorg™ tel que (By, I7) < 0. By est de la forme :

a1 e Oy

Soit A; la contigué a travers cette face. D’aprés Voronoi, 4; est de la forme :
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Ay = A+ plﬂl avec p; > 0, donc

A]“——*

k1 A gy

et m(A1) = m(A). Ona (A1, F) = (A, F)-+p1(B1, F). Comme (B, F) <0, on a (4,,F) <
(A, F). Alors :
Ou bien p(F') € p{Dy4, ), et prendre A, = A4;.
Ou bien p(F') ¢ p(i),h) et alors p(I") & D4, et d’aprés 5.2 1 éxiste un vecteur de face de
Dy, By € Vore™ tel que (Bg, F) < 0. Soit Ag la contigné A travers cette face. D’apreés
Voronoi, A, est de la forme :

Ay = Ay + py By avecpy > 0.
(A9, F)y = {A1,F) + pa(By, ). Pour la méme raison que précédemment, on arrive i
(Aq, F) < (A1, F). En recommencant le méme raisonnement, on obtient une suite décroissante

< (A, F) < {41, F) < (AT

les A; étant R-parfaits et ayant le méme minimum m(A).
D’aprés le lemme de Voronoi (c.f. 5.3), aprés un nombre fini d'opérations Palgorithme

s'arréte, et on arrive & p(I") € p(D 4, ).
c.q.f.d.

5.5 Lemme.
Soient A et B deux matrices R-parfaites de méme minimum.

Sip(DA)Np{Op) # @, alors A= B
Démonstration.

a (23
Soit U € p(Da)Np(Dp). Onal € p(Dy) et U e p{Dp). U existe ' € Dy tel que
U = p(F). Notons (X;)i=1,2,..s €t (X';)iz14,...s les familles de vecteurs minimaux re-
spectives de A et B. Il existe des 3; > 0 tels que

Zfi (X7, avecB; > 0 car p(F) ¢ p(QB) Dot : (p(I"), B Zﬁ (X'}, B).
fzxl

Mais (X', B) = m{B) =m{4) < (X';,4) V1,

Donc (X';, A — B) > 0. On décompose X'; suivant Vorg™t et Vory.

X' =p(X':) + p: (X7;) ol py est la projection dans Vory.

(X' A= By = (X' + 9 (X), A~ B)

= (p(X"), A~ B) + (p(X":), 4 - B)
= (p(-Xl’i)?A - B)
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car (;(X),A~ B) = 0 puisque A~ B € Vorg™. Par suite {p(X';),4 ~ B) > 0
c'est-a-dire (p(X';), 4) 2 (p(X';), B). D’olt

{(p(F), 4) 2 (p(F), B).
Partant de X; vecteur minimal de A, et en faisant le méme raisonnement, on arrive i :
(p(F), B) = (p(F), A).
D ou (p(F), A) = (p(F}, B) ce qm donne (p{F), A — B) = Q.

Soit { Zﬁt (X'),A—B)=01ie. Zﬁf (X'),A-B)=0.
=1

Ol‘v’z(p(X") A-B)z0et 8, >0

Done Vi {(p(X';),A — B) = 0.

Mais les p(X';) engendrent Vorg™ (c.f. 5.1, 1), Donc A-B = 0 ie: A = B.
c.q.f.d.

5.6 Lemme.
Soit A’ une matrice ‘R-parfaite. Alors :

F e 4 = Fdéfinie positive

Démonstration. :

i
8

F s'éerit @ I = g 3 X', B> 0V = 1,2,..,8, s étant le nombre de couples de
=1
vecteurs minimaux de A’ chaque vecteur minimal v; ayant X comme représentation dans

I'espace de Voronoi.
Soit X un vecteur de l'espace de Voronoi représentant = = (1,22, ..., £ ) de R™. Posons
= i’

Xg = = (m’ﬂ,m'@, ---;ﬁ:’in)- On a (F,X) = (Zﬁ.;X'f,X) = Zﬁi(xli;;()-

On remarque alors que V ¢ € {1,2,..,8} (X5, X) Z:cua:j 2 0, et, comme

Vifiest >0, ona (F,X)>0
D’autre part si (I, X) = 0, alors » (X5, X) = 0 = B(X';, X) = 0V i =125
=1
e (X', X)=0Vi=12..,¢ DoncX =0 car les X'; engendrent Pespace.
c.q.f.d.
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5.7 Théoréme de connexité.
Soient A et A’ deux matrices N-parfaites de méme minimum.
Alorsg il existe un chemin Ay = A, A1, Ay, ..., Ax = A’ de matrices R-parfaites contigués.

Démonstration. :
a)Si A = A’ le probléeme ne se pose pas.
b)Si A’ est contigué & A, théoréme démontré.

)Sl A’ non contigué a A, A'est parfaite puisqu’elie est R-parfaite (c.f. 2.7). Donc Pintérieur
D,;f du domaine © 4 est non vide. Soit I ¢ QAJ. D’apres le lemme 5.6, I' est définie
positive. On sait qu’il existe un chemin Ay = A, A1, ..., Ax de formes M-parfaites contigués
de proche en proche (A; contigué a Aiy1) telles que p(F7) € p(D 4, ) (c.f. 5.4).

Comme F € fDA», p(I) € p(DAJ Par suite p(I") € p(D4, ) N p(Da); et dapres le
lemme 5.5, A = A’
c.q.f.d.

6. Sur une question de finitude

On appelle H-isoméirie de E, toute isométrie de £ conservant globalement F. On sait
que les réseaux M-parfaits sont en nombre fini & isométrie prés, mais pour l'algorithme,
nous avons besoin d'un résultat plus fort : sont-ils en nombre fini & H-isométrie prés?

Nous allons montrer qu'il en est ainsi; adaptons nous 4 la demonstration de Voronoi qui
utilise les bases d'Iermite. Nous allons construire pour les réseaux de M une bhase de ce
type commencant par une base du réseau parfait Ag. Tout d’abord nous donnons un lemme
de relévement :

6.1 Lemme,
Soit p la projection orthogonale de E sur la droite H+ { orthogonal de I dans E).

Alors .
pour tout x’ vecteur minimal du réseau p(A), il existe x de A tel que : p(z) = 2’ et N(z) <
N(z") ¥,
o - Ro'} det Ag
avec U, = 1 4+~ N

U : Ry est le rayon de recouvrement de Ay, c’est-a-dire le rayon minimal des sphéres
centrées aux points de Ay et qui recouvrent H (voir [5],b page 6), et v, la constante
d’Hermite pour la dimension n.

Démonstration.

Soit 2 € p(A) (p(A) € H*), x' vecteur minimal, et soit g € A (A C E) tel que
p(xe) = '
Ona: 2’ =ag+2 avec z € H. par définition de Ry, ! existe done 2y € Ag tel que Nz -
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Montrons que z = 2y + 2y répond a la question.

* X appartient & A, car zg ¢tz sont dans A.

* plz) = plwo + 20) = plzo) + p(20) = plae) = ' car z € Ay (C H). (cf. annexe [, fig
1).
N(z) =N+ Nz ~2) Ore—2" =20+ 20 -2 — 2 =2 — 2. Donc N{z — 2') =
N(z —z) €< RE. D'ont N(z) < N{z') + RE,

N(z) R}
<1

(1) ]\I(xl) - + I\T(xl)

‘ N(A) ;
Mais vy, = mm(h;;— < vy, avec d'une part N(A) = N(Ap) et dautre part det(A) =

det(A)» '
N(Ag) , N(Ao)" )

det(Ag).N(z"). Donc < Yo, soOit - < v, dlot

(o) V() [det(Ag). N ()] ! det{Ag).N(z') !

1 1 1" det(Ag)

<
N(z') = N(2') = N(Ag)"
En revenant & Pexpression {1}, on obtient :
T 2 n .
N (22) <14 Bey.vn .de't(AU)
N{z') N{Ag)"

,il.e:

c.q.f.d.

D’ou Uexistence de base & la Hermite pour tous les réseaux de la famille R :

6.2 Lemme.
Soit {ei,e3,...,en—1 } une base de Aq.
Tout réseau A € R admet une base By = {e1,€1,...,€n1,8,} telle que :

N{e1}..N(en-1).N{e,)
det A

. .N(el )...I\r(en—-l)
h det Ag

S pn(AU);

W, ne dépend pas de A.

ot la constante p,(Ag)
Démonstration. :

Soit {e',} une base de p(A) (€', vecteur minimal dans p(A)). D'apres 6.1, il éxiste e, dans
A tel que :

(2) plen) = €' et Niey) < N(e'n). 0,

Vérifions que B; = {e1,e€9,...,€n-1,€,} est une base cherchée,
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*B1 est une base; en effet :
soit & € Ay p(a) = o' = fne'y, fn € Z.L'élément y = S,e, de A a pour projection x’ sur
H+ Doncz—ye HNA=Ag:
il existe 71, ..., Yn-1 dans Z tels que = —y = ye1 + ...+ Y16, d'O0 :
T = 7€ + o F Ya-1€n—1 + Fnén.

B, engendre A, et a n éléments; ¢’est bien une base.
« V(er).. . N(en—1).N(en) _ N(e1)..N(en—1} N(en)
det A det Ay "N{e's)

N(61 )...N(en_l )
det Ap '

(3) <Y,

Remargue: En choisissant une base d’'Hermite du résean Ay, c’est-a-dire une base telle

Ar TL = iﬂ - ! 4 !'rl !ﬂ !
e (e0)..-Nlew-) <= ) 422 on obtient pnho) = (=) =22 .
det Ag 3 3

Dans la pratique, pour n=8, on a toujours pu choisir e;, es, ..., €, minimaux, d'oll

En utilisant pour les réseaux de la familie R une telle base d’'Hermite, on obtient en
termes de matrices et avec les notations du §4, le théortme suivant :

6.3 Théoréme de finitude.
A Ap-équivalence prés, il n’existe (en dimension n} qu’un nombre fini de matrices parfaites
avec un coin Ay, de minimum donné m.

Démonstration.

Soit A € R, rapporté & une base By (cf. 6.2) et ¢ = Lrer+ ...+ Liei + .ot £nen, & € Zun
vecteur minimal de A.

Soit By une bagse orthornormée de B™. On a

detﬂ:ﬁn (ela €2y €in 1 Ty B,y ooy en) = 5( det"lﬁo (elreih“'a €15 €0 €k 1y vory 8‘&) = &A(A)
D’apres 'inégalité de Hadamard, on en déduit :

lleafileall-o-fielifleira - llenll o fevll-lieallleill-News |- Menll il _ ]
sy S T NPREED
Comme x est un vecteur minimal, lizi] < L Dol : &) € +/pu{fo)

el

L’ensemble I des n-uplets (6. &y, .. ,gn_) de Z™ qui sont susceptibles d’étre les composantes
d’un vecteur minimal x d'un quelconque A de R dans sa base By, est donc fini. Or, A
étant parfait, la matrice de Gram de A dans B, notée Gram(A,By), est déterminée de
fagon unique par son minimum et par les n-uplets (£,&y,..., &, ) de Z™ le représentant. On
obtient donc un nombre fini de matrices parfaites de minimum donné : Gy, Gy, ..., Gp.



GT&?TL(A,B]) € {Gl, Glo,y oo, Gp}.

Soit A une matrice parfaite de minimum m avec un coin Ag. C'est la matrice de Gram
d’un réseau A R-parfait dans une base {e1,es,...,€n—1,Un} U, DOR nécéssairement égal i
en. A est donc Ag-équivalente & Gram(A, By), donc & une matrice Gy, i = 1,...,p.

c.q.f.d.






Chapitre 111
ALGORITHMIQUE

Les calculs faits & la main pour trouver les contigus d’un réseau parfait sont extrémement
fastidieux pour peu que la dimension dépasse 6 ou 7. Grice i l'ordinateur nous allons
donner 3 cette partie de notre recherche un caractére algorithmique. Ainsi nous montrerons
les différentes étapes qui ont conduit a la table des résequx parfoits ¢ section hyperplane
parfaite.

Le langage de programmation utilisé est le C. Raison majeure : pouvoir se servir du
logiciel pari écrit en C. C. Batut, D. Bernardi, II. Cohen et M. Olivier, les auteurs de ce
logiciel, ont doté d’une multiprécision. Cela évite alors les “overflow” affichés & I'écran
dans certains calculs. De plus, la calculette gp directement greffée & ce logiciel, possiéde de
nombreuses applications déja prétes 4 'emploi: rank pour chercher le rang d’une matrice,
det pour calculer un determinant, Ulgram pour chercher une base de petits vecteurs d'un
réseau, etc ..., pour ne citer que celles-1a largement employées.

Toutefois les algorithmes élaborés dont on donnera l'ossature, seront décrits dans ce
chapitre indépendamment de tout langage. L’avantage est de pouvoir les adapter au dia-
lecte choisi.

Bien entendu, ces programmes peuvent toujours étre affinés jusqu’d les rendre de plus
en plus performants et nous n'avons pas la prétention de dire ici qu’ils le sont.

7. Algorithmes de base

Comment traduire & la machine les notions de réseau, perfection de réseau, spectre de
reseau ... T C’est ce lien que nous allons essentiellement résumer ici.

Un réseau A est défini par une matrice de Gram A=Gram(A, B) relativement & une
base B de A. Pour la machine, un réseau est donc un tableau de nombres. Une fois ces
nombres introduits, un programme approprié devrait étre capable de donner les résultats
dont on aura besoin, comme par exemple Vensemble S(A) des vecteurs minimaux de A, le
déterminant det (A), la norme N(A) notée aussi m, la constante d'Hermite y(A}, la per-
fection, le spectre spect(A) (qu'on définira au §7.4).

Nous allons décrire la plupart des fonctions qui nous intéressent, & part certaines figurant
déja dans la bibliothéque gp, ou trop classiques pour étre étudiées. Nous en donnerons le
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plan de l'algorithme sans rentrer dans les détails pour ne pas perdre le fil conducteur.

7.1 Symboles.

Adoptons une fagon d’écrire un programme. Pour cela on va s'inspirer des livres de I1.
Cohen {A course in algorithmic algebraic number theory) et de A. Engel (Mathématigue
élémentaire d’un point de vue algorithmique).

Les instructions élémentaires pour décrire un algorithme seront écrites avec des symboles
que nous allons définir. Rappelons que la mémoire d'un ordinateur est constituée de
régistres ou variables, qu’on imaginera comme des cases dotées d’adresses, et dans lesquelles
on peut écrire un nombre. On les désignera par une lettre alphabétique ou un mot.

a)Pour affecter une valeur donnée & une variable, on écrira «—; par exemple 4 «—— 4 :
mettre 4 dans la variable A,

(5i la variable A est déja occupée par une valeur, elle sera remplacée par 4).

b)X — f(A,B): calculer d’abord f(A,B), et metire le résultat dans la variable X,

c)X «—— Y : les variables X et Y vont s'échanger leurs valeurs respectives.

d)Fichierl «— fichier2: le contenu de fichier2 va s'inscrire dans fichierl.

e)iﬁjcrire(A,B,‘expression’) . écrire les valeurs de A B et Pexpression,

f)Introduire (A, B) : introduire les valeurs de A et de B,

)81 (instructionl) alors (instruction?2) sinon (instuction3) : test de décision.

h){instructionl; instruction2;...} : bloc d’instructions.

1)Fin : le programme s’arréte.

j)Le point virgule (;) sépare les instructions.

k)Les commentaires se font & I'intérieur des crochets.

I)Les lignes sont numérotées dans l'ordre d’exécution de Palgorithme. Si plusieurs
instructions sont écrites dans une ligne, Pexécution de l'une d’elles est subordonnée a
Pexécution de la précédente, sinon on passe A la ligne suivante.

7.2 Invariants d’un réseau.

L’un des premiers programmes écrits est le programme vm. II donne essentiellement 3
partir de la matrice de Gram A d’un réseau A, P'ensemble S(A), et par dénombrement le
cardinal 8. Les autres invariants de A (e : y(A), det(A), N(A) ) ¢'en suivent formelle-
ment(c.f 0.1). Cest un programme banal, retrouvé un peu partout dans la lttérature sur
les réseaux; il se base sur la réduction de Gauss d’une forme quadratique (décomposition
en carrés). La calculette gp posséde également une fonction analogue, la fonction minim
de C. Batut.

7.3 Test de perfection de réseau.

S0it A un réseau de E de dimensionn, B = {¢;, ey, ..., e, } une de ses bases, A=Gram(A, B)
et S(A) 'ensemble des vecteurs minimaux {distincts au signe prés). Nous allons énoncer
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un critere de perfection plus pratique que la propostion 3.4; en fait c’est une autre in-
terprétation qui lul est équivalente. Pour cela on identifie espace de Voronoi de dimension
N = 22l 5 RN et on considere Uapplication :

t:S{A) — RY
définie pour z = (kin, ..., knn ) dans S(A) par

t(.’L’h) - (kzlhy klh k2il) ey knhz)»

7.3.1 Propostion. Pour que A soit parfait il faut et il suffit que t(S) soit de rang N.
T
Démonstration. Pour tout h = 1,2,...,8, on a : o, = E ki eq , ki, €2 .
=n
Sim = N({A), alors N(zp)=m V¥V h=1,2,..,8.
Ce qui g’écrit encore :
Z }cihkjhet-.ej =mVh= 1,2, ey 8 e
1<4,5<n
In posant a;; = e;.¢;, et en tenant compte de ce que @;; = G, ON & un systéme de s
équations & N inconnues, de la forme :

Z kipkjray; =m V¥ h=12 s
JS":':J;ST‘

La condition nécessaire et suffisante s’ensuit :
" A parfait veut dire que les coefficients ai; sont complétement déterminés & partir de
ce systeme (c.f. ii de 0.6); donc le rang de la matrice (ki k;n) est égal & N (systeme de
Cramer). Ce qui signifie que t(S) est de rang N.

D’ou I'idée de chercher le rang de t(S) pour tester la perfection. L'application rank de
la calculette gp est ici la bienvenue, comme le programme élémentaire rang élaboré en ce
sens.

7.3.2 Algorithme perf.

1)Introduire les coefficients a;; de A=Gram(A,B).

2)[Initialisation]j «— 1; h «— 1.

3)[Application vm] Trouver un vecteur minimal distinct (au signe prés) de ceux déja
trouvés: zx = (kip, .., Knpy ).

4)[Fin?] Si (pas de nouveau vecteur minimal) alors {écrire (‘résean non parfait’); fin.}

5)[Caleul de ()] t(zn) = (K*in, kinkan, oo, kan®).

6)[v; est un vecteur & N composantes] v; —— t(z).

7)[Application rang] Calculer le rang de {v;, vy, S ITR

8)(Fin?] Si (rang = N) alors {écrire (‘réseau parfait’); fin.}

9)Si (rang = j) alors (j — j + 1).



10)h «— h + 1; aller ligne 3.

Commentaires.

Laligne 8 indique qu'il est superflu de continuer & chercher les autres vecteurs minimaux
des lors que le rang est N. in effet, chaque vecteur qui va suivre est combinaison linéaire
des précédents.

7.4 Spectre d’un réseau.

Nous allons définir un autre invariant du réseau A de norme m : le spectre qu’on notera
spect{A).

7.4.1 Propostion. Pour tous v,x dans S(A), z # v, on a :

st < |2]

Démonstration. On a les implications suivantes :
N{z+v)>m
= N{z)+ N(v) +2(v.e) > m

= 2m 4+ 2{vz) > m

= g3 > —g’i.

De méme, N(z —v) > m implique v.z < >
Donc -
m
lv.z] < [—J :
c.q.f.d.
D’apres la proposition précédente, les éléments de cet ensemble sont parmi les entiers
m
012, | 2]
Attt H 2

C .| m
Notons n; le nombre de couples £z tels que z.v = ¢, i variant de 0 & t—)—J .

Z

7.4.2 Définition. a)Le spectre de v est la suite ordonnée (ng,n;, ..., Ny
b)Le spectre d’un réseau est la liste des spectres des vecteurs minimaux avec le
nombre de fois qu’on les obtient.

L'intérét d’étudier le spectre d’un réseau A repose sur la remarque suivante:
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7.4.3 Remarque. Si o est une isométrie de A sur A, alors:

Ve S(A), spect(v) = spect(cv)
EneffetVz € S(A), oz.ov = z.v. Quand x déerit S{A), oz déerit S(A) qui est égal & S{A"),
Donc spect(v) = spect{ov)

Ceci entraine que deux réseaux isométriques ont le méme spectre. On pourra alors utiliser
la contraposée comme test:

st A et A nont pas le méme spectre, ils ne sont pas isomélrigues.

Voici donc:

7.4.4 Algorithme spect.
1) Introduire Jes coeflicients de la matrice de Gram A du réseau A.
2) [Application vm] Chercher S(A), s, et la norme m de A,
3)[Initialisation] j e Q.
4)Prendre v dans S il n’a pas déji été choisi.
5)[Boucle] Pour tous les x de S, » # £v, calculer |v.z| (= |*vdz|).
6)[Boucle] De i=0 & F:—J , dénombrer les couples +x pour lesquels |z.v| =i : il y en an;.

7)[Spect(v)] Stocker (‘?Jzo,m, ;N my) dans un tableau T; j «— j+1; si (7 # s) aller
ligne 3.

8)[Spect(A )] Dénombrer le nombre de fois qu’on trouve le méme spectre de vecteur dans
le tableau T; fin.

Commentaires.
Ala ligne 4, il faut prendre les vecteurs dans S{A) 'un apres autre. Cela suppose qu'ils
ont été mémorisés et numérotés.

8. Algorithmes d’isométrie

On sait qu'un méme résean peut étre représenté par une infinité de matrices de Gram.
Mais alors deux matrices de Gram A et A’ étant données, comment savoir si elles représentent
le méme réseau? L'idée est de trouver une matrice P de GI,(Z) telle que A’ ='PAP. Le
programme isom de C. Batut via D.O. Jaquet apporte la réponse dans le cas o A est
écrite dans une base de vecteurs minimaux.

Voila pourquoi i} est intéressant de chercher d’abord une base de vecteurs minimaux si
elle existe.



8.1 Base de vecteurs minimaux.

L’application lllgram de la calculette gp donne pour un réseau A de matrice de Gram
A, une base formée de petits vecteurs. Ces petits vecteurs sont pour la plupart des vecteurs
minimaux du réseau, mais il n’en est pas toujours ainsi. Aussi devons-nous construire un
programme adapté exactement & notre probleme. Autrement dit on impose & A d’avoir un
coin Ag, ot Ap est écrite dans une base de vecteurs minimaux (ce qui est toujours possible
pour n < 7).

Nous avons alors le résultat suivant :

8.1.1 Proposition.

Soit By = {e1,e3,...,e, } une base de A telle queey, ey, ..., €1 } 50it une base de vecteurs
minimaux de Ay, et soit By = {e1, ey,...,en1,2} un ensemble de vecteurs minimaux de
Aavec z = aje; 4 agey + ...+ ane,.

Pour que By soit une base de A il faut et il suffit que |a,| =1 .

Démonstration. Supposons By = {e1,€y,...,e,-1,2} base de A. La matrice de passage de
By & By est:

1 0 .0 4y

0 1 0 2]
P = 0

0 0 1 (7o |

0 0 0 an

Comme P € Gln(Z), on a det(P) = +£1, ie |ay| =1

Réciproquement : supposons |a,| = 1.

B, est formée de vecteurs linéairement indépendants. Considérons le réseau A’ engendré
par B dans A, L'indice [A : A] est égal & | detoy, Bo].

On trouve [A: A} = |a,| = L.

D'olt A’ = A, et par suite B, est une base de A.

c.q.f.d.

On a donc une méthode pour chercher une base de vecteurs minimaux :

A partir de la proposition précédente, on voit qu’il faut d’abord chercher S(A), puis de
repérer le premier vecteur minimal x dont la dernitre composante est 1.

Ce qui donne l'algorithme suivant:

8.1.2 Algorithme nvgram.

I)Introduire les coeflficients de A = Gram(A, B,).

2)[Application vm] Trouver un vecteur minimal v = (a1, as,...,a,) distinct (au signe
prés) de ceux déja trouvés.

3)[Fin?] Si (pas de nouveau veceur minimal) écrire (‘pas de base de vecteurs mini-
maux’):fin,
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4)[Test du choix d’un vecteur minimal x] Si { |an| = 1} alors (¢ «— v) sinon (aller &
ligne 2).

5)[Calcul de produits scalaires] Chercher B = Gram{A, {e;, ez, ... n-1,2}).

6)Ecrire(‘nouvelle matrice de Gram : ' B);fin.

Commentaires.

La ligne 4 indigue qu’il n'est pas besoin de continuer & chercher S{A) en entier. En
effet, si le vecteur x est repéré, on passe tout de suite au calcul de la nouvelle matrice de
Gram B. C’est notre but.

8.2 Isométrie de réseaux.

Il est clair que si deux réseaux A et A’ se différencient par au moins un de leurs invariants
alors ils sont distincts.

Et s'ils ont les mémes invariants sont-ils pour autant isométriques?

Le probleme est d'essayer de construire une isométrie f : A — A’ sachant que A possede
une base de vecteurs minimaux B = {ej, eq,..., €, }.

Si une telle f existe on a les remarques suivantes:

8.2.1 Remarques.

Pourtouti=1,2, ..., n:

ale; et f(e;) ont le méme spectre.

ble; et — e; ont le méme spectre,

c)f{e;:} est un vecteur minimal de A.
diVi, =1, 2,..,n, fle).f(e;) = eiey,

8.2.2 Proposition.

Sif: A — A’ est une application linéaire vérifiant la condition d, et si det(A) = det(A")
alors:

a){f(e1), fles), ..., flen)} est une base de f(A).

bif(A) = A

(ie { est une isométrie).
Démonstration.

a) En effet, f est injective : par linéarité on déduit de d) que Vo, y € E f(z).f(y) =z.y .
Donc si f(r) = 0, onaVy € B, z.y = 0. Donc & = 0. De cette remarque, A f{e1) +
Agflea) ... + A flen) = 0 implique:

FlArer + Agea + ...+ Apen) =0

Comme f est injective, Aje; + Ases + ... + Ao, = 0.
Cequidonne \;, =0Vi=1,2,..,n
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b)f(A) ¢ A'. Comme det{A’) = det(A) = det(f(A)), on a [A : f(A)] = 1. D'od
f(A) = A"
c.q.f.d.

Cette proposition ef la remarque ¢ nous montrent gu'un choix judicieux parmi les 2s
vecteurs minimaux de A’ des f(e;) pouri=1, 2, .., n, vérifiant f(e;).f(e;) = e;.e;, constitue
une solution f possible. Ce choix est ramené & un nombre fini de vérifications, gu'on peut
nettement diminuer en tenant compte de la remarque a. De fagon imagée le procédé de
construction de f revient & prendre un grand échiquier rectangulaire n x 2s, et & placer sur
chaque colonne i une reine ry;y (1(i) étant le numéro de ligne) de telle maniere qu’une fois
posée , il n'y a pas “échec” aux conditions (I} suivantes:

8.2.3 Conditions (I).
* 7y est un vecteur minimal de A'; (i) est donc le numéro de ce vecteur.
® Ty), Ty2)s e Tige) Sont distincts (le f est une injection),
® Ty).Tyy) = €.€; pour tout j = I, 2, ..., i-1.
o spect(ry;)) = spect(e;).

Dans ce cas nous conviendrons de dire que I{i) convient, ce qui sous entend que la case
de colonne i et de ligne 1(i) convient pour poser la reine, ou encore que les conditions (1)
sont satisfaites, c’est a dire le vecteur de A’ de numéro }(i) convient pour étre 'image de
e; par f.

C’est le probleme bien connu des “ n reines sur un échiquier”, qui utilise la technique
classique du back-tracking pour trouver une solution, et qui se résume ainsi

Dans la 1° colonne on pose la 1° reine sur Ja case 1(1)=1. Dans la 2° colonne on essaye
successivement les cases de bas en haut pour en trouver une qui convienne 3 la 2¢ reine.
On fait de méme dans la 3¢ colonne pour la 3¢ reine. Bt ainsi de suite. Si dans la colonne
n’ 1 aucune des 2s cases ne convient & la reine n® i, on revient i Ia colonne précédente nY
i-1 et on cherche une autre case qui convienne & la reine n? i-1; etc....

L'ordinateur donnera lisométyie f sous forme d’un n-uplet £ = (1(1), 1(2),..., I(n)).

On arrive donc au programme que voici:

8.2.4 Algorithme gisom.

I)Introduire A (obligatoirement écrite dans une base de vecteurs minimaux), et A’,

2)[Application vm] Chercher les invariants s(A),s(A’),det (A),det (A’), N(A) et N(A’).

3)[Test] Si (I'un des invariants differe) alors {écrire (‘réseaux non isométriques: invari-
ants différents);fin}.

4)[Calcul de produits scalaires] Recueillir les produits scalaires 2 4 2 des 25 vecteurs mini-
maux de A'; recueillir les produits scalaires 2 & 2 des éléments de 8 = {e1,es,...,en}, base
canonique de A).

5)[Application spect] Recueillir les spectres des 25 vecteurs minimaux de A’ recueillir
les spectres des éléments de B = {ey, €y,..., €, }.

6)[Initialisation] i «— 1,
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7)[nitialisation] 1(i} «— L

8)[Test] Si (1(i) ne convient pas ) aller ligne 10.

9)[Fin?] i «—— i+1; Si (i > n) alors {écrire(1{1),1{2),...,](n)); fin } sinon ( aller ligne 7).
10)[Incrémentation] 1(i) «— I{i)+1.

11)[Test] Si (1(i) < 2s) aller ligne 8.

12)[Back-tracking] i — 71— 1.

13)[Test] Si (i # 0) aller ligne 10.

14)[Fin] Ecrire (‘Aucune isométrie malgré les mémes invariants’) ; fin.

Commentaires.

1)La matrice P de GU,,(Z) telle que 'PAP = A’ est connue dés lors que l'isométrie
£=(1(1),...,I(n)) est trouvée. C’est la matrice des vecteurs colonne 7y pris dans S(A').

De la ligne 1 a la ligne 5, la machine calcule surtout des résultats qu’elie stocke dans
des tableaux. Les instructions clefs se jouent véritablement de la ligne 6 & la ligne 14; elles
forment un processus étonnant par le peu d'étapes, et important par le réle qu'il a joué en
tant que filtre de réseaux.

2)L’algorithme que nous avons présenté¢ a été mis en place en s’inspirant des notes prises
lors de la visite de Jaquet & Bordeaux, et de certaines remarques instructives de C. Batut
dont on a utilisé le programme isom.

Par contre pour des vérifications, on g’est surtout servi de gisom,

8.2.5 Variantes du programme gisom.

1)On peut enlever linstruction fin & la ligne 9 et mettre & la place un compteur et
I'instruction ¢ «— ¢ — 1; c’est le programme ngisom qui donne le nombre g d’isométries.

SiA=A’, g sera alors le nombre d’automorphismes (qui est un autre invariant de réseau).

2)L'étude faite au §1 nous ameéne & comparer deux matrices A et A’ & coin Agy. 11 faut
donc s’intéresser & une isométrie f qui conserve Ay (ie f(Ay) = Ap), qu'on appellera H-
isométrie, 1 étant ’hyperplan de E engendré par Ag. A supposer que {€1,€2,...,€n_1} €t
base de Ag, cela revient & rajouter aux conditions (I) la condition supplémentaire:

flei) € {er,en, o enipVi=1, 2,., n—1

Ceci impose la derniére composante de f(e;) nulle. Les conditions (I) deviennent alors les
conditions (I'):

¢ 7y est un vecteur minimal de A'; 1{i) est donc le numéro de ce vecteur.

* Ty1), Tyz)s - Tya) sont distincts (e f est une injection).
Tyq)-Ti) = €5 pour tout j = 1, 2, ..., i-1.
spect(ry(yy) = spect{e;).
la n® composante de ;) est nulle.
. et nous avons le programme hisom, celui qu’on utilisera véritablement dans le pro-
gramme final pour chercher les contigus.

3)Dans les mémes considérations que le 1) on peut chercher le nombre h de H-isométries;
c'est le programme nhisom.

* & @
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9. Algorithme de contiguité

Soit A un réseau parfait de matrice de Gram A, au-dessus de Ay parfait de matrice de
Gram Ap.

Quels sont les contigus de A ayant pour section hyperplane Ay? Comment les chercher?
Nous allons ticher d'y répondre en construisant un programme qui jouera un role de
1°F plan dans ce travail.

9.1 Initialisation de ’algorithme de Voronof.

Du fait de la connexité du graphe de contiguité (c.f. §5), Pexistence d’un seul réseau
parfait A au dessus de Ay, suffit pour trouver tous les autres par I'algorithme de Voronof,
Le probleme est de savoir si effectivement il y en a un. On peut s'intéresser par exemple aux
réseaux entiers, ce sont les plus simples. Dans le cas n=8 que nous traitons, la propostion
suivante nous donne une réponse encore plus précise:

9.1.2 Proposition.

Soit Ap un réseau parfait en dimension 7, de matrice de Gram Ay:

1) Ag admet une base B, de vecteurs minimaux.

2)II existe un réseau parfait A, de base B, au-dessus de Ay # P(7,2) ,avec B base de
vecteurs minimaux.

3)1l n’existe pas de réseau entier parfzit ayant P(7,2) comme section hyperplane, & moins
de normaliser & 6.

Démonstration.

1)La table de Conway-Sloane (c.f. [5}a) donne les matrices des 33 réseaux parfaits. Il
suffit d’essayer le programme llgram de la calculetie gp ou encore le programme nvgram
sur les matrices Ap qui n’ont pas leurs éléments diagonaux égaux au minimum. L'exécution
a toujours donné une matrice équivalente & éléments diagonaux égaux.

On pourra donc toujours supposer que Ay est donnée dans une base de vecteurs mini-
IMaUX.

2)I1 suffit de les chercher informatiquement et de les exhiber. Notons 4 = Gram(A, DB).
On sait que A admet un coin Ay, ie A est de la forme :

On impose a,, = m(= N(Ag). D’aprés la proposition 7.4.1 il suffit de faire un balayage
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_ ml o, | m ., o
de chacun des a; en valeurs entieres de ["“"?)"1 a {—Q—J . On teste la perfection (application
perf) de chague matrice A obtenue, et on arréte le programme dés qu'on en obtient une.
Cet algorithme trés élémentaire construit avec n-1 boucles (et qu'on a appelé depf) a
confirmé le résultat énoncé.

3YPar traitement informatique commnie précédemment.

9.2 Recherche d’une face hyperplane de D 4.

Dans la théorie concernant 'algorithme de Voronoi, on se place dans Pespace Vor de
ni{n+1)
9
Valgorithme est ramené dans un sous-espace de Voronoi de dimension n. Ce qui simplifie
grandement les calculs pour chercher les faces hyperplanes de D4, symbolisées par le

vecteur de face

dimension N = . D'apres le §4, le fait d’imposer une section hyperplane Ag de A,

a
ay

|
|
B = ! EVOTU'L
l
a1 Oy,

Le corollaire 2.9 ef la proposition 4.4 indiquent que I'ensemble des vecteurs minimaux
de A qui engendrent Phyperplan Hg de R™, est une partie C de § — Sy de rang n-1.

Soit v = (&1, &2, ..., &) un élément de Hp.

81 C = {v1,v2,...,0n-1} avec v = {£;)7 = 1,2, .0

Iéquation

F(6, 6, 6n) = 2060 + o + 2001601 + anln = 0 de Hp,

se calcule en résolvant le systéme de n-1 équations & n inconnues 2a1, 2as, ..., 26n—1, @y,

2&1 E]l -+ Qanwlgl,nml + anfln = ()
(1) T =0
2Cl'l ‘Sn——l,l Tt 2a'ﬂ‘mlgn—l,n—l t an{n—-l,n = (.

On sait qu'une inconnue peut étre choisie comme parametre de telle sorte que la matrice
des coefficients des inconnues restantes soit de rang n-1.

On fixera & 1 la valeur de ce parametre ; les autres inconnues seront alors complétement
déterminées. Pour choisir I'inconnue qui sera prise comme parametre, on cherchera tous
les mineurs d’ordre n-1 extraits du systéme jusqu'a obtenir une valeur non nulle.

Reste & vérifier que Hp est une face de D 4. Les vecteurs de § —~ Sy doivent étre tous
soit d'un c6té soit de l'autre de [, Ce qui veut dire f(z) >0V 2z = {&,..,£,.) € § — Sy
(ou bien flz) <OVzeS—5)
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Une fois la face confirmée, il ne reste plus qu'a déduire ay,..., a, pour avoir B. Pour
rappeler qu'une telle face est issue de C, nous conviendrons d'appeler B une C-face.
Il est clair que deux parties C et C' peuvent définir la méme face.

9.3 Recherche de 0.

g

D'aprés Voronoi, il existe 0y = Z_O dans Q tel que Ag, = A + — B soit contigu de A.

0 bo

Au vu du paragraphe 4:

¢) Pour 0 < 0 < 0y alors N(Ag) = m et s{(4A+0B) = ¢ (0 étant le nombre de vecteurs
minimaux de A dans I'hyperplan II).

o) Pour 8 = g, alors N(Ag) =m et s(A+0B) > o

) Pour @ > g, alors N{4g) < m

Pour chaque valeur rationnelle de ¢ testée, on calcule donc N(Ay) et s(Ag) qui permet-
tent de situer & par rapport & fg.

Pour b=1, on essaye les rationnels %, a parcourant N, jusqu'y trouver g (auquel cas
l'algorithme est fini), ou bien on dépasse 0y et alors b se change en b+1, et on refait la
méme opération, a décrivant N & partir de a=1.

L'existence de ) assure que cet algorithme s'arréte aprés un nombre fini d'opérations.

De maniere plus précise, la norme du réseau A correspondant i la matrice de Gram
A+ 0B, qu'on notera m(4 + 0B} suit le graphe de annexe I (figure2) quand ¢ décrit IR.

Remarques: des que b 2 2, on peut limiter le nombre de valeurs de % 4 essayer; en effet
a) a

soit p—) la plremiére valeur de ¢ = T .
L 73]
On : fy <
HAGTT SNy
. LN - a; —1 & a1 s e .
Les rationnels 7 @ tester vérifient — < B < g cequi équivaut a:
((Ll — l)b

a4 <

h—1 < i 11 ce qui en fait ne donne qu'une valeur possible pour ¢ € N,

(6&1 - }L)b
Q@ = | et 1
b—1
Mais dans la pratique (n=8}, 'expérience a montré que les essais & faire sont tres peu
, 11 2
nombreux (valeurs trouvées: f; = 1, 33 5)

Ia méme remarque a rendu inutile {dans les cas que nous avons traités) la majoration
de 0y par la plus petite valeur 61 > 0 telle que det(A4 + 6, B) = 0, ainsi que I'utilisation des
suites de Farey.

9.4 La recherche des contigus.

On est maintenant en mesure de donner Possature du programme répondant 3 notre

question:

comment rechercher par contiguité les réseaux parfaits A ayant une section hyperplane
parfaite Ag?



]
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Le théoréme 6.3 assure la finitude & Ap-qguivalence prés de ces réseaux pour une di-
mension n donnée.
Nous avons alors:

9.4.1 Algorithme ctg.

[1¢ partie]

1)Introduire la matrice parfaite Ay du réseau parfait Ay (de dimension n-1 et de norme
m).

)2)31'( A non donnée suivant une base de vecteurs minimaux) appliquer nvgram pour
trouver une nouvelle matrice Ag.

3){depf] Appliquer depf pour trouver A parfait symbolisé par A = Gram(A,DB) avec
un coin Ay.

4)[Test] Si ( A n’existe pas) alors (renormaliser Ay ); aller ligne 3.

[2¢ partie]

5)vm] Trouver S{A)

6} Repérer Sy = S(Ag) C S{Ag). [Les n¢ composantes de ces vecteurs sont nulles]
7)Prendre {une partie C & n-1 éléments non déja choisie dans S — Sy ) sinon (fin).
8)}[C engendre-t-il un hyperplan Hy dans E? : application rank]

Vérifier que rang{C)=n-1 sinon (aller ligne 7).

9)[Equation de I'hyperplan Hg] Résoudre le systéme (I) (¢.f. 9.2).

Soit f(z) = 26181 + .. + 26n-1E0—1 + an€a = 0 I’ équation de Hp dans E.
10){boucle] Calculer f{x} pour tous les x de S — Sy et dénombrer les x pour lesquels :
f{x)=0 (on trouve z.), f(z) <0 {on trouve m,), f(z) > 0 (on trouve py).

11)[Hpg est-il une face de D47 Si (ms.ps = 0) alors (calculer B) sinon (aller ligne 7).
12)[Cardinal de Pensemble des x de S tels que f{x)=0] ¢ «— s(A¢)} + 2.

[3° partie]

13)[Initialisation] b «— 1;q e 1,

14)0 +— ¢, Ag — A+ 0B.

15)[application vim] Chercher s(Ay), N(Ag).

16)[Test] Si {N{Ag) = m;${Aq) = o} alors {a e a-+1; aller ligne 14.}

17)[Test] Si (N{Aq) < m) alors {b «—— b+ 1;a « 1;aller lignel4}.

18)[Test] Si {N(Ag) = m;s{Ag) > o} alors {0y = ¢, appliquer vin & Ay, }; recueillir
dans le fichier resparfB : les coefficients de la derniére colonne de g, s(Ag, ), det{4q, ),
N(Agy), a, b, v(Ag,), card{S — 5y).

19)Aller & 7.

Commentaires.

La 1¢ partie conduit & la recherche d'une matrice A parfaite au-dessus de Ay, pour
initialiser Palgorithme de Voronoi et le faire démarrer.

Pour bon nombre de réseaux étudiés, cetie partie a été éxécutée d’abord seule.

Les étapes de la 2¢ partie amenent aux différentes C-faces possibles.

A la ligne 9, la résolution du systéme (I} s’est faite par les formules de Cramer( on a
utilisé les fonctions det de gp).

La 3¢ partie est constituée des tests de contiguité pour avoir les contigus de A relatifs
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& la C-face. Les résultats sont recueillis dans un fichier ouvert au préalable, et quion a
dénommeé ici resparf8,

A la ligne 14, Ae est en fait rendu entier et m est alors le minimum de b4y, c'est & dire
bm.

Une fois connus les contigus de A, pour chercher les contigus de chacun d’eux , on peut
faire commencer I'algorithme & la ligne 5 aprés introduction d’une nouvelle matrice (en
fait on peut s'arranger pour introduire seulement la derniére colonne).

10 Algorithme de tri

A premiere vue ce chapitre est sans intérét. Il n'en est rien. Laissons Conway-Sloane
(c.f. [5) page 44) parier de K.C. Stacey (qui a travaillé en dimension 7):

«Stacey’s computer in fact generated all perfect septenary lattices, but unfortunately it
produced thousands of Gram matrices, and Stacey was unable to decide just which pairs of
these were equivalent...»

Le mérite de Stacey est d’avoir quand méme pu trouver les 33 réseaux parfaits en
dimension 7 sans toutefois conclure & l'exhaustivité. C’est D.O. Jaquet qui Ya conclue
grace a son programme d’identification ... donnant ainsi naissance au programme isom de
C. Batut, base de départ pour notre classement.

En effet, ie méme problenie se pose dans notre cas. Dans le fichier resparf8 les mémes
réseaux (& Ao-équivalence prés ) peuvent se répéter puisque des parties C distinctes peuvent
engendrer la méme face. De plus, on veut également les contigus des différents réseaux. I
est donc essentie! de distinguer ces réseaux, de les trier.

10.1 Tri des réseaux du fichier resparf8.

Solent t réseaux Ry, Ry, ..., Ry dans le fichier resparf8; on veut les trier, ie ne conserver
que ceux qui sont distincts & Ag-equivalence prés. On ouvre un fichier cresnouv8 dans
lequel seront inscrits les contigus distincts de A. On procede alors de la manigre suivante:

On compare [; par hisom successivement & tous les réseaux R’., de cresnouv8. Si R;
n’est H-isométrique & ancun des R',,, ¢’est un nouveau réseau qu'on inscrit dans cresnouvs8
A la suite de ceux qui existent déja; ( cresnouv8 étant vide au départ, Ry va s'écrire dedans
initialement ).

Puis on passe au réseau suivant R;41, et on itére la procédure ..., et ainsi de suite jusqu’a
Rf.

Le fichier cresnouv8 n’aura ainsi que les contigus distincts du réseau parfait A de
matrice de Gram A. On sauve les données de cresnouv8 dans un fichier fActg (la lettre
A rappelle des résultats relatifs 4 la matrice A); puis on réalise les mémes étapes pour
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trier les réseaux de cresnouv8 dans un fichier stable resnouv8, avant d’effacer ce qu'il
y a dans resparf8 et cresnouv8. Appliquant successivement & chacune des matrices A
qu'on prend dans resnouv8, d'une part le programme ctg, d’autre part le programme de
tri qu'on vient de décrire, on aura en définitive deux résuitats:

-Tous les réseaux distincts A; au-dessus de Ay (qu’on trouvera dans resnouv8).

-Les contigus de chacun des A;.

Regardons de plus prés cet algorithme de tri qu'on appellera ici detg.

10.1.1 Algorithme dctg.

1)[Initialisation] T «—— 1.

2)Créer fichier F1; créer fichier F'2;

3)Créer fichier cresnouv8.

4}F1«— resparf8; F2 ¢ cresnouv8.

5)Chercher le nombre t de réseaux inscrits dans F1.

6)[Initialisation] i — 1.

7)Choisir R; dans F1.

8)[Initialisation] u «— 1.

9)Si (R, n’éxiste pas dans F2) alors {R', «— R;; inscrire R',, dans F2; aller ligne 12}.

10)/hisom|Comparer R;etR',, par hisom:.

11)Si (R; non H-isométrique & R',,) alors {v — u + 1; aller ligne 9} .

12)i «— i+ 1; si(i # t + 1) alors (aller ligne 8).

13)Si (T=1) alors (afficher A,invariants de A, spect(A), les contigus de A qui sont dans
cresnouvg),

14)5i (fichier resnouv8 n'existe pas) le créer.

15)8i (T=2) alors { resnouv8 «—— F2; fin}.

16)F1<——e— cresnouv8; F2«— resnouv8.

17)T=2; aller ligne 5.

Commentaires.

La valeur 2 donnée & T a la ligne 17, empéche la ligne 13 de s’executer au 2° tour.
L'instruction fin de la ligne 15 n’est pas une fin en soi. Dans la pratique, on ouvre le fichier
resnouv8 et Pon prend un réseau non déja choisi qu’on traite en utilisant de nouveau ctg.

Les fichiers resparf8, cresnouv8, resnouv8 sont des fichiers binaires; les programmes
(Ifrp8&, lfcrn®, frn8) pour respectivement les lire et afficher le contenu & I'écran sont
élémentaires.

11 Exemples

Les différentes étapes & suivre pour chercher par contiguité les réseaux A au-dessus de
Ap se résument ainsi en manipulations:
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1)Introduire Ay pour éxécuter depf. Ceci a pour but de trouver la matrice A parfaite
ayant un coin Ag.

2}introduire A et lancer etg. I y a création du fichier resparf8 pour recueillir les
réseaux ‘indistincts’ contigus de A.

On fera de telle sorte de sauver dans le fichier fActg spect(A) et les invariants de A.

3)Trier les réseaux de resparf8 grice & detg. Les contigus distincts (& H-isométrie
pres) de A g'inscrivent dans le fichier cresnouv8. En méme temps la liste des réseaux
au-dessus de Ag prend forme dans le fichier resnouv8.

4}Le programme lfcrn8 rajoute les contigus distincts dans le fichier fActg.

6}Ouvrir le fichier resnouv8 (c’est le programme lfrn8) pour choisir une nouvelle ma-
trice A qui n’ a pas ét€ traitée, et recommencer a ’étape 2.

Si toutes les matrices A sont traitées, présenter les résultats tels qu’on les voit sur la
table.

Mieux vaut prendre des exemples tant il est vrai qu’un algorithme ne se comprend qu’en
Iexécutant.

11.1 Premier exemple: Etude de Ap = P(7,2)
1¢ manipulation :

1)On lance depf aprés avoir introduit les coefficients de A,.
2)Les éléments diagonaux ne sont pas tous égaux entre eux. Le programme nvgram va
donner une nouvelle matrice de Gram Ay qui est

( 3 1 -1 -1 -1 -1 1
3 1 -1 -1 -1 -1

3 1 -1 -1 -1
Ay = 3 1 -1 =1
3 I 1
3 1

3)Cherchons un réseau parfait A en dimension 8 qui contient Ay et dont la matrice de
Gram est de la forme

3 1 -1 -1 -1 -1 1 a\
3 1 -3 =1 -1 =1 b
3 1 -1 =1 -1 ¢
3 1 -1 -1 4
A= 3 1 =1 e}’
31 f
3 g
3

S—
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i.e. écrite dans une base de vecteurs minimaux. L

Les parametres entiers a, b, ¢, d, e, f, g variant dans l'intervalle [—5, ;2], c'est-d-dire
dans {0,:1}, on constate qu'il n’existe pas de réseaux parfaits de cette forme.

4)On renormalise & 6 la matrice Ay, et on fait varier alors les parametres a, b, ¢, d, e,
f, g dans {—3,-2,-1,0,1,2,3}, ie A aura pour allure:

6 2 -2 -2 =2 -2 2 q

6 2 -2 —2 -2 -2 b
6 2 -2 =2 -2 ¢
6 2 -2 -2
A= 6 2 -2 e
6 2 f
6 g
\ 6/

On recommence l'opération. Et cette fois le programme depf donne un réseau de départ
A avec une matrice de Gram A ayant pour derniére colonne:

a=b=c=d=e=c¢= f=g=1;, 8%oefficieni =06

2¢ manipulation .

5)Apres avoir introduit A on lance ctg. L’ensemble S(A) des vecteurs minimaux de A
est affiché avec les invariants classiques (voir annexe III).

6)Sy est repéré. On le remarque sur la liste: les 8¢ composantes sont nulles. 11 y en a
28 exactement (le cardinal de S{E%)).

7}S — Sp| = 16; les derniéres composantes de ces vecteurs ne sont pas nulles. Prendre
une partie C & 7 éléments dans S — 5.

Oyena (176) = 11440,

8) 9) 10) 11) 12) Toutes ces lignes s'illustrent de la méme maniére que sur la partie
C =4{1,2,3,4,5,6,7} de rang 7, ol 1,2,3,4,5,6,7 sont les numéros des vecteurs minimaux
de la liste. On a I'équation de la face 7 = 0. ¢ = 36 (c’est 28+8).(voir annexe III).

Nous trouvons ainsi 70 C-faces , chacune avec un contigu, et tous ces contigus sont
recueillis dans le fichier resparf8 (voir annexe IIT).

IEn méme temps les invariants de A et son spectre s’'inscrivent dans le fichier ascii fActg,

3¢ mantpulation .

Cette partie consiste & trier les réseaux de resparf8. On exicute detg. Le travail de
classement s’opeére comme on Ya expliqué au §10. On doit s’attendre & trouver les fichiers
cresnouv8 et resnouvs.

4¢ manipulation .

On exécute le programme lfern8. Les contigus distincts de A, symbolisés par A,
s’ajoutent & ceux qui éxistent déja dans le fichier fActg.
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C'est le réseau:

1,1,1,1,1,1, ~1,6, 44, 20480, 6,2, 1, 1734742, 16

(lire le sommaire de l'annexe Il pour la signification).

5¢ maenipulation :

On ouvre le fichier resnouv8. On trouve le méme réseau que précédemment. On
recommence & I'étape 2. On s’aper¢oit que la liste de resnouv8 ne s'allonge pas. P(7,2)
ne posséde qu'un seul réseau parfait au-dessus de lui et qui est son propre contigu. Un
résultat qui n’est pas sans surprendre. Le graphe de contiguité aura l'allure de la figure 3
(voir annexe IV).

On n'a plus qu'a mettre en forme les résultats.

1} est évident qu’en prenant une autre matrice Ay équivalente & la premiére, on trouverait
des resultats équivalents. Cest ce qui a été fait & Pannexe IT pour P(7,2).

Temps machine: 3 minutes sur la station de travail SPARC 2.

11.2 Deuxiéme exemple : Etude de Ay = P(7,3).

On recommence le plan comme précédemment. On arrive & la liste finale de I'annexe
II. On remarque que P(8,1;3) et P(8,2;3) ont les mémes invariants classiques. Cependant
leurs spectres les différencient. Le graphe de contiguité est 3 la figure 4 de 'annexe IV,

11.3 Troisiéme exermple.

Nous prenons au hasard P(7,5), (7,26) et P(7,27) que nous étudions.

Pour information le temps-machine pour P(7,5) est de 3h 48mn.

Donnons sans commentaires les résultats a 'annexe II; voir aussi leurs graphes de con-
tiguité (annexe IV, figures 5, 6, 7).

11.4 Quatriéme exemple : Et les réseaux de racines?...

It les réseaux de racines? Pourquoi n'ont-ils pas été étudiés?

Bien sr que si! Un essal a été fait. Le programme a tourné pendant 10 jours sans
résultats notables a part le réseau L de Barnes noté ici P(8,2;1) ~ P(8.2;33). II faut
signaler que I a été trouvé accidentellement en choisissant une partie C au hasard dans
S - Sy lors de I'étude de P(7,1)=FE;.

Ln effet, comme on a pu le remarquer déja, la ligne 7 de Palgorithme ctg fait choisir une
partie C de n-1 éléments dans S — Sy. Pour les réseaux de racines qui nous préoccupent, si
le cardinal de S~ Sg est égal & k (k est symbolisé par la variable rr dans notre programme
informatique), alors il faut passer en revue (fr) combinaisons de vecteurs.

Portons-nous & 'annexe V et on comprendra pourquoi:

Pour P(8,1;1) k=57, (37) = 264 385 836;



pour P(8,1;4) k=78, () = 2 641 902 120;
pour P(8,1;33) k=92, (%) = 8 760 554 088;
pour P(8,2;33) k=43, (%) = 32 224 114;

Devant ces grands nombres qui font trainer en longueur le programme, nous avons
préféré mettre les réseaux de racines de coté. Ils méritent & eux seuls une étude particulitre
plus approfondie. L'étude est donc incompléte comme l'illustre le graphe de contiguité de
chacun de ces réseaux.

Le probléme est donc toujours ouvert:

Quels sont les réseaux parfaits de dimension & au-dessus des réseauzr de racines de
dimension 77

11.5 En guise de conclusions.

Malgré sa lourdeur, ce programme tel qu'il a été concu a donné des satisfactions :
il est & P'origine de Vaboutissement de la table, véritable herbier de réseaux parfaits en
dimension 8. Conscients de pouvoir le rendre plus performant, nous avons été confrontés
au compromis suivant:

ou bien perdre du temps-homme 4 rendre ce programme optimal, et alors on courrait
le risque de s'éterniser sans voir le catalogue,

ou bien chercher les contigus tout en apportant des corrections au fur et & mesure que
les “bugs” se présentent, et alors viendront les encouragements dfis aux premiers résultats.

On a choisi la 2° solution. D’autant plus que les vérifications sont faciles  faire quand
on suit pas & pas le travail. Le temps-machine n’a donc pas eu I'importance qu'il méritait
des lors que le catalogue prenait forme.

Mais ...

un programme n’est jamais terminé. Il n'y a pas de raison que le ndtre le soit. Toutes
les portes restent ouvertes pour 'améliorer.
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