Ne d'ordre : 1454

PRESENTEE A
L’UNIVERSITE BORDEAUX I

ECOLE DOCTORALE DE MATHEMATIQUES ET INFORMATIQUE

PArR Huguette NAPIAS
POUR OBTENIR LE GRADE DE
DOCTEUR
SPECIALITE : MATHEMATIQUES PURES

ETUDE EXPERIMENTALE ET ALGORITHMIQUE
DE RESEAUX EUCLIDIENS

Soutenue le : 25 Janvier 1996

Aprés avis de : M. F. SIGRIST (Univ. Neuchétel) Rapporteurs
Mme B. VALLEE (Univ. Caen)

Devant la commission d’examen formée de :

M. Ch. BATUT Maitre de Conférences (Univ. Bordeaux I)

s

Mme A-M. BERGE  Professeur (Univ. Bordeaux I)

M. A.JOUX Ingénieur Armement (CELAR Rennes)
M.  J. MARTINET  Professeur {Univ. Bordeaux I)
Mme G. NEBE Maitre de Conférences (Univ. d’Aix-La-Chapelle)

M. F.SIGRIST Professeur (Univ. de Neuchétel)
Mme B. VALLEE Professeur (Univ. de Caen)

- 1996 -






A tout seigneur, tout honneur ! En premier lieu, je tiens a exprimer ma reconnaissance
a Jacques Martinet qui, tout au long de ces trois années, a toujours su m’orienter dans
la bonne direction, avec une infinie patience. Ce “puits de sciences” posséde non seule-
ment un immense savoir mathématique, mais aussi les qualités humaines nécessaires pour
“encadrer” un doctorant et guider ses premiers pas vers la recherche.

Bien que pris par d’autres activités, comme la direction du laboratoire d’algorithmique et
d’arithmétique expérimentales, il a toujours aménagé son planning de manisre & m’accorder
beaucoup de temps.

Je remercie aussi Francois Sigrist et Brigitte Vallée qui ont bien voulu rapporter cette
thése et me faire I'honneur d’étre membres du jury.

Christian Batut m’a “pilotée” pour le c6té algorithmique de ce travail, notamment pour
le troisiéme chapitre. Je lui sais gré du temps qu'’il a bien voulu me consacrer et aussi d’étre
I'un des jurés. Son nom est associé & ceux des concepteurs du systéme PARI, & savoir
Dominique Bernardi, Henri Cohen et Michel Olivier. La plupart de mes programrmes
informatiques utilise ce logiciel de calculs, bien utile pour les arithméticiens et devenu
indispensable pour le laboratoire.

Je remercie Anne-Marie Bergé et Gabriele Aebe d’avoir accepté d’étre parmi les mem-
bres du jury.

J’ai pu discuter maintes fois avec Christine Bachoc et m’enrichir de ses connaissances
sur les réseaux hermitiens. Je ’en remercie chaleureusement.

J’ai emprunté des tables de corps de nombres 4 Francisco Diaz y Diaz et & Michel
Olivier. Qu'ils en soient ici remerciés.

Antoine Joux, mon lien avec le CELAR. de Rennes, a manifesté de 1'intérat pour mon
travail et c’est avec joie qu’il a accepté de se joindre aux autres membres du jury. Je lui
exprime ici ma reconnaissance.

Je n’oublie pas les ingénieurs systeme Paul Crubillé et Christian Cabesse qui s’évertuent
a rendre ’emploi du réseau informatique plus convivial pour les “non-informaticiens” que
1OUs sommes.



Je remercie aussi La secrétaire du laboratoire Véronique Saint-AMartin pour tous les
services qu’elle m’a rendus ainsi que pour son accueil chaleureux dans I’équipe de théorie
des nombres.

Je salue mes amis Jean-Luc Baril, Isabelle Chalendar, Andreas Hartmann, Arnaud
Jehanne, Jean-Marc Mercier, Thierry Sageaux, Anne Serrie, Florence Soriano, Hervé
Thomas, Marie-Thérése 7ogni et Emmanuel Tollis qui ont participé de prés ou de loin A
I’élaboration de cette these.

Enfin, je remercie Mauricette Jaubert et Daniel Ynbourg, pour leur gentillesse et pour
avoir bien voulu assurer la réalisation matérielle de ce travail.






Sommaire.

Introduction. .

1 Sur quelques réseaux contenus dans les réseaux de Leech
et de Ch. Bachoc.

1.1 Introduction. . .
1.2 Les séries A, K,, K"

1.2.1 Les réseaux fortement 1a.m1nes (ou plus s1mp1ement }amlnes).

1.2.2 Les réseaux K, (0 <n <24) .

1.2.3 Les réseaux K, (0 < n <24) .

1.2.4 Les réseaux faiblement laminés de W. Plesken et M Pohst
1.3 Sur la constante de Bergé-Martinet.
1.4 Résultats numerlques .
1.5 A propos du réseau de Ch. Bachoc

2 Des voisinages de réseaux.

2.1 Les formes contigués.
2.2 Les réseaux de Coxeter AL. .
2.3 Les voisins des réseaux Af. .
2.3.1 Les réseaux Dyt
232Casoun>%etr=2. . . . . . .
2.3.3 Cas ol n est impair, n > 9 et r = ——f?t—l-
2.4 De nouveaux réseaux parfaits en dimension 8 o‘btenus par
voisinages.

3 L’algorithme LLL sur des anneaux euclidiens.

3.1 Introduction . .

3.2 L’algorithme LLIL sur un anneau euclldlen
3.2.1 L’orthogonalisation de Gram-Schmidt .
3.2.2 Description de I'algorithme LLL sur 4. .

O w00~ =~

16~
10
13

17

17
19
21
21
21
22

30

37

37
38
38
39



3.3 L’algorithme LLL sur Z[i, Z[_}] m.
3.3.1 Sur Ziij, Z}j] . .
3.3.2 Sur M. . ..

3.4 Quelques exemples numerlques

4 A propos des minima successifs .

4.1 Généralités .

4.2 Applications aux bases d’entlers de corps de nombres .

4.2.1 Les corps cubiques.

4.2.2 Les corps de nombres de degre 4

4.2.3 Les corps de nombres de degré 5 .

4.2.4 Les corps de nombres de degré supérieur ou egal a 5

47
47
48
50

55

55
57
58
62
63
68



Introduction.

Cette thése comporte quatre parties :

Elle débute par un chapitre concernant les réseaux de Leech et de Ch. Bachoc (réseaux
les plus denses connus au sens de la constante d'Hermite, dans les dimensions 24 et 32).
On s’est plus particuliérement intéressé aux sections ayant des invariants d'Hermite duals
[B-M] élevés. On retrouve les bornes données par N.J.A. Sloane, et dans les dimensions 18
et 21, on améliore les valeurs de ces bornes.

Par lamination faible au-dessus du réseau Kiy (réseau le plus dense connu en dimension
12), W. Plesken et M. Pohst dans [P]-P] retrouvent les séries des K,,, A, et K/ . Cependant,
en dimension 16, ils fournissent deux réseaux non isométriques : & 'aide d'un programme
informatique, nous avons déterminé celui qui est isométrique a 'orthogonal de K} dans le
réseau de Leech.

Ch. Bachoc a construit un réseau en dimension 32 sur 'ordre de Hurwitz {ordre maximal
de l'algebre non commutative des quaternions de Hamilton ramifiée en 2 et l'infini). I
s'agit d'un réseau isodual de méme densité que les deux réseaux construits antérieurement
par H-G. Quebbemann. Cet ordre, muni de la forme trace réduite, peut étre considéré
comme isométrique au réseau de racines D, (réseau critique en dimension 4). Nous avons
recherché dans le réseau de Ch. Bachoc, un réseau isométrique au réseau de racines Eg,
toujours avec ce méme programme informatique. On peut dire que le réseau de Ch. Bachoce
contient les réseaux les plus denses de rang inférieur ou égal & 8. Par sections de ce réseau,
nous avons aussi trouvé un réseau parfait en dimension 8 sans section hyperplane parfaite
non connu jusque la.

Cette premiére partie a fait 'objet d’une note publiée aux Comptes Rendus de I’Académie
des Sciences en Octobre 1994. Toutefois, on ne donne pas cette version mais une autre
complétée par quelques réseaux de W. Plesken et M. Pohst. Le titre du dernier paragraphe
a été renommeé, car on sait aujourd’hui que les trois réseaux qui étaient appelés réseaux de
H-G. Quebbemann lors de la parution de la note, ne sont pas isométriques entre eux.

Le chapitre suivant traite de voisinages au sens de Voronol des formes quadratiques
parfaites définies positives. G. Voronoi a donné un algorithme permettant de trouver, 3



partir d'une forme parfaite donnée, dans une dimension n, toutes les formes parfaites,
Dans une dimension donnée et & isométrie prés, celles-ci sont en nombre fini. 1l a introduit
la notion de réseaux contigus et montré que la relation de contiguité entraine la connexité
de son graphe. Nous avons recherché, essentiellement, les formes “voisines” des formes de

Coxeter A::"# et A\.ﬁ (les réseaux de Coxeter sont construits a partir du réseau de racines
A, ). Lorsque le groupe d’automorphismes du réseau est transitif sur la sphére de ses
vecteurs minimaux et que celle-ci a pour demi-cardinal ﬁ%ﬂ, il n’y a qu'un seul réseaun
contigu, a isométrie prés. C’est le cas pour les réseaux de Coxeter. Pour chaque dimension
n impaire, & partir d’'une matrice de Gram d’une base du réseau Coxeter, nous donnons
la forme générale, dépendant de n, d’'une matrice de Gram du réseau contigu. On montre
aussi que le nombre de couples de vecteurs minimaux du réseau contigu vaut ﬂ“z—ﬂl

Cette partie se termine par des calculs de voisinages de réseaux parfaits de rang 8, dont le
“kissing number” 2s vaut n{n+1), et ceci grace & Palgorithme de Voronoi. En 1992, dans sa
these, M. Laihem avait obtenu 1 171 réseaux parfaits (ils possédent une section hyperplane
parfaite). On peut leur ajouter les quatre réseaux Ag, D, A2, Fg au-dessus des réseaux
de racines en dimension 7, les 53 réseaux construits par J-L. Baril par patchwork (i.e.
somme directe d'un réseau parfait en dimension 6 et du réseau de racines Ay, renormalisés
a la méme norme), dont un déja trouvé par D-O. Jaquet, et celui décrit dans le premier
chapitre. A partir de 340 réseaux (329 de la liste de M. Lathem et 11 de celle de J-L. Baril),
ayant 36 paires de vecteurs minimaux, I'algorithme de Voronoi a fourni 9 541 nouveaux
réseaux parfaits. On connaissait ainsi 1 229 réseaux parfaits en dimension n = 8. On en
connait maintenant 10 770 ! On peut noter que tous ces réseaux sont de norme minimale
paire.

Le troisiéme chapitre concerne la réduction de bases de réseaux et plus particuliérement
Palgorithme LLL. Trouver une base réduite est un vieux probléme qui remonte 4 C.F. Gauss.
Ce dernier a donné un algorithme dans le cas de la dimension 2 qui trouve une base formée
de vecteurs de “petites” normes. Plus récemment, en 1986, B. Vallée a résolu le cas de la
dimension 3. En 1982, dans [LLL], A.K. Lenstra, H.W. Lenstra et L. Lovdsz ont introduit
une nouvelle forme de réduction : une base est dite “LLL-réduite” lorsqu’elle est composée
de vecteurs de “petites” normes et “presque orthogonauz”.

Une version de leur algorithme utilise les nombres entiers ; nous 'avons généralisé & des
anneaux euclidiens. Il trouve une base formée de vecteurs de “petites” normes d’un réseau
possédant une structure algébrique sur un anneau ou un ordre euclidien (par exemple,
Panneau d’entiers d’un corps quadratique imaginaire ou un ordre maximal d’une algébre
non commutative de quaternions), tout en conservant cette structure. Les calculs se font
dans I'anneau (ou Pordre) euclidien. A partir d’une matrice de produits hermitiens, on
peut reconstituer une matrice de Gram sur Z. Cet algorithme a été, en particulier, appliqué
a des réseaux construits 3 l'aide de codes et sur 'ordre de Hurwitz, par Ch. Bachoc en
dimensions 32, 40, 48 (dimensions relatives 8, 10, 12). 1l a permis de trouver des bases
formées de vecteurs minimaux sur Z, que l'algorithme LLL usuel ne trouve pas toujours,
et ceci en peu de temps.



La derniére partie traite des minima successifs., On sait d’aprés un théoréme de Minkow-
ski et I'inégalité de Hadamard que I'on peut majorer 'indice d’un réseau engendré par des
vecteurs représentant les minima successifs d’un réseau, dans ce réseau, par la constante
d’Hermite en dimension n & la puissance 5. Par conséquent, des vecteurs réalisant les
minima forment une base jusqu'a la dimension n < 4 (en dimension n = 4, si I'on exclut

le réseau de racines 4, cet indice vaut toujours 1).

L’algorithme de recherche des minima a été appliqué aux anneaux d’entiers de corps de
nombres, K = (Q(8), totalement réels, en degrés 3, 4, 5, construits par M. Olivier, J. Buch-
mann, D. Ford, M. Pohst, . Diaz y Diaz et A. Schwarz. En dimension 5, des vecteurs
représentant les minima successifs engendrent un réseau avec un indice 1 ou 2 dans le
réseau de départ. Cependant, dans cette dimension, on a toujours trouvé un indice égal 3
1 (il faut noter qu’un systéme de vecteurs réalisant les minima successifs n'’est a priori pas
unique). En degré 3, dans le cas galoisien, si 1 et § sont deux “vecteurs” représentant les
deux premiers minima, on montre que Pon peut prendre un conjugué de # par un élément
du groupe de Galois comme “vecteur” réalisant le troisiéme minimum.

Afin de “vérifier” une conjecture de J. Martinet, cette partie se termine par quelques
exemples de minima successifs d’anneaux d’entiers de corps de nombres cycliques de degrés
5,7, 11 et 13.






Chapitre 1

Sur quelques réseaux contenus dans

les réseaux de Leech et de Ch. Bachoc.

Le but de ce chapitre est de rechercher quelques réseaux de petites dimensions qui sont
denses (au sens usuel de la constante d'Hermite et surtout au sens de la constante «/, de
Bergé-Martinet). Nous avons pour cela, étudié des sections des réseaux de Leech et de
Ch. Bachoc et utilisé les réseaux faiblement laminés de W. Plesken et M. Pohst.

1.1 INTRODUCTION.

On considére I’espace euclidien de dimension n, R®. Pour tout vecteur ¢ de R™, on note
N(z) = z.z la norme de z. (C’est aussi le carré de la norme euclidienne ||z}|.) On définit
un réseau L de R® comme étant un sous-groupe discret de R* de rang maximum.

La norme minimale de L, N(L) et la sphére des vecteurs minimaux de L, S{L) sont définies
de la maniére suivante : N(L) = Erlrglin?{:0 N(z), S(L)y={x € L | N(L) = N(z)}. On
zel,x

pose s = (L) = 2|S(L)|. La quantité 2s est aussi appelée “kissing number” de L : ¢’est
le nombre de points de contacts avec la sphere de rayon 2+/N(L) centrée a l'origine, des

sphéres de mémes rayons centrées aux autres points du réseau.

Le déterminant det(l) de L est le déterminant d’une matrice de Gram d'une base de L
(matrice des produits scalaires deux a deux des vecteurs de la base). On dira que le réseau
L est entier lorsqu’une de ses matrices de Gram est & coefficients entiers, unimodulaire
lorsqu’il est entier et de déterminant égal & 1 et pair s’il est entier et si les produits
scalaires z.x sont tous pairs.

On note L* = {x € R* | Vy € L, z.y € Z} le résecau dual de L. On peut montrer que le
réseau L est entier lorsqu’il est contenu dans son dual et unimodulaire lorsqu'il est égal 3
son dual.

On définit le groupe d’automorphismes du réseau L et on le note Aut(L), 'ensemble des
isométries de R™ qui applique L sur lui-méme. C’est un groupe fini. Dire que deux réseaux
L et I' de R™ sont isométriques signifie qu’étant données une matrice de Gram A4 de



dans une base de L et une matrice de Gram A’ de L' dans une base de L', il existe une
matrice de passage P € Gl,(Z) (i.e. & coeflicients entiers et inversible) telle que 'on ait la
relation A’ = PAP ou 'P désigne la transposée de P.

L’invariant d’Hermite de L est v,(L) = N(L)/det(L)*/", la constante d’Hermite pour
la dimension n est vy, = supy v,(L) ('7::/ ? est proportionnel  la densité de Iempilement
de spheres défini par les réseaux). A-M. Bergé et J. Martinet ont défini la constante
Yo = supy, Yo (L) ot ¥4 (L) = (N(L).N{L*)) 2 est “I'invariant d’Hermite dual” de L.

Un réseau L est dit parfait si les projections sur les directions des vecteurs minimaux
engendrent I'espace End’(R") des endomorphismes symétriques de R®, eutactique si
Videntité de R™ est combinaison linéaire & coefficients strictement positifs de ces pro-
Jections. G. Voronoi a montré qu'un réseau est extréme (i.e. qu'il réalise un maximum
local de I'invariant d’Hermite) si, et seulement si, il est parfait et eutactique.

On introduit aussi la notion de dual-extrémalité, c’est-3-dire de réalisation d’un maximum
local de linvariant d'Hermite dual. A-M. Bergé et J. Martinet [B-M] ont montré que
lorsqu’un réseau est extréme et son dual eutactique alors il est dual-extréme.

1.2 LES SERIES Ay, Ky, K.
1.2.1 Réseaux fortement laminés (ou plus simplement laminés).

Définition [C-S 2 Chap 6].
On pose Ag = {0}. Pour n > 1, on considére tous les réseaux de dimension n, de
norme minimale 4 contenant le réseau A,..y et I'on se restreint aux réseaux dont le
déterminant est minimum.
De tels réseaux sont dits laminés.

On les note An, avec un exposant éventuel pour en distinguer deux non isométriques.
En dimension 24, on trouve le réseau de Leech et pour n < 8, les réseaux de racines
Ay, Ag, A, Iy, D5, Eg, E;, Eg renormalisés & la norme 4. On remarque que pour
12 < n < 24, A, est isométrique & I'orthogonal dans Agg de Agy_,, d’ou la formule
det(An) = det(Az4—n) pour 0 < n < 24 en posant det(Ag) = 1. Il y a exactement un
résean laminé pour chaque dimension n < 24 sauf pour les dimensions 11, 12, 13 pour
lesquelles on trouve respectivement 2, 3, 3 réseaux non isométriques que I’'on distingue par
leurs nombres de vecteurs minimaux avec les exposants min, mid, max.

Pour 1 <n < 8, n =15,16 et 19 < n < 24, les réseaux A, sont extrémes et leurs duals
sont eutactiques. Par conséquent ils sont dual-extrémes. Il en est de méme de ATR*, AlX,

Pour tout n < 24, les réseaux laminés sont parfaits.

1.2.2 Les réseaux K, (0 <n < 24),

Ils ont été définis par Leech pour toute dimension n < 24. Nous rappelons ici bridvement
la construction de M 1].
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Soit F' un sous-espace de R" de dimension m coupant un réseau de R™ suivant Lp un
réseau de F. Alors, F'L coupe L* suivant L un réseau de F +. Lorsque o : L +— L* est
une similitude, on associe & Ly le réseau Ly, = o{Lg)- N Lp.

H.S.M. Coxeter et J.A. Todd ont défini leur réseau noté Ky4 a 'aide de congruences sur
Zw]® (Z[w], w tel que w? + w + 1 = 0, étant Panneau des entiers d’Eisenstein). En
utilisant la similitude x : + %- de Ky sur son dual, on construit une suite de réseaux
K11 O Ko D --- D Ko = {0}. On peut construire les K,,, n > 12 comme réseaux
isométriques aux orthogonaux dans le réseau de Leech des K,,. On a ainsi (comme pour
les réseaux laminés) la formule det(Ko4p,) = det{K,,) pour tout n < 24. Les réseaux K,
sont entiers et de norme minimale 4. On remarque la coincidence entre les K, et les A,
pour 0 <n<bet 18 <n < 24,

Ils sont parfaits sauf pour n = 7, 8 ; Ky, et K5 sont extrémes et dual-extrémes. Pour
0<n<10et 14 <n < 24, les réseaux laminés sont les plus denses connus alors que pour
n=11,12,13, ce sont les K,,.

1.2.3 Les réseaux K! (0 < n < 24).

On utilise la méme méthode de construction que pour les réseaux K,,. Pour n pair, n < 12,
les réseaux K sont munis d’une structure sur anneau des entiers d’Eisenstein compatible
avec celle de K5 et pour n impair on prend le réseau le plus dense parmi ceux qui sont
contenus dans K, ; et qui contiennent K_,. On définit K], pour 13 < n < 24 en prenant
les réseaux isométriques aux orthogonaux dans le réseau de Leech des K3, , plongés dans
K3. On a de méme la formule det( K}, ) = det{K",) pour tout n < 24 et K, = A,, (resp.
K,)pourn=20, 1, 2, 22, 23, 24 {resp. n =11, 12, 13).

Pour 0 < n < 12, les réseaux K| sont extrémes sauf pour n = 3, 4. Ils sont dual-extrémes
pour n =5, 6, 8 10, 11, 12, 16, 18, 20, 21.

1.2.4 Les réseaux faiblement laminés de W. Plesken et M. Pohst.

Définition.
On considére (Ly)nen, Lo = {0} C Ly C Ly C ... des réseaux entiers en dimension n de
norme minimale 4 satisfaisant les propriétés :
1) L,, est engendré par ses vecteurs minimaux.
2) Ly..1 étant donné, L, a un déterminant minimum parmi tous les réseaux entiers
en dimension n de norme minimale 4 contenant L, _,.
De tels réseaux sont dits faiblement laminés.

W. Plesken et M. Pohst ont construit les réseaux faiblement laminés au-dessus des réseaux
A, et K, pour n > 12, Ils en déduisent des réseaux qu'ils notent Lypa, Lnp, Lne, Lng (les
réseaux L, sont les réseaux laminés). Leurs familles contiennent les familles A,,, K,,, K/
pour n > 12. Pour n > 12, nous avons utilisé les matrices de Gram de W. Plesken et
M. Pohst [PL-P] obtenues par laminations faibles au-dessus de Kj;. Ils retrouvent la
série des K| sauf pour la dimension 16 ot ils trouvent deux réseaux distingués par leurs
nombres de couples de vecteurs minimaux 1218 et 1224 et dont un seul est isométrique a
Porthogonal de K} dans Agy = KY,. L’autre réseau sera noté K.
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Proposition. [M 1]
Le réseau K{g est celui d’invariant s = 1224.

Preuve

On cherche le réseau K, dans le réseau de Leech, on reconstitue la chaine décroissante

des K, jusqu'a la dimension 17 puis on différencie les sections K/q et K par leurs or-

thogonaux. (Parmi les 37 vecteurs minimaux de K%, un seul a pour orthogonal K 1 dans
{7, résultat déji observé pour K%, et Ky*.) |

Nous nous sommes préoccupés plus particulitrement de rechercher les grandes valeurs
de la constante de Bergé-Martinet.

1.3 SUR LA CONSTANTE DE BERGE-MARTINET.

On rappelle qu'il s’agit de ;, = supy v, (L) avec v, (L) = (N(L).N(L*))'/2.

Dans [S], N.J.A. Sloane signale pour chaque dimension n, 1 < n < 24, une borne inférieure
pour v,2, complétant les valeurs données dans [B-M] pour n € 9 (pour I < n < 8, on
trouve les réseaux laminés, le réseau A de Coxeter pour n = 9 et aussi le réseau A? en
dimension n = 5). Nous avons amélioré ces résultats en dimensions n == 18 o1 'y;f > 8

(73(Kis) =8)etn=21ou7.2>9 (v (K1) = 9) ; les réseaux K1, et Ly74 de W. Plesken
M. Pohst donnent pour v,2 la valeur de [S].

t - . ’ Fd
Remarques : Pour n = 10, v}, atteint la valeur 4 sur les trois réseaux K 10y @10 (réseau

isodual décrit dans [C-S 1]) et Df; (également isodual). Pour n = 11, 12 (resp.

n =13, 14, 15, 16, 22, 23, 24) les plus grandes valeurs connues sont atteintes sur K, (resp.
sur A, ). Pour n == 19, 20, les réseaux A, et K, fournissent tous deux la meilleure borne
connue. On peut noter que le résultat n'est certainement pas optimal pour n = 17, 19, les
réseaux Kir, Aira, A1g et K9 n'étant pas dual-extrémes. Signalons que v%, prend sur le
réseaun (14 de [C-S 3] la méme valeur que sur Ajq.

[G. Nebe et W. Plesken ont construit un réseau isodual (retrouvé par H-G. Quebbemann) ayant une

constante ’7;% = 6—.;1 = 9, 14... supérieure & celle de Aag, ¢f. [Ne-Pl] §IX, réseau L?.Mggﬂ_} 20

1.4 RESULTATS NUMERIQUES.

Dans les tableaux suivants, nous utilisons les abréviations : E pour extréme, p pour parfait
(ce qui n’exclut pas l'extrémalité), e pour eutactique, D pour dual-extréme, s-e pour
semi-eutactique (i.e. analogue & eutactique mais avec des coefficients positifs ou nuls),
DP lorsque le réseau est dual-parfait (i.e. les projections sur les directions des vecteurs
minimaux du réseau et de son dual engendrent 'espace End’(R") des endomorphismes
symétriques de R"), ce qui n’exclut pas la dual-extrémalité lorsque s*, le nombre de paires
de vecteurs minimaux du dual est au moins égal & n, R pour “rien” et ? lorsque les résultats
ne sont pas connus.
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Nous avons calculé les invariants suivants : le déterminant det(L), la norme minimale N’
du dual rendu entier, le carré de 'invariant d’Hermite dual +,2(L), le couple (s, s*) ol s
est le nombre de couples de vecteurs minimaux de L et s* celui de L* rendu entier, (L, L*)

désigne les propriétés de L et de L*, I'annulateur ann(L*/L) et la norme minimale N de
L.

Il est probable quoique peut-étre non vérifié en toute dimension n, que les réseaux A,

(0 <n < 24), K, (n # 7, 8) et K/ (n # 3, 4) sont extrémes. Nous avons aussi
cherché les invariants du réseau Kgo qui est parfait, contenu dans Ko et non dans K,
de méme déterminant que K3 mais avec s = 82 au lieu de 81, ainsi que ceux de K5, un
réseau isométrique & son orthogonal dans le réseau de Leech. Nous avons vérifié 'eutaxie
lorsque les coefficients sont égaux ou lorsqu’elle provient d’une représentation irréductible
du groupe d’automorphismes. Par exemple, Agg et A}, sont extrémes puisqu’ils définissent
la représentation irréductible de degré 23 du groupe Co; [ATLAS].

n| L det(L) N | 2L | (s, s%) (L, L*) ann(L*/L) [N
1 Z 1 1 1 (1,1) | (E,E)D 1 1
2| Ag 3 2 4/3 (3,3) (E,E) D 3 4
3| As 4 3 3/2 (6,4) (E,e) D 4 4
4| Dy 4 2 2 (12,12) (E,E) D 2 4
5| Ds 4 4 2 (20, 5) (E,e) D 4 4
Al 162 3 2 (15,10) (E,e) D 6 4

6| [ 3 4 8/3 (36,27) (E,E) D 3 4
71 2 3 3 (63, 28) (E,E) D 2 4
Ko 384 12 2 (46,1) (e,R) DP 24 4

8| T 1 2 4 (120,120)| (E,E)D 1 4
Ky 576 8 8/3 (66,6) (s-e,R) DP 12 4

K} 729 6 8/3 (54,12) (E,e) D 9 4

91 Ao 512 4 2 (136,1) | (E,R) DP 8 4
Ky 864 16 8/3 (90, 3) (p, R) DP 24 4

K} 972 27 3 (81,13) (E,s-€) D 36 4

Ko 972 27 3 (82, 4) (p, R) DP 36 4

A3 | 781 250 4 16/5 (45, 45) (E,E) D 10 8

10| Ao 768 8 8/3 (168, 3) (p, R) DP 12 4
Ky 972 16 32/9 |(138,27) | (p,R) DP 18 4

10 972 6 4 (135,120)| (E,E)D 6 4

D, 1024 4 4 (90, 90) (E,E)D 4 4

Q10 1024 4 4 (130,130)| (E,E)D 4 4

1| ARR| 1024 12 3 (216,4) (p,R) DP 16 4
AR 1024 3 3 (219, 4) (p,R) DP 4 4

Ky 972 12 4 (216,41) (E,e) D 12 4

A3, | 236 196 8 4 (66, 66) (E,E)D 12 6
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n L det(L) N’ v.2(L) (s, %) (L, L*) ann(L*/L) IN
12] AR [ 1024 8 4 (312,12) (p, R) DP 8 4
AR 1024 4 4 (316, 20) (p,R) 4 4

max | 1024 4 4 (324, 36) (E,e) D 4 4

Kiq 729 4 16/3 (378, 378) (E,E)D 3 4

13| ARm| 1024 16 4 (444, 5) (p,R) DP 16 4
AW 1024 4 4 (445, 5) (p,R) DP 4 4

max | 1024 4 4 (453,13) (E,e) D 4 4

K3 972 9 3 (459,1) (p,R) DP 12 4

14| Ay 768 16 16/3 (711,75) (»,7) 12 4
L14b 1024 4 4 (614, 6) (p, R) 4 4

Lige | 1024 4 4 (606, 6) (p, R) 4 4

Lisg| 1024 16 4 (605, 2) (p,R) DP 16 4

K, 972 1 4 (624, 3) (p,R) DP 6 4

Kig 972 18 4 (621, 3) (p, R) DP 18 4

15| Ass 512 12 6 (1 170, 140) (E,E)D 8 4
Lisy 768 12 4 (936, 1) (p,R) DP 12 4

Lise | 1024 4 4 (815, 7) (p,R) DP 4 4

Lisq| 1024 16 4 (798, 3) (p,R) DP 16 4

Kis 864 27 9/2 (873, 4) (p,R) DP 24 4

Ky 972 36 4 (822,2) (p,R) DP 36 4

Kas| 972 36 4 (819,2) (p,R) DP 36 4

16| A 256 4 8 (2 160,2 160) | (E,E)D 2 4
Ligs 512 8 4 (1491,1) (p,R) DP 8 4

Liee 768 12 4 (1 201,2) (p,R) DP 12 4

Li6d 768 32 16/3 (1182,1) (p,R) DP 24 4

Kis 576 16 16/3 (1 386,6) (p, R) DP. 12 4

K, 729 36 16/3 (1 218,9) (p,R) DP 27 4

Kl 729 12 16/3 (1 224, 36) (E,e) D 9 4

17| Ay 256 4 4 (2 673,1) (p,R) DP 4 4
Lz 512 8 4 (1 860,2) (p,R) DP 8 4

Lize 512 44 11/2 (1 827,8) (p,R) DP 32 4

L4 512 12 6 (1 818,24) (p, R) 8 4

Kiv 384 32 16/3 (2 133,3) (p,R) DP 24 4

K, 486 6 6 (1 872,37) (p, R) 18 4

18| A 192 8 16/3 (3 699, 3) (p,R) DP 6 4
Lisp 256 4 4 (3 250,2) (p,R) DP 4 4

Lise 256 12 6 (3 168, 8) (p,R) DP 8 4

Kig 243 6 8 (3 240,1080) | (E,E)D 3 4

19 Age 128 12 6 (5 334,4) (p,R) DP 8 4
K, 162 9 6 (4 698,1) (p,R) DP 6 4

20| Ago 64 8 8 (8 700, 60) (E,e) D 4 4
K, 81 18 8 (7 695, 30) (E,e) D 9 4

211 Ag 32 16 8 (13 860,21) (E,e) D 8 4
Kby 36 27 9 (13 041,112) (E,e) D 12 4

22| A 12 16 32/3 (24 948, 891) (E,E)D 6 4
23| Ags 4 12 12 (46 575,2 300) | (E,E)D 4 4
24| Ay 4 4 16 (98 280,98 280)| (E,E)D 1 4
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Les 13 vecteurs minimaux de AJ}™* sont orthogonaux deux a deux. Il en est de méme
pour les 21 vecteurs minimaux de A%, ainsi que pour les cing vecteurs minimaux de IDf.

1.5 A PROPOS DU RESEAU DE CH. BACHOC.

On considére l'algebre non commutative des quaternions de Hamilton. Elle sera notée
H=R+R +Rj +Rk oui, j, k vérifient les relations i? = j%2 = k* = —1 et

i) = —ji =k, jk = —kj =1, ki = —ik = j. Elle est ramifiée en 2 et a I'infini. Elle possede
un unique ordre maximal 9, 'ordre de Hurwitz, de base (1, ¢, j, w) avec w = —"li‘zﬁlm

Ch. Bachoc a construit sur cet ordre un réseau noté BC3; de norme minimale 6, de
déterminant 2'¢, ayant 2.130 560 vecteurs minimaux, c’est-a-dire ayant les mémes inva-
riants que celui de Quebbemann ([Q] ; [C-S 2 chap. 8, p. 220]). Il existe & ce jour trois
réseaux de rang 32 ayant les mémes invariants (i.e. de déterminant 2'° et avec 2.130 560
vecteurs minimaux). Ils sont semblables & leurs duals dans une similitude de rapport V2,
mais ils ne sont pas isométriques entre eux. Dans [P1-S}, W. Plesken et B. Souvignier ont
montré que les groupes d’automorphismes de ces trois réseaux n’ont pas le méme cardinal.
Nous utilisons ici celul de Ch. Bachoc.

Ch. Bachoc a donné une matrice d’ordre 8 des produits scalaires hermitiens et a écrit un
programme transformant les matrices de ce type en des matrices de Gram usuelles d’ordre
32 ; ces derniéres ont sur la diagonale 8 blocs d’ordre 4 correspondant a des 9%-modules
de rang 1.

Partant de sa matrice, nous avons échangé les blocs 1 et 8, obtenant une matrice notée A,
équivalente & la matrice B = 247!, On construit les matrices B3y = B, Bi;, Bap, Byg en
supprimant quatre fois de suite les derniéres colonnes et lignes. Nous avons recherché dans
Bsg des systémes de quatre vecteurs minimaux de fagon que, par orthogonalité dans A,
apparaisse un réseau semblable 4 Eg renormalisé & la norme minimale de BC3;. Comme
Fa et ses sections Ey, Eg, Ds, Dy, Az, Ay, A; sont les réseaux les plus denses jusqu’a
la dimension 8, on en déduit par orthogonalité des sections de BCsa qui sont de densité
maximale. Nous n’avons pas vérifié leur unicité & automorphisme prés de BCjs,. Notons
également que nous ne pouvons pas garantir que le modéle de Eg trouvé soit une section
de BCj39 compatible avec la 9-structure.

La table ci-dessous donne les principaux invariants des réseaux L trouvés, de norme
minimale 6, notés BC,, : le déterminant det{L), (s, s*) ol s est le nombre de couples de
vecteurs minimaux et s* celui de L*, annulateur ann(L*/L), la norme N’ du réseau L*
rendu entier, 'invariant d’Hermite v, (L) et le carré de I'invariant d’Hermite dual v, 2(L) :

L det(L) (s, s*) ann{L*/L) N’ (L) | 72(L)
BCs| 65536 (130 560, 130 560) 2 6 4.24 18
BCs | 196 608 (67 860, 760) 12 27 4.05 13.5
BCso| 442 368 (40 083,144) 18 36 3.89 12
BCa| 884736 (24 774, 5) 24 36 3.74 9
BCsg| 1327 104 (17 376,12) 12 18 3.62 9
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L det(L) (s, 5%) ann(L*/L) N’ YD) | 72(L)
BCy | 1990 656 (12165, 4) 24 27 3.50 6.75
BCy | 2239 488 (9 591, 3) 18 18 3.41 6
BCys | 2239 488 (7 917,1) 12 9 3.34 4.50
BCyy | 1679616 (7 080, 1 440) 6 10 3.30 10
BCas | 2799 360 (4 629, 23) 60 75 3.14 7.5
BCy | 3499 200 (2 913, 4) 90 100 3.02 | 6.66...
BC,; | 3888000 (2 063, 4) 120 128 2.91 6.4
BCy | 4147 200 (1 473,1) 960 868 2.80 5.42
BCis | 3749 760 (1 115,1) 104 160 80 475 2,70 4.63
BCis | 2897100 (887,2) 96 570 T4 772 2.62 4.64
BCyr | 2243 160 (688, 1) 186 930 121 203 2.53 3.89
BCis | 1454436 (561, 6) 1 206 934 2.47 4.64

Nous avons également donné les invariants de réseaux de dimensions 23, 22, 21, 20, 19,

18, 17, 16 obtenus par sections successives de densité maximale. Notons que nous ne
pouvons pas montrer que les réseaux de dimensions 23 a 16 trouvés, soient des sections
de BCjy, de densité maximale (la situation est la méme que pour le réseau de Leech pour
lequel il n’est pas démontré que les réseaux A, (resp. K, ) soient les sections les plus denses
dans les dimensions 9, 10, 14, 15 (resp. 11, 12, 13 cf. [C-S 2 chap. 6]).

On peut remarquer que, pour 16 < n < 29, on a Y,(A,) > Y (BCh) et que pour
n = 30, 31, 32, c’est le contraire. Les réseaux BC,, sont parfaits pour 16 < n < 32.

Le groupe d’automorphismes de BCj3; n’opére pas transitivement sur les sections sem-
blables & Asz. Nous avons en effet trouvé une section de dimension 29 orthogonale & une
section minimale dont une suite de sections hyperplanes successives les plus denses produit
les déterminants 1 658 880 = 212,35, 243 3024 = 2'3.3°.11, 3 345 408 = 21033112
4 561 920 = 219.3%.5.11 alors que 1'on trouve 1 327 104 = 214.3%, 1 990 656 = 213 3%
2 239 488 = 219,37, 2 239 488 lorsque 'orthogonal est une section minimale de type D;.

Voici les invariants d’une suite de sections de densité maximale de ce réseau de dimension
29, notés BC), pour 16 < n < 29, de norme minimale 6 :

L det(L) (s, s*) ann(L*/L) N/ Yn (L) fy,'f(L)
BCl,| 884736 | (24 684, 168) 31 15 374 [11.95
BC‘;S 1 658 880 (15 445, 2) 270 396 3.59 8.79...
3057 2 433 024 (10 728, 1) 264 363 3.48 8.25
BC&G 3 345 408 (7 547, 1) 198 270 3.36 8.18
BCh | 4561920 | (5 251,2) 1 980 2 597 324 | 7.86
BCé(; 5 983 488 (3 644, 1) 15 582 17 204 3.13 6.62




L det(L) (s, %) ann(L*/L) N’ een fy:lz(L)
BC;S 6 606 336 (2 698, 1) 103 224 113 219 3.03 6.58
BC{;Z 7 246 016 (1 953, 1) 226 438 245 200 2.92 6.49
BCL, | 7846400 | (1 390,1) 490 400 448 525 2.81 | 5.48
B¢ | 7176 400 | (1 065,1) 897 050 812 978 272 | 5.43
BClg| 6503824 | (795,1) 1 625 956 1 375 860 262 | 5.07
BCt,| 5503440 | (597,1) 1 375 860 1103474 | 253 | 4.81
BC{W 4 413 896 (449, 1) 4 413 896 3 317 145 2.43 4.51
BCis 3317 145 (339, 1) 3 317 145 2 201 700 2.34 3.98

On peut noter le méme phénomene en ce qui concerne l'invariant d’Hermite des réseaux

laminés A, et des réseaux BC), que précédemment. Les réseaux BC], sont parfaits pour

16 < n < 32.

L’orthogonal de BCj, dans BCjy est un nouveau réseau extréme de dimension 8, de

norme minimale 6 dont 'invariant d’Hermite vaut 1.7063. .., ne contenant aucune section

hyperplane parfaite. Il posséde une base de vecteurs minimaux. Le tableau ci-dessous
fournit certains de ses invariants : la notation DP signifie que ce réseau est dual-parfait et
E qu'il est extréme,.

det(I)

Nf

ve2(L)

(s, 5%)

(L, L)

ann{L*/L)

23 373

2 970

2.2872. ..

(44, 1)

(E, R) DP

7 791

Ce réseau ne peut pas étre dual-extréme

car son dual ne posséde que deux vecteurs

minimaux. On donne ci-aprés une matrice de Gram de ce réseau dans une base de vecteurs
minimaux.

N.B : Deux erreurs ont été corrigées : dans le tableau de la page 11, la norme minimale
du réseau A3 n’est pas 4, mais 8 et de méme dans le tableau de la page 13, la constante

( 6 3 -3 2 -3
3 6 -3 3 -3
-3 -3 6 0 3

2 3 0 6 ~3
-3 -3 3 -3 6
-3 -3 2 0 0
3 3 -2 1 =3
\ 1 -1 -2 -1 -2

-3 3 1
-3 3 -1
2 -2 -2
0 1 -1
0 -3 -2
6 -3 2
-3 6 -1
2 -1 6

Y20(BCqg) vaut 3.74 et non 3.80 comme il est écrit dans [Na).
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Chapitre 2

Des voisinages de réseaux.

Soit A un réseau donné par une matrice de Gram A dans une base. On dira que la forme
quadratique associée & L est la forme ¢ admettant A pour matrice. Elle est définie positive
et par abus de langage, on dira aussi que A est définie positive. Deux formes quadratiques
q et ¢’ seront dites équivalentes s'il existe une matrice P de Gl,(Z) telle que A’ =*PAP
ol les matrices A et A’ correspondent respectivement a g et ¢'.

Dans ce chapitre, on cherche les formes parfaites contigués a une forme parfaite donnée,
a isométrie prés. Ceci se fera grace a l'algorithme de Voronoi.

Par abus de langage, on parlera aussi bien de réseaux que de formes quadratiques définies
positives (qui leur sont associées) et de matrices symétriques définies positives.

2.1 LES FORMES CONTIGUES.

On se place dans I'espace vectoriel des formes quadratiques définies positives (resp. des
endomorphismes symétriques) sur R* muni du produit scalaire (@, R) = Tr(AB) {(resp.
(u,v) = Tr(uv)) ol A et B sont les matrices correspondant & @ et R respectivement (resp.
u et v sont deux endomorphismes symétriques) et Tr(A) désigne la trace de la matrice
A (resp. Tr(u) désigne la trace de 'endomorphisme u). Cet espace euclidien est appelé
espace de Voronol et noté Vor, de I'ensemble Q des formes quadratiques définies positives
(resp. £ des endomorphismes symsétriques) sur R”®. 1l a pour dimension N = ﬂ%ﬂl

A tout élément = (2;)1<icn de R® est associé le vecteur colonne X dont les com-
posantes sont les z;. Le produit scalaire X*X est la matrice symétrique d'ordre n

T3 TITy ... TiTy
ol :L'% e ToXy,
2
Ipky Tplo ... T,

On appelle domaine de Voronoi de la forme @ de Q associée au réseau A, 'enveloppe
convexe dans l'espace Vor des demi-droites issues de 'origine et contenant les projections
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sur les vecteurs minimaux du réseau A (i.e. les X*X ol le vecteur colonne X correspond
a un vecteur minimal de A). Il sera noté Dy ou Da. Un réseau A est parfait lorsque son
domaine de Voronoi est d'intérieur non vide (ou lorsque son domaine de Voronoi n’est pas
contenu dans un hyperplan de 'espace de Voronoi).

On rappelle qu’étant donné un convexe C, un hyperplan d’appui de C est un hyperplan
affine K qui rencontre C et qui est tel que C' soit contenu dans I'un des deux demi-espaces
définis par H. On note F, une face du domaine D, c’est-d-dire I'intersection de D, avec
un de ses hyperplans d’appui. Il lui est associé un vecteur R de l'espace Vor (autrement
dit une matrice symétrique réelle d’ordre n), orthogonal & F et orienté vers I'extérieur de
J. Le vecteur R est appelé vecteur de face associé 3 F.

On peut donc dire que Dy = {Y | (R,Y) > 0}.

Définition et proposition.,

Etant donnés une forme quadratique définie positive @} parfaite sur R" et un vecteur
de face R associé & la face 7 du domaine Dg, on appelle forme contigué & (ou voisine
de) @ le long de la face F, 'unique forme quadratique parfaite Q, =@ +pRotp
est un nombre réel strictement positif (et en fait rationnel), de méme minimum que Q,
différente de Q) et ayant la face F en commun avec Q.

Pour tout 6 € R, si 0 < § < p alors la forme quadratique Q + 6R est non parfaite et de
méme minimum que @ et si 6 > p ou 8 < 0, elle est ou bien indéfinie ou bien de norme
minimale inférieure & celle de Q. Si0 < 6 < p, les vecteurs minimaux de Q + pR sont
les vecteurs minimaux de Q d’image dans F.

Remarque : Si A et B sont deux matrices symétriques réelles d’ordre n correspondant
a deux formes quadratiques équivalentes Q4 et Qp, il existe une matrice de passage P
de Gl,(Z) telle que A = *P B P. Si F, est une face de Dg, de vecteur de face Ry4
alors Fp = P71 F,4 P~ est une face de Qp de vecteur de face Rp (image de R4 par
I'application envoyant Q4 sur @g). On peut donc dire que si Q4 + pR4 est la forme
contigué & Q4 le long de la face F4 alors Qp + pRp est la forme contigué & Qp le long
de la face Fp. Par conséquent, la relation de contiguité est définie modulo les classes
d’équivalence de formes quadratiques définies positives (ou des réseaux).

Lorsque le nombre de couples de vecteurs minimaux du réseau vaut N, on peut associer
a un représentant de chaque orbite de vecteurs minimaux du réseau A, la face du domaine
D4 qui ne la contient pas (sa face opposée). Toutefois, on peut obtenir plusieurs formes
équivalentes suivant des faces ne correspondant pas a la méme orbite de vecteurs mini-
maux : c’est le cas dans le quatriéme paragraphe, pour des réseaux voisins du réseau de
racines Ifg. Lorsque le groupe des automorphismes du réseau A est transitif sur la sphere
de ses vecteurs minimaux S{A) et que cette sphére a pour demi-cardinal N, on n’obtiendra
qu’une seule forme contigué, a isométrie prés (c’est le cas pour les réseaux de Coxeter).

On note s(A) ou s le demi-cardinal de la sphére des vecteurs minimaux d’un réseau A et s*
le nombre de paires de vecteurs minimaux du réseau dual A*. On rappelle que le “kissing
number” est la quantité 2s.
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Description de ’algorithme de voisinages utilisé.

Donnée : une matrice de Gram A d’un réseau parfait en dimension n et un représentant
de chaque orbite de vecteurs minimaux.
Sortie : une matrice de Gram C' de chaque réseau contigu.

On se place dans le cas ott s = “%FTY  Tes représentants des vecteurs minimaux sont
)
donnés en ligne.

Etape 1 : Pour un représentant v; d'une orbite de vecteurs minimaux, trouver un
vecteur de face correspondant (i.e. une matrice symétrique d’ordre n notée
B telle que (B, vivg) > 0 et (B, 'vju;) = 0 pour tout j # k).

Etape 2 : Trouver le rationnel p > 0 tel que la forme A + pB soit parfaite, de méme
norme minimale que A et sortir C = A + pB.
Etape 3 : Passer au vecteur suivant (s’il en reste) et revenir a 'étape 1.

Remarque : La recherche du rationnel p s’effectue de la maniere suivante : on I’encadre
entre un entier naturel m et son successeur (i.e. 'entier m est la borne supérieure des réels
f tels que la forme A + 0B soit de méme norme minimale que A mais pas parfaite et m+ 1
est la borne inférieure des réels @ tels que la forme A + 6B soit ou bien indéfinie

ou bien de norme minimale inférieure & celle de A). Ensuite, on écrit p sous la forme m -+ *;3
ou p et ¢ sont deux entiers naturels non nuls tels que p < ¢. On fait parcourir a p et ¢
Iensemble N\ {0} jusqu’a ce que la forme A+ (m+ £)B soit parfaite et de méme minimum
que A et on donne a p cette valeur. C’est cette recherche qui cofite le plus de temps dans
I’algorithme.

Dans les deux paragraphes suivants, on recherche les réseaux contigus a des réseaux de
“kissing number” égal & n(n+1) (i.e. aux réseaux de Coxeter dont le groupe d’automorphis-
mes est transitif sur I’ensemble de leurs vecteurs minimaux et & certains des réseaux parfaits
ayant une section hyperplane parfaite ou pas, en dimension n = 8).

2.2 LES RESEAUX DE COXETER Al

Soit m > 0 un entier. On rappelle que le résean de racines A, est l'intersection de Z"+1
avec I'hyperplan E = (eg + 1 + -++ 4 €,)". Les vecteurs ¢; = ep — 5,1 < ¢ < n, en
constituent une base.

Définition.
Soit ¢ = ey + - + - + e,,. Pour tout nombre rationnel r positif on note A}, le réseau de R*

de base (€1, €n,...,€n—1, >€) et on pose g = “+L,

Lorsque r est un entier qui divise n + 1, ces réseaux sont appelés réseaux de Coxeter.
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La matrice de Gram (a; ) du réseau A7 dans la base (e, en,...,€n-1, }_e) a pour coeffi-
cients :

ai,i22pour1Sign»«»l,ai’j=aj,im1pour1§z',j§n~1,a,‘,n=an,i=“—j‘ipour
Igign—letannww.
s T

Le réseau de Coxeter Al est 'unique sous-réseau de A% contenant A, avec l'indice r. Dans
ce cas, on a (A )* = Ad.

On ne va s'intéresser qu'aux réseaux de Coxeter (i.e, r est un entier positif divisant n + 1).

On rappelle que la constante d’Hermite duale (ou constante de Bergé-Martinet) en dimen-
sion n est la quantité -y, = sup,, v, (L) avec v4,(L) = /N{LYN(L*) et qu'un réseau est

dual-extréme lorsqu’il réalise un maximum local de cet invariant.

Théoréme (COXETER).
1) Les réseaux A, sont extrémes saufsir =n+1, n > 3,oun=3o0ubetr=2 cas
dans lesquels ils sont eutactiques mais non parfaits.

2) A, est de norme 2 et on a S(A7) = S(A,) saufsir =n+ 1, r=2l oy r =9 et
n=>5our=2etn="7(A? est isométrique 3By ) our =3 et n = 8 (A3 est isométrique

alEg).

3) Lorsque n est impair et r = nrl s = Eﬁ‘gﬂ, N(AL) = %Q sauf pour n = 3 ot
s(A3)=3. Sir=n+1lonas(A"!)=n+1et N(AZ+!) = 2 s(AZ) = 10 et
N(AZ) = 2

4) On a Aut(A.n) = Aut(A,) si A, est de norme minimale 2 auquel cas le groupe des
automorphismes de A}, est transitif sur l'ensemble de ses vecteurs minimaux. Pour

nd1
n =5 et n# T le groupe des automorphismes de A,?  est transitif sur la sphére de ses
vecteurs minimaux.

5) Les réseaux A7, sont dual-extrémes, sauf AZ qui est semblable 4 Z°,
6) On a,2(A7) =4 pour 3 < r < afl :f(Afl)x'y;( )— n+1 pour n impair

et n > 7, vP(AZ) = 2 et 4, 2(AMH!) = v.2(An) = 28 pour tout n > 1.

On trouvera une preuve de ce théoréme dans [M].
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2.3 LES VOISINS DES RESEAUX DE COXETER Af.

Dans ce paragraphe, on va chercher les réseaux contigus aux réseaux de Coxeter AZ et
n4-1
Arn? . Pour cela, on définit d’autres réseaux liés aux réseaux de racines I,,.

2.3.1 Les réseaux Dy .

Soient n > 4 et t > 0 deux entiers. On suppose ¢t pair. On rappelle que le réseau de
n
racines D, est {3 x;e; € Z™ | Y. z; = 0 (mod 2)}.
1

Définition.

¢
Soit f = >"e; € D,,. On note I, ; le réseau engendré par I, et %f.
1

Proposition.
By + a pour déterminant 1 ; ona s =n(n—1) pourt > 8 et s(Dy, 5) = n(n—1)+64. I est
extréme si et seulement sit > 8. Lorsque t = n (donc pour n pair), D, + est 'empilement
D} . Le réseau D, ; est demi-entier et n’est entier que sit=n et n = 0 (mod 4).

23.2Casoun>9%etr=2,

Théoreéme.
Pour n impair et n > 9 (resp. pour n pair et n > 10), le voisin de AZ est le réseau

Dy n1 (resp. Dn,n—:!)'

Preuve

On suppose n impair. On est dans le cas ot s(A2) = = N et le groupe des
automorphismes de A2 est transitif sur la sphére de ses vecteurs minimaux. Il suffit donc
de chercher le voisin de A2 pour un vecteur minimal quelconque, par exemple le vecteur
€1 — Eq.

n(n+1)
2

On note A la matrice de Gram de Aﬁ dans la base {(e1,e2,...,en—1, €, = ~%e). Les vecteurs
minimaux de AZ sont les +(e; — ¢;) pour 0 < ¢ < j < n. On pose X; ; = ¢; —¢;. Les
matrices des X; ;2X; ; ont pour coefficients, sitouj #n, i =¢;; =1, ¢:i; = ¢j; = —1
et gx; = 0 pour (k,1) # (4, 7).

Pour traiter le cas 7 ou j = n, on suppose que c’est 7 qui est égal & n. Alors X, est un
vecteur colonne ayant pour composantes —1 suivant les vecteurs e;j pour 1 <j<n—1et
J # 4, —2 suivant e; et 2 suivant €,. On peut ainsi calculer les coefficients de X; ,*X; .
On cherche une matrice B, symétrique, orthogonale & X 9* X1 2. On voit que l'on peut
se ramener A la matrice (b; ;) telle que by o = —1, by = 0 si (k,1) # (1,2) et (k ou
l#n), byn=Dbyp=—2bpn=0pour3<k <n-—1etby,=—3. On vérifie que

(B, Xl,thLz) = 2. En ajoutant les matrices A et B, on trouve la matrice de Gram du

réseau [y, ,..1 correspondant a la base f; =&, 4+ €9, fo=€1—¢€2, fa=€1—€3, ....ooun ,
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n—1
fomi=e1~en_1, fa=—3 3 e+ 2ler + Hea L en) (‘4 sin =1 (mod 4) et ‘—' si
1
n = 3 (mod 4)).

Comme I, ,_; est un réseau parfait, c'est le réseau contign & A2 le long de la face B pour
n > 9 et n impair.

Lorsque n est pair, le réseau A2 est demi-entier (ce n’est pas un réseau de Coxeter).
On le rend entier. On a S(AZ) = S(A,) si n > 10 et son groupe d’automorphismes est
transitif sur la sphére de ses vecteurs minimaux. On note 4 la matrice de Gram de A2
multipliée par deux. Comme précédemment, en ajoutant les matrices 4 et B on trouve la
matrice de Gram

du réseau Dy, ..o correspondant & la base f; = &1 +e2, fa=e1—¢€2, fa=€1 —e3, ...,

n—2
fn—1 =61 €nut, fn = ——;- 3o+ 4’~‘~:2t~1~51 + %(52 +en_1ten) (‘+'sin =0 (mod 4) et
1
‘~?sin =2 (mod 4)).
Pour n > 10 et n pair, le réseau D, ,_o est le réseau contigu a A2 le long de la face B car
il est parfait. n

2.3.3 Cas ol n est impair, n > 9 et r = 241,

-1

a1
Pour n = 1 (mod 4) (resp. n = 3 (mod 4)) le multiplicateur rendant entier An* est 2%
R
(resp. 242) et le réseau A,? ainsi obtenu a pour norme minimale n — 1 (resp. r=1y.,

Pour n = 5 et n = 7, on sait déja que les voisins de AZ et de A% sont respectivement Dy et
E7;. On suppose donc que 'on a n > 9.

n+l n+1
Bl 1 - nit
On a s{An,? )= ﬂ%‘—z’——l = N. Les vecteurs minimaux de A,® sont les +e; ; avec

e = '—,S:%(Ei +e5) — qu"-"i Y. er pour 0 <i < j < n. Comme précédemment, on cherche
k#i,j

le voisin de A,* pour un seul vecteur minimal, le vecteur —ey .

Cependant, on n'utilise pas la base donnée dans la définition des A7, mais une autre formée

de eg,1 et de ses images par le cycle 0 = (0, 1, 2, ..., n~2, n~—1). Elle sera notée { fi,).
L ntl
On note A la matrice de Gram correspondante du réseau A, * .

n—1

2
Dans cette base ey, = — ) fary1. (—€1,, est le premier vecteur trouvé par la fonction
1

minim du systéme PARI). On pose v = —ey ,, et on cherche B un vecteur de face opposé
aw.

On peut prendre comme matrice B = (bi ;) avec b;; =0, by 2 =1, b4 = —“—gi pour

3<i<n—1,byn=byz=—23 by = ~25% pour 4 <i <, by =1 pour

3<t<n~1etb;=2sinon.



23

En effet : si u est un vecteur de la base, comme B a ses coeflicients diagonaux nuls, on
a bien (B, u'u) = 0. Puisque v a des composantes nulles suivant f; et fs, pour calculer

(B, v'v}), on ne s'intéresse qu'aux coefficients b; ; pour 4,7 > 3 et on peut voir que I'on a

(B,vtv) = &=3)l) 5 g

On donne ci-dessous les décompositions des vecteurs minimaux dans la base (f).

i n
Pour ¢ pair, j pairet 0 <i < jona: e ;= S (=1)Ffr + Y (=1)Ff;.
1 i+l

J
Pour i impair, j pair, i < jeti<n,ona: e;; = > (—1)*fi.
i+1

Pour ¢ impair, j impairet : < j<m,ona: e ; = E( 1)+ f + Z( ~1)* fs.
J+1

J
Pour ¢ pair, j impairet i < j <m,ona: e ;= Y (~1)F*!f,
ir1
i1 n—~1
2
Siiestimpaireti<m,ona:en=—(3 for+ Y. for+1)
T g

2

l'-2 n 1

Sitest pairet7>0,ona: em=—(§: fok+1 + E far)-

On peut ainsi calculer les e; j'e; ;, vérifier que l'on a bien (B, e; jte; ;) = 0si (4, 7) # (1,n)
et donc B est un vecteur de face.

Il faut maintenant calculer le rationnel p > 0 tel que la matrme A+ pB soit parfaite et ait

méme minimum que A. On note k le numéro du réseau A £ compté & partir de Ag (i.e.
A correspond & k =1, AS; & k = 2 etc. ). On peut remarquer que k = r — 4 = ""2'
Proposition 1.

i) Pour n =1 (mod 4), on a -!]; = l‘lzﬂ(k — 1) +5= 4”#_"2“%1" 11

1) Pour n = 3 (mod 4), on a % =nk—(k—2)= nz_sznill_

Remarque : Le trinéme n? — 8n 4 11 est bien strictement positif pour n > 9. Pour
n = 1 (mod 4} ou n = 3 (mod 4), le trindme n? — 8n + 11 est divisible par 4. Par
conséquent, le rationnel p est de la forme X avec m € N\ {0}.

Preuve de la proposition 1.
On traite le cas n = 1 (mod 4) (I'autre cas étant analogue). On note C' = (¢; ;) la matrice

4
At g B
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Elle a pour coeflicients :

— e (n—1){n—5)% _ fn—=1)(n—5 2 .
Cij=n—1, €12 = 3T gnyil) Ciitl = RT8nt1D) pour3<i<n-—1,

. _ (n=1){n-3)(n=T) . =2(n—1)}n—6 .
Cln = C23 = { 2(ﬂ2(_8n2,.(11) ’ €1,; = —Jf—ﬂ—ln “Bnil pour 3 <:<n-—1,

. =2(n—-1)(n—6 , .. — —2n—1}n-T) .
Cog = nZ —8n4+11 pour4<i<n et Cij = n?—8n+11 smon

(si n = 3 (mod 4), les coefficients de C' sont les moitiés des précédents).

On montre d’abord que C' est une matrice de Gram d'un réseau. Pour cela, on fait un

- nfl

changement de base sur le réseau A,® . On remplace la base (f;) par la base (f]) ol:

fo=Jfnetpour 1 <i<n—1, fl=f; — fir;. On obtient comme nouvelle matrice de

~ 1
Gram de A,:%— la matrice *PAP = A’ ol P est la matrice de passage de la base ( fi)a(fh).

(Les coefficients de P = (pij)sont :p;;=letpouri <j<n-—1 Pi+1,; = —1, tous les
autres étant nuls.) On doit aussi changer B, le vecteur de face, en !PBP = B’. Tout ceci

sert & remplacer la matrice C par la matrice *PCP que l'on notera ¢/ = (¢} ;) et dont les
coeflicients sont :

! A (n—1){n? ~6n—3) t (=1 {(n?—6n-3)

11 7 % T TRt gntin pour3<j<n-1, 1 P TC o
o (n—l)(n2—6n+1) ' e ’ _ __2(n—1)

€22 = T Rrlgnyir Con =T =1, Can = T RIlgntil?
’ N, A — _ (n~1)(n*—6n-3) ] _

Cii+2 = Cln-1 = Cn-1,n — 2(nf—8nt11) pour 1< JE<n-—2

et ¢ .=0 sinon.
i

= . 2_ , - ,
On note C la matrice &wgs:"—l'& C' et on cherche la décomposition en carrés de Gauss

de la forme quadratique associée & C' qui sera encore appelée C par abus de langage. On

notera les coefficients de décomposition, d; (i.e. é‘(ml, Ty .oy Tn) = di11(y, 22, ..., )%+
d2d2(Z2, 23, ..., T0)? + <+ + dpdpn(2n)? olt les ¢; sont des formes linéaires linéairement
indépendantes).

1l s’agit de montrer qu’ils sont tous strictement positifs.

Les nouveaux coeflicients de 1a matrice C sont les suivants :

n2-—-6n—3

¢11=¢&j=n*—6n—-3 pour 3<j<n—1, Gl = 25023 &y = =2,
Cpp = n? — 8n + 11, cyq = n? — 6n + 1,

Ei iy = € =g = —nl=6n=3 1<j<n—2 et &;=0 si
Cjj+2 = Cin—1 = En_1p = -0 pour 1< j<n— et & ;= sinon.

Onadl:n2—6n~3>0,d22n2m6n+1>0etdk:(n2—6n—-3)(1~—ﬂ%ﬁ‘—f§)pour
3 < k <n—2. On peut voir que si k est impair alors dj, = %%%dl pour 3 <k<n-—-2 et

que si k est pair, di = %1 (%ﬁ’;) pour 2 < k < n -3, donc di, est strictement positif



pour tout 1 <k <n-—2.

Il reste a calculer d,,._; et d,.

_ d d d d dajia L 4dpg di (4l 4

Onadia=di -3 -8 -F-F- -Gy~ 555~ 1 ~ 5o s
n=s
- i dojen _dd 94
G+2)% ~ dd..3 mi-1?

o !_' n— (n—-3)d1 +8(nm5) _ 2d1

=dy(1- 2 e 1) ((n—l)d1+8(n—3) ne—11

. d; {nt3  {n-3)d) +8(n—5)

= 2 \af1 T =D FE(n—3)
On a E::?;j: ﬁg::a; <1 < 23 donc d,.; est strictement positif.
Passons maintenant au coefficient d,,.

. d d d d dajt1 . 4d,, 4 _ 3—n\2 4d
dy =n "8”+11“'§5“§‘%“‘13—3%—"'—W" — T dn-Z(n-{-l) 1 (n+1
2 2 4 d3 di ar-®
B(nm3)+(n—1)d1) - (E + dZd, + 4dZdZdg et n_3 );
on—7 I’} d%,
g 2k 1)
2 2 d Y
dp =n?—8n+11-Gn=3_a@em A 1 4 2 __)2_ b —,
n—1 2 nf.] do—i ‘ntl T 8(n—-3)+(n—-1)d; K1 g 22(i-2) ﬂl dgj
=%
n -3
dz(k—n

P’J f

=n? ~8n+ 11 ~d; 228 _ A4 (1

2
1t smyeeng ) .
=1 dyy22(k—2) 1-[ dz,

On peut remarquer que pour 1 < k < p—gﬁ on a ’égalité :

2{k-1)
d;

8d,
= et donc la somme
k=1 k+1)d; 4-8k) (kd; +8(k—1
dar 222 T 2, ((kt+1)dy +8k)(kd1 +8(k—1))
F=1

-3
2 2(k—1)
dl. (n—l)dl
vaut 1 — 7 .
- n—1)d; +8(n—3)
k==l dap 222 TT d2,

F=1

On trouve ainsi une formule plus simple pour d,, qui est :

4d? 2 2 {(n—1)d
dp =n? —8n+ 10 ~ di T n+1 - dnjl n-}-i + 8(n--3)+(nm1)d1) + (nwl)d1+)8(1n—3)‘

2n®—26n2+102n-110
nd-6n245n—8 *

Apres calculs, on trouve d,, =

Le dénominateur et le numérateur étant strictement positifs pour n > 9, d,, est strictement
positif.
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On donne ci-dessous la forme générale de C.,

~ — 1 1 1 2 d 2 2
C(l‘l,mz, . .,il)n) B dl(ml — '2~.’L‘3 i §$n 1 + iw") + dz(.’Cg b E};.’,C‘; - “@flﬁn) -+
3 2 1 1 2 o 2
Zd1($3 — 5;1‘3'5 — g¥n_1 + ~§:rn) + d4((L‘4 - 336 dods -’Dn) +
2di(ws — 2wy — toa_y + 1u,)? 4 d(a:— w—mﬁ—m)z +
g lelids a7 44n—1 4%n 6l L6 2d, 8 2d2d43d.3 n
5 4 1 1. \2 d d 2
§d1($7 —gT9 — gTp—1 + Emn) + dg(ib‘g — ﬁl‘;wm ~ Tdydedada a:n) + e
n -G
dy d, 2 2 2
—_ — ._..M.L—_
dn—3(%n..3 3, s Tn-~1 i3 e )?  + __+_52(n 51 (Tn_2 - nMﬂ?n -1+ ,H_lﬂ?n) +
-
277 1] day
1

2
2d
dn—1 (mw-l (2 + (n~1)d1+8(n-—3))wn) + dnzl.

Comme chaque coefficient d; est strictement positif, la forme C est définie positive,

On donne comme exemples les décompositions en carrés de Gauss pourn=9%etn=13:
A 2
095(-'»"1, Ty, T3, L4, L5, T, L7, Tg, Tg) = 24(x; — 2993 - 25178 + 589) +

3 1., \2 2 1 2 132 7 1., \2
28(:[22 — 5Ty E.’L’g) + 18(333 —3§T5— 3%+ E:Bg) + T(.’L‘4 —~ 11%6 — :2-5.’]39) +

3 1 1, \2 180 L 1 1 3,.\2
16(.’175 —3¥r — 3%s8 + ng) + (ms — is¥s — ﬁ-’l&'g)z + 15(337 — 5Ty — gxg) +

28 13,. \2 4.2
?(wg—ﬁmg) + sz

Cly(w1, 3, 23, T4, s, T6, T7, T8, To, T10, T11, T12,T13) = 88(®1 — 503 ~ w12+ 2w12)?  +
92(332 e 23:1)4 4169313)2 + 66(323 - %:Cg, — %9}12 -+ %1?13)2 +

1040 (x4 — §‘§’ws 102313)2 + -1'3@(2?5 — %337 - %9312 + %icls)z +

2068(.’86 2?338 9143113)2 + 55(377 - %mg - %11312 + %.’313)2 +

2596 2596 (g 47 4 204

1 2 1 1, 32
55810 =~ 175%13) (wg ~ §211 — %12 + 2213)%  +

3124 1 2 154 1 5 2 6820 2
5 (10— 715012—17153713) + S Eu-gen-frn)? + (e - Bap)® +

189 %

55713

On cherche maintenant la norme minimale de C. On peut voir qu’elle est inférieure ou

egale an—1 (car sl u est un vecteur minimal de A, orthogonal & B, alors on a la relation
budu + ptuBu = 'uCu = n — 1). Il faut montrer que c’est exactement n — 1.

Les suites (dgj)lSanT-—a et (d2j+1)1sjs%:§ sont décroissantes, da; > daji1 et d,_; est le
plus petit des dg pour 1 <k <n -~ 1.

On compare d,,..; et d,,. Par le calcul, on trouve

2n® — 38n7 4 268n° — 898n5 + 1724n* — 244213 + 127602 + T54n — 2694

dp_1—d, =
1 7 — 12n5 + 4505 — 7204 + 107n3 + 44122 — 251 + 168
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La aussi, le numérateur et le dénominateur sont strictement positifs et donc dn_; > dy,.

On cherche un vecteur minimal de C, v = (z1, ®2, ..., Tn-1, Ln). On va minimiser

chaque d;¢? en “remontant” (ie. i=n, n—1, n—2, ..., 2, 1).

Comme d, est le plus petit des d;, on peut prendre x, = +1 ; on choisit z,, = 1.

Ensuite on minimise dp—3¢n—1(Zn—1, z,)% On a

dy 11 2 . du-1gy 2 =nd~Tn%2+13n-19>0
n—1Pnw 1\Fn-1, a‘-7'n.) = 35_1( n—1Tn—1 “anwlxn) avet g1 =N n n > 4,

b1 =n—6n2+5n—-8>0et a,.1 <b,_;. La plus petite valeur de x,_; que

Pon doit prendre est «,_, = z,, = 1.

On a dpeaPn_2(Tn_2,Tn_1,%,)% = Tg{ﬁ—;—g((n + 1ay-g — (n — 1)a,)2. La aussi on doit
avoir Ty_g = o, = 1.

Pour 0 < k < 252, on a dok1026+1{T2k+1, T2kt3) Tne1, Tn)? =

(%%%‘)%((k + 2)zop 41 — (k + 1)x2p43)? et on minimise &%¢2k+1($2k+1, Lok+3s Tnm1y T )?
en prenant Topy1 = Tag4s = 1.

On traite maintenant le cas des dard2,. On a aussi dp—3¢n—3(Tn—3, Tn_1,2,)? =
g = (n-—-3)d1;-8(n-——4}, byos = (n—l)d;z-{-S(nw»l}) et

do_

o (bn—3Tn—3 = An_32n)? avec a,_
bn—-S

Gn—3 < by—3. On doit prendre z,_3 = &, = 1.

-5 doy,
Pour 1 <k < 232, on a dyidon(Tak, Tokta, Tn)? = gg‘i“(bzk-'b‘zk ~ GopTn)? avec

agr = kdy + 8(k — %), bor = (k+ 1)d; + 8k et agr < byx. On minimise en prenant
Top = Ly = 1.

On obtient comme vecteur v = (1, 1, 1, ..., 1, 1).

On a ainsti :

0.0 = [=8=8 2 Gy 1g-ni=0n=d ¢, 0, —2lxbn=3 _niebnm3_ g4 p2 gy
et donc v a pour norme ~"—2—"—“—§4”—‘~‘—3 +n?—6n+1-2- ”z“g”":* — ”2“3“"3 - ”z_g"’_3 ~24n2—

8n+11 = n?~8n+11. La norme minimale de C est alors (n2—8n+11)mﬁ =n—1.

On revient au réseau C de départ.
Soient (g;) une base du réseau correspondant & C' et w le vecteur de C' de composantes
(1,1,0,1,0,1,...,1,0,1,0) dans cette base.
2
On calcule (B, w'w). Cest égal & ——‘(P——:M < 0 (lorsque n = 3 (mod 4) on trouve un
2
produit scalaire aussi égal & -—-(f'#“ﬂ)— < 0).
On cherche ensuite la norme du vecteur w. On a w.C = [1‘-§~1«, 3~"-27~1~, 0, 0, ..., 0] et donc
w a pour norme n — 1 (si n = 3 (mod 4), on a w.C = [2, -’~"-47-1~, 0, 0, ..., 0], et donc la

ol
norme de w est "’T“l = N(A,* )).
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De ce calcul, on déduit que le vecteur w est un vecteur minimal de C et que la face associée
a la matrice symétrique B est commune aux deux formes quadratiques A et C.

Ceci montre que la forme associée & la matrice C est parfaite et qu’elle est de méme
minimum que A. C’est donc la forme contigué & A. |

Proposition 2.
P . Y nil n n+1
Le nombre de couples de vecteurs minimaux de la forme contigué 3 A,* ests = J~—L;——l

Preuve (dans le cas n = 1 (mod 4)).
Comme C' est une forme parfaite, on sait que s > ﬂﬂziﬁ On montre que c’est exactement

n{n+1)

2

On donne les vecteurs minimaux {(au signe prés) de C dans la base (hi)1<i<n correspondant
& la matrice de Gram de C (celle dont on a donné la décomposition en carrés de Gauss).
Ils sont de I'une des formes suivantes :

i1 n—1

2 2
> hogt1~ 3. hopyy pour d impair, 1 < i< n —4, j impair et i +4 < i<n
=0 b Tzt

(ce qui en donne L’L:",?)é’i—_l))

]
n—1

T
kZ_ hoky1 pour 1 <4 < 221 (ce qui en donne 251) ;
=i

i1 L

> haw + 37 hy pour i impair, 3< i< 2 et 2{—1<j<2i <n (ce qui en donne
k=1 k=47

n--3) .

2

> hppour1<i<m—1 (cequiendonnen—1);
k=1

i—z

2 n .

D hopyr1+ D hppour jpair,4<j<n—-let0<i< %4 (ce qui en donne
k=i k=g

!n—l!!n-—B!) .

8 1

i=2
z

3 hog + Y hg pour2§ig&gwé,jpairet2i+2§§j§n——1 (ce qui en donne
k=1t k=7

n—5)n-3 ) :
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Les vecteurs précédents, au nombre de M—W"H)«, sont ceux ayant pour composantes £1
et 0.

Les vecteurs suivants sont ceux ayant pour composantes 0, 1 et £2:

-1
k23

=
S he+ Y hoppour 2<i < %’—?l (ce qui en donne "7_3) ;
k=1 k=i

i—1 n—1

R n 5 .

3 hoper+ D hk—l—Zhzkpour:}gign—Z,z’impair,%tiSjS“T_l
k=0 k=i+1 k=j

(ce qui en donne L’i.:%ﬁ&:il) ;

. . (n=1){n—3
On a ainsi ggm)égw vecteurs de cette forme,

Les vecteurs suivants sont ceux ayant pour composantes 0, 1, +2, ..., :E:f—":%:-1~ :

n+1

hi+ ; §(hk_1 + hr—2) (ce qui en donne 1) ;
kpair

n-—1 k

Z E(hk + hry1)  (ce qui en donne 1) ;

k=2

kpair

Z %(hj.d +hj)+k(h2k_1 + hok + hogt1 )} + E %(hj+hj+1) pour 1 <k < "Twl

2€i <2k 2k<jEn—1
jpair jpair

(ce qui en donne 231} ;

. ) nt1
Z %(hj +hj+1)+k(h2k+hzk+1 + hagpa) + Z %(hj.{_l +hj+2)+ hn, pour
2<i <2k 2k<ign -3
ipair ipair
1 <k < 252 (ce qui en donne 253).

De tels vecteurs sont au nombre de n.

En faisant la somme, 3(n+1é(n"1) + (n"l)g("_a) + n, on trouve s = ﬂ%‘"—l—l

n+4-1
(Un vecteur minimal de A,? qui est orthogonal & B donne un vecteur minimal de C (ce
qui donne ﬂ;l)— — 1 vecteurs minimaux) et le vecteur (1,1,0,1,0,1,...,1,0,1,0) est aussi
un vecteur minimal de C.) |
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2.4 DE NOUVEAUX RESEAUX PARFAITS EN DIMENSION 8 OBTENUS
PAR VOISINAGES.

En 1992, dans sa thése [Lah], M. Lathem a trouvé 1 171 réseaux parfaits en dimension
8 ayant une section hyperplane parfaite au-dessus de 30 réseaux parfaits de dimension 7.
J-L. Baril {Ba] a complété cette liste en traitant le cas des réseaux de racines Er, D7 et Ay,
Il a ainsi montré qu'a la liste de M. Laihem s’ajoutent les quatre réseaux Ag, AZ, Dy, K. 1
existe donc 1 175 réseaux parfaits en dimension 8 ayant une section hyperplane parfaite au-
dessus des 33 réseaux parfaits de dimension 7. A ceux-ci s’ajoutent les 53 réseaux parfaits
construits par J-L. Baril (ils s’écrivent sous la forme d’une somme directe du réseau de
racines Ay et d'un réseau parfait de dimension 6, renormalisés & la méme norme) et celui
décrit dans le premier chapitre. On connaissait ainsi 1 229 réseaux parfaits en dimension
n =28,

Nous avons cherché les réseaux contigus aux 329 réseaux de M. Laihem avec s = 36.
Nous avons obtenu 10 115 formes parfaites dont 789 nouvelles (i.e. non isométriques aux
1 229 formes connues jusque 13). Parmi toutes ces formes, on retrouve 10 des 48 voisines
de Dg de D-O. Jaquet-Chiffelle {Ja]. (Toutes les formes contigués & Dg font partie des
1171 formes de M. Laihem sauf une qui est une des 53 formes de J-L. Baril.) On a aussi
retrouvé un voisin d'un réseau de J-L. Baril, deux du réseau AZ. Le réseau Eg admet
comine réseaux voisins les 329 réseaux de M. Laithem possédant 36 couples de vecteurs
minimaux. On peut remarquer que pour chaque cas la constante p est entiére (elle vaut
1 ou 2). On peut aussi noter que By admet un méme voisin suivant plusieurs faces ne
correspondant pas & la méme orbite de vecteurs minimaux. A ce niveau, le nombre de
réseaux parfaits connus en dimension n = 8 vaut 2 018,

Puis on a considéré parmi les 789 réseaux ceux ayant 36 couples de vecteurs minimaux.
Il y en a 733, dont on a cherché les voisins. On en obtient 24 396 dont 3 287 nouveaux
(i.e. non isométriques aux 2 018), ce qui amene le nombre de réseaux parfaits connus en
dimension 8 & 5 305.

On trouve 80 nouveaux voisins du réseau A2 pour lesquels le rationnel p prend les valeurs
1,5 ou %, 95 voisins des 53 réseaux de J-L. Baril (p est égal & 1, ) 3 oui)et34du
réseau obtenu par sections dans le réseau de Ch. Bachoc. Pour ces derniers, la constante
p vaut 1 ou % Parmi les 789 réseaux, 733 sont des voisins de Eg. La valeur de p est en
général entiére (c’est 1 voire 2 pour 4 réseaux), cependant pour 11 réseaux elle est non
entiére : c’est ;i— ou % On obtient par conséquent 1 062 réseaux non isométriques, contigus
au réseau de racines Eg (sans compter Dy et AZ).

Le nombre de couples de vecteurs minimaux des duals des 4 076 nouveaux réseaux est
presque toujours 1 (c’est 2 pour 288 réseaux, 3 pour cing réseaux, 4 pour sept réseaux,
6 pour un seul et 8 pour un autre). Ce n’est pas 1 dans environ 7.4% des cas. Tous ces

réseaux ne sont pas dual-extrémes (méme celui ayant exactement 8 couples de vecteurs
minimaux dans son dual).

Parmi les 4 076 formes, 177 ne sont pas données dans une base de vecteurs minimaux.
Nous leur avons appliqué un algorithme de réduction LLL (cf. chap. 3). Lorsque cette
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réduction n'a pas donné de matrice de Gram dans une base de vecteurs minimaux, on a
utilisé une autre forme de réduction : les minima successifs (cf. chap. 4). Pour seulement
deux formes, aucun des deux algorithmes de réduction n’a fourni de matrice de Gram
dans une base de vecteurs minimaux (les vecteurs trouvés réalisant les minima successifs
engendrent, dans les deux cas, un réseau d'indice 2 dans le réseau de départ). Pour
chacune d’entre elles, un seul des vecteurs de la base n’est pas minimal. Cependant, en le
remplagant par un vecteur minimal convenable on obtient une matrice de Gram dans une
base de vecteurs minimaux.

Nous avons vérifié une autre propriété de ces nouvelles formes : I'extrémalité. Environ
16% sont extrémes.

Nous donnons ci-dessous quelques invariants du réseau trouvé parmi les 4 076 ayant la
constante d’Hermite la plus élevée. Les notations sont les suivantes : det(A) représente
le déterminant du résean A, N’ la norme minimale de son dual rendu entier, v,2(A) le
carré de la constante d'Hermite duale, v,(A) la constante d’Hermite, (s, s*) le nombre de
couples de vecteurs minimaux du réseau et de son dual, ann(A*/A) 'annulateur et NV la
norme minimale du réseau.

det(A) N’ 1.2 (A) Fn(A) (s, s*) | anm(A*/A) | N

21 681 2 574 2.1369... 1.7242... (47,1) 7227 6

Parmi les 3 287 formes parfaites trouvées précédemment, un peu moins de la moitié, soit
1 491, ont 36 couples de vecteurs minimaux. Dans la liste des 53 formes de J-L. Baril,
seulement 11 ont un “kissing number” de 72. Nous avons cherché les formes contigues de
ces 1 502 formes. Nous en obtenons 49 814 dont 2 854 nouvelles, i.e. non isométriques
aux 5 305 connues jusque 1a (29 sont des voisins des réseaux de J-L. Baril). Le nombre de
formes parfaites en dimension 8 devient 8 159.

Aucun des 2 854 réseaux n’est dual-extréme car le nombre de paires de vecteurs mini-
maux des réseaux duals est strictement inférieur & 8 (c’est 2 pour 204 réseaux, 3 pour un
seul, 6 pour un autre et 1 pour tous les autres).

Environ 85.9% d’entre eux ne sont pas extrémes.

Par contre, ils admettent tous une base formée de vecteurs minimaux (obtenue par LLL-
réduction ou avec 'algorithme des minima successifs ou bien en remplagant les vecteurs
non minimaux par des vecteurs minimaux convenables).

Les 11 réseaux de J-L. Baril ayant 36 couples de vecteurs minimaux fournissent dix
nouveaux voisins du réseau de racines Eg (la valeur de p est 1 dans tous les cas), un méme
voisin pour Dy et A2, mais pas suivant le méme vecteur de face (la valeur de p est respec-

tivement 4 et 1), 11 voisins des 53 réseaux s'écrivant sous la forme d’une somme directe
du réseau de racines Ay et d’un réseau parfait de dimension 6, renormalisés a la méme
norme (p valant 1, 2, 1 ou ).

Parmi les 3 287 formes, 1 491 sont des contigués de Eg : p peut prendre les valeurs
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1,2 5,5 5 5 5 % & 2L % Zoul (avec les 1 075 précédents, on trouve 2 566

voisins de g non isométriques deux & deux). Le réseau AZ admet 336 réseaux voisins

supplémentaires (p valant 1, 2 ou 3) et le réseau décrit dans le premier chapitre en admet

56 (p valant 1, § ou 2). On trouve 193 nouveaux réseaux contigus aux 53 réseaux de

J-L. Baril (p est égal & 1, 1, 1, 2, % ou %)

Plus de la moitié des 2 825 formes, soit 1 634, ont 36 couples de vecteurs minimaux.
Nous avons cherché leurs formes contigués et en avons obtenu 54 547 dont 1 560 nouvelles.

Le nombre de formes parfaites en dimension 8 devient par conséquent 9 719.

Un seul des 1 560 nouveaux réseaux a 8 paires de vecteurs minimaux dans son dual.
Cependant, il n’est pas dual-extréme. Les autres ne le sont pas non plus car les réseaux
duals n’ont pas assez de vecteurs minimaux (s*, le nombre de couples de vecteurs minimaux
du réseau dual, vaut 1 pour 1 413 réseaux, 2 pour 135 réseaux, 3 pour quatre réseaux, 4
pour six réseaux, 6 pour deux réseaux). Ils admettent tous une base formée de vecteurs
minimaux. Environ 83% d’entre eux ne sont pas extrémes.

On trouve 1 633 réseaux qui sont des voisins de Fg (p peut prendre les valeurs 1, 2, 3, %

2 1 3 1 2 3 1 1 1 .- 2 1 "
5D 1 5 & 5§ 70U g), 260 voisins de AZ (p vaut 1, 2 ou 1), 236 voisins des 53
11 2 1 3

réseaux de J-L. Baril (p est égal 21, 2, 2, 3, 2, 1, 3 ou ) et 76 du réseau décrit dans

le premier chapitre (p valant 1, 1 ou 2).

Parmi les 1 560 réseaux, 1 102 ont 36 paires de vecteurs minimaux. Nous avons cherché
leurs contigus et trouvé 36 377 réseaux dont 702 nouveaux. Le nombre de réseaux parfaits
en dimension n = 8 est maintenant 10 421.

Les 702 formes trouvées ne sont pas dual-extrémes car s* est strictement inférieur 2 8
(c’est 7 pour une forme, 3 pour trois formes, 2 pour 76 formes et 1 pour les 626 autres).
Environ 78.6% d’entre elles ne sont pas extrémes. Toutes admettent une base formée de
vecteurs minimaux (obtenue ou bien par une réduction LLL ou bien grice Palgorithme
des minima successifs ou bien lorsque les deux méthodes précédentes n’ont pas donné de
matrice de Gram dans une base de vecteurs minimaux, en remplacant les vecteurs non
minimaux par des vecteurs minimaux convenables).

On trouve 1 100 nouveaux voisins du réseau de racines Fg pour lesquels la constante
11 2 1 1 2 11 1 3

pvaut 1, 2, 5, 3, §, 51 50 5 5 71 5 3 OU 1—10. Le réseau AZ posséde 72 nouveaux

voisins (p vaut 1, 2, 3 ou ), les 53 réseaux de J-L. Baril en possédent 193 nouveaux (p
£ ol 1 1 1 1 1 : : . 4

est égala 1, 2, 5, 5, 3, § ou 5) et le réseau obtenu par sections successives dans le réseau

de Ch. Bachoc de dimension 32, en admet 41 nouveaux pour lesquels p vaut 1, % ou %

Parmi les 702 réseaux, 546 ont un “kissing number” égal 4 72. Nous avons appliqué
une nouvelle fois Palgorithme de Voronol et trouvé 17 654 formes dont 240 nouvelles. Le
nombre de réseaux parfaits de rang 8 est par conséquent 10 661.
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Aucun des 240 nouveaux réseaux n'est dual-extréme car s* est inférieur ou égal & 7
(c’est 1 pour 211 réseaux, 2 pour 25 réseaux, 3 pour un autre, 4 pour deux réseaux et 7
pour un dernier). Seulement 49 d’entre eux sont extrémes. Ils possédent tous une base
formée de vecteurs minimaux.

Le réseau Eg admet 545 autres réseaux voisins (la constante p est toujours entiére, c’est

1 en général et 2 pour quelques cas), le réseau A2 en admet 22 nouveaux (p vaut 1, 2 ou

1), les 53 réseaux de J-L. Baril en admettent 117 (p vaut 1, 2, 3, %, 1 ou %) et le réseau

construit dans le premier chapitre en admet 19 pour lesquels p peut prendre les valeurs
1 2
1, 3 ou 3
Parmi les 240 nouvelles formes, 203 ont 36 couples de vecteurs minimaux. Nous avons
cherché leurs formes voisines et en avons trouvé 6 097 dont 73 nouvelles, et en particulier

57 de “kissing number” 72. On obtient ainsi 10 734 réseaux parfaits en dimension n = 8.

Aucun des 73 réseaux n’est dual-extréme, les réseaux duals n’ayant pas assez de vecteurs
minimaux {s* vaut 1 pour 58 réseaux, 2 pour 13, 4 pour un réseau et 7 pour un autre).
Ils admettent tous une base constituée de vecteurs minimaux et seulement 22 d’entre eux
sont extrémes.

On constate que le réseau de racines Eg admet 203 autres réseaux voisins pour lesquels

p prend les valeurs entires 1 ou 2, le réseau AZ en admet 9 (p vaut 1, 2 ou %), les 53

réseaux de J-L. Baril en admettent 59 pour lesquels p est égal a 1, %, %:, %, % ou é, et le

réseau contenu dans BC3z en admet 6 (p vaut 1 ou 2).

Nous avons utilisé 'algorithme de voisinages avec les 57 réseaux et obtenu 1 535 réseaux
dont 18 nouveaux (i.e. non isométriques aux 10 734 déja connus) et parmi ces derniers,
16 ont 36 paires de vecteurs minimaux. On connait maintenant 10 752 réseaux parfaits en
dimension 8.

Parmi ces 18 réseaux, cinq sont extrémes. Ils ne sont pas pas dual-extrémes (s* vaut 1
pour 14 réseaux, 2 pour trois autres et 3 pour un dernier). A ceux qui n’etaient pas donnés
dans une base de vecteurs minimaux, on a appliqué une réduction LLL qui a fournit une
matrice de Gram dans une base de vecteurs minimaux.

Les 57 réseaux sont tous des réseaux voisins de Eg, la constante p est entiére (elle vaut
1 ou 2), seulement quatre sont des réseaux contigus & A3 (p a pour valeur 1, 2 ou 3),

quatre autres sont des voisins du réseau décrit dans le premier chapitre (p est égal & 1

ou 3} et dix sont contigus aux 53 réseaux de J-L. Baril (p vaut 1, 3, 3, % ou §).

Nous avons cherché les réseaux contigus aux 16 réseaux et en avons obtenu 426 dont
seulement quatre nouveaux (ces derniers ont tous un “kissing number” de 72). Le nombre
de réseaux parfaits de rang 8 devient 10 756.

Ces quatre réseaux ne sont ni extrémes, ni dual-extrémes (s*, le nombre de paires de
vecteurs minimaux vaut 1 pour un réseau, 2 pour deux autres et 4 pour un dernier) et
admettent tous une base formée de vecteurs minimaux.
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Les 16 réseaux sont tous voisins de Eg (p valant 1 ou 2}, quatre sont des voisins des 53
réseaux de J-L. Baril (p est égal & 1 ou £) et un seul est contigu au réseau trouvé par

-sections dans le réseau de Ch. Bachoc, pour lequel p vaut % Néanmoins, aucun n’est
contigu au réseau A2.

Par voisinages des quatre réseaux, on obtient 87 formes dont quatre nouvelles, toutes
ayant 36 couples de vecteurs minimaux. Le nombre de réseaux parfaits de rang 8 est
maintenant 10 760.

Parmi ces quatre nouveaux, un seul est extréme. Ils ne sont pas dual-extrémes (s* vaut
1 pour trois d’entre eux et 2 pour l'autre). On peut toujours trouver une base constituée
de vecteurs minimaux.,

Le réseau de racines Eg admet pour voisins les quatre réseaux dont on a cherché les
réseaux contigus {p vaut toujours 1), le réseau A% en admet un seul, pour lequel p = 1
et un seul des 53 réseaux de J-L. Baril en admet un autre (p = 1 aussi). Mais, le résean
décrit dans le premier chapitre n’en admet aucun.

On a appliqué une nouvelle fois I'algorithme de voisinages de Voronoi aux quatre formes
et trouvé 100 autres formes dont trois nouvelles. Fn dimension 8, on connait 10 763 réseaux
parfaits.

Les trois réseaux ne sont ni extrémes, ni dual-extrémes (leurs réseaux duals admettent
une ou deux paires de vecteurs minimaux) et possédent tous une base formée de vecteurs
minimaux.

Le réseau Ey admet quatre nouveaux voisins et AZ en admet un seul. Dans tous les cas

8 q 8 +
p prend la valeur 1. Mais ni les 53 réseaux de J-L. Baril ni le réseau construit par sections
successives dans le réseau de Ch. Bachoc ne possédent de nouveaux contigus.

Parmi les trois réseaux trouvés précédemment, deux ont 36 couples de vecteurs mini-
maux. Nous avons cherché leurs voisins et obtenu 30 réseaux dont un seul non isométrigue
aux 10 763. Ce dernier a un “kissing number” égal & 72. Le nombre de réseaux parfaits
de rang 8 devient maintenant 10 764.

Ce nouveau réseau n’est ni dual-extréme (s* = 1), ni extréme. Il admet une base formée
de vecteurs minimaux.

Le réseau de racines Eg admet un nouveau voisin pour lequel p vaut 1. Clest le seul
parmi AZ, Eg, les 53 réseaux de J-L. Baril et le réseau décrit dans le premier chapitre, qui
posseéde de nouveaux voisins.

Nous avons une derniére fois utilisé 'algorithme de Voronoi avec le dernier réseau trouvé
et obtenu 21 réseaux. Mais tous sont déji connus. Par conséquent, on a épuisé la “source
prolifique” des réseaux construits par voisinages des réseaux de M. Laihem.

Parmi les 29 réseaux obtenus par voisinages des 53 réseaux de J-L. Baril (voir p. 31), 17
ont un “kissing number” de 72. Nous avons cherché leurs réseaux contigus et trouvé 597
réseaux dont seulement cing non encore connus. Le nombre de réseaux parfaits de rang 8
devient 10 769,



Ces cinq réseaux ne sont ni dual-extrémes (s* = 1 pour chacun), ni extrémes. Ils

admettent tous une base constituée de vecteurs minimaux.

On trouve 17 réseaux contigus 3 Eg (p vaut 1 ou 2), deux voisins de A3 (p vaut 1 ou 3)

et 17 voisins des 53 réseaux de J-L. Baril (p vaut 1, %, %, %, % ou %), mais aucun du

réseau obtenu par sections successives dans BCly;.

Parmi les cinq réseaux trouvés ci-dessus, quatre possedent 36 paires de vecteurs mini-
maux. Nous leur avons appliqué 'algorithme de Voronoi et obtenu 129 réseaux dont un
seul nouveau. Ce dernier a 36 couples de vecteurs minimaux. Le nombre de réseaux
parfaits de rang 8 devient 10 770. Ce nouveau réseau n'est ni dual-extréme car s* = 1, ni
extréme,.

On trouve quatre nouveaux réseaux contigus au réseau Eg, pour lesquels p vaut 1, deux

réseaux voisins des 53 réseaux de J-L. Baril pour lesquels p vaut —;— ou 41, mais aucun de

A2 ni du réseau décrit dans le premier chapitre.

Nous avons utilisé 'algorithme de voisinages une derniére fois avec le nouveau réseau
trouvé ci-dessus. Il a fourni 24 formes mais toutes font partie de la liste des 10 770. Ce
réseau est un voisin du réseau de racines Eg {p prend la valeur 1). C’est le seul parmi
A2, Fg, les 53 réseaux de J-L. Baril et le réseau construit dans le premier chapitre &
posseder de nouveaux voisins.

Dans le cas des réseaux de J-L. Baril, aprés la troisieéme utilisation de ’algorithme de
voisinages, ce dernier ne trouve plus que des réseaux parfaits déja connus.

Remarque : Aucun des 10 770 réseaux parfaits de rang 8 n’est de norme minimale
impaire.

En résumé :
e Nous connaissons maintenant 10 770 réseaux parfaits de dimension 8.
e Tous ces réseaux sont de norme minimale paire.
e Ils admettent tous une base formée de vecteurs minimaux.

e On a dénombré :
6 149 réseaux contigus au réseau de racines I,

791 réseaux contigus au réseau AZ,
931 réseaux contigus aux 53 réseaux de J-L. Baril,

243 réseaux contigus au réseau construit dans le premier chapitre.

Les normes minimales possibles de tous ces réseaux sont

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32}.
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Quant aux nombres de paires de vecteurs minimaux, ils prennent toutes les valeurs com-
prises entre 36 et 58 excepté 53, 55, 56, 57. On a compté 6 145 réseaux ayant 36 paires
de vecteurs minimaux. Les réseaux duals de 9 764 parmi les 10 770 possedent une seule
paire de vecteurs minimaux. Il n’y a que 11 réseaux ayant plus de huit paires de vecteurs
minimaux dans leurs duals.

Les réseaux dual-extrémes sont trés rares : en effet, il n'y en a que six (les trois réseaux
de racines Eg, Ag, I, et trois réseaux de M. Laihem). On a dénombré 1 974 réseaux
extrémes.

Pour 6 898 réseaux, le groupe d’automorphismes est {4 Id}.
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Chapitre 3

L’algorithme LLL sur

des anneaux euclidiens.

Nous décrivons dans ce chapitre une généralisation d’un algorithme de réduction de
bases et donnons quelques exemples d’applications. Sur certains réseaux de Ch. Bachoc,
cet algorithme fournit des bases réduites que 'algorithme usuel ne trouve pas toujours, et
ceci en peu de temps.

3.1 INTRODUCTION.

Trouver un algorithme qui cherche une base formée de vecteurs de petites normes, en un
temps relativement court, est un vieux probléme (résolu en dimension n = 2 par C.F. Gauss
et plus récemment en 1986 par B. Vallée en dimension n = 3). Un grand pas en avant a
été fait en 1982 par A. K. Lenstra, H.W. Lenstra et L. Lovasz. Dans [LLL], ils donnent un
algorithme, qui sera appelé algorithme LLL et qui fournit une base presque orthogonale
et formée de “petits” vecteurs.

On peut généraliser 'algorithme LLL 2 des anneaux euclidiens, comme les cing anneaux des
entiers des corps quadratiques imaginaires, Q(v/—1) = Q(i), Qv —3) = Q(j), Qv-5),
Q(v/=T7), Q(+/—11), ainsi qu’aux ordres maximaux des algébres des quaternions ramifiées
en 2 (resp. 3) et 'infini (qui sont euclidiens & droite et & gauche). Ceci permettra, pour un
réseau, possédant une structure sur un de ces anneaux (ou ordres ), de trouver une base
formée de vecteurs de petites normes, tout en conservant la structure. Nous décrivons
cette généralisation dans le deuxidme paragraphe. Dans la troisiéme partie, on traitera
comme exemples, les anneaux Z[i}, Z[j] et 90, 'ordre de Hurwitz (unique ordre maximal
du corps des quaternions de Hamilton, ramifié en 2 et I'infini) et on finira avec quelques
résultats numériques et des applications de la LLL-réduction.

Ce travail a été fait alors que I'auteur bénéficiait du contrat DGA 04/94/SA.AR. Je re-
mercie le CELAR. pour son aide.

Je remercie également Ch. BATUT qui m’a mis “le pied & I’étrier” sur ce syjet et qui par sa
compétence en programmation du langage C, m’a permis de progresser dans ce domaine.
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3.2 ALGORITHME LLL SUR UN ANNEAU EUCLIDIEN,

On note A I'anneau euclidien contenu dans un corps K : corps de nombres ou corps de
quaternions sur un corps de nombres, pouvant s’identifier & un R™ et doté d’une involution
n
o : 2 +— & On munit K* d’un produit hermitien noté .y = ¥ =z, §,. On suppose que
p=1
Papplication N : z +—| | = zo(z) envoie K sur R (resp. 4 sur Z). On traite le cas ot le
corps K est commutatif.

Remarque : Lorsque le corps K est gauche, 'analogue du déterminant d'une matrice
M est la norme réduite. On note r, le rang du corps K sur son centre I et Nrd(M) la
norme réduite de M. Si M est & coeficients dans D, on a Nrd(M) = det(M)". Si elle est
triangulaire, sa norme réduite est le produit des normes réduites des éléments diagonaux.
Sinon, en multipliant & gauche (ou & droite) par une matrice triangulaire avec des 1 sur la
diagonale, on se rameéne & une matrice triangulaire.

On a d’abord besoin du procédé d’orthogonalisation de Gram-Schmidt, qui permet de
trouver une base orthogonale,

3.2.1 L’orthogonalisation de Gram-Schmidt.

Soient by, b, ..., b, une base d’un réseau A de K™ (i.e. A est Pensemble des combinaisons
A-linéaires de by, by, ..., by).
On définit par récurrence les vecteurs b} et les scalaires trs de la fagon suivante :

by = by,

by = b — Y pesbt powr2<r<n,
i<p<r
avecpr‘szg—}%% pour ! <s<r < n.

Les vecteurs by sont orthogonaux deux a deux et forment une base de K?, b* est le projeté
r—1

r—1
orthogonal de b, sur le supplémentaire orthogonal de > Kb, = > Kb*. De plus, la
s=1

s=1
matrice exprimant les coordonnées des b} en fonction des b, est triangulaire supérieure et
les termes diagonaux sont égaux & 1. Enfin, si on note det(A) le déterminant du réseau A,

alors on a det(A) = J] b2.b*.
1<s<n

Dans la suite, la notation || b, {|* (resp. B,) désignera la quantité b,.b, (resp. b*.b¥).

Proposition (Inégalité de Hadamard).
Soit A un réseau de base (by)1<p<n, de déterminant det(A).

Alorsdet(A) < T |b,].
1<p<n
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Preuve.

En effet, on a d’aprés I'orthogonalité des b, {| b, [|2 = Br+ 2. |#rs | B, et donc
1<alr

a(s) = T1 B < I0 I I .

3.2.2 Description de P’algorithme LLL sur A.
Une base A-LLL-réduite est “presque orthogonale” et formée de vecteurs de petites normes.

Définition.
Avec les notations de 1), on dira que la base (bp)i<p<n est A-LLL-réduite si les deux
conditions suivantes sont satisfaites :

a)| prs |<C; pourl<s<r<n,
b) I| by + por—1b7_4 ”22 Co | b5y I* pour2<r<m,
ou Cy et Cy sont des réels tels que 0 < Cy < Uy < 1.

Remarques : La condition a) sera appelée condition de réduction en taille et la condition
b) condition de Lovész. Cette derniére est équivalente & B, > (Ca~ | frr—1 [}Br-1-
La constante Cy dépend de C;. Elle peut prendre n’importe quelle valeur strictement
supérieure & Cy, mais elle doit étre strictement inférieure 3 1, pour assurer la convergence
de l'algorithme. La constante C; est égale au sup{inf{N(y —z) | = € A} | y € K} et
dépend du corps K.

Les vecteurs b% + g, .—1b%_y et bj_, sont les projetés orthogonaux respectifs de b, et b,y
-2

sur le supplémentaire orthogonal de »_ Kb,.
gu=]

On a les propriétés suivantes :

Propriétés.
Soit (b,)1<p<n une base A-LLL-réduite d’un réseau A. Alors

—n

Ddet(A) < [T 118, |IP< (G2 = C1) ™5 det(A).

I<psn
i) {] bp [|P<(C2 ~ C1)' "B, pour1<p<r<n,
l—mn

i) || by |2 (Cy — C1) 3" det(A)=.
i) Pour tout & € A,z # 0, on a || by [|2€ (Ca — C1)*™ " || = ||*.

v) Plus généralement, pour tout systéme de vecteurs linéairement indépendants
B1, B3,y 30 de A, on a || by [P< (Co — C)* " max(l| 2 |I2, || 22 |12, .., || & |[?) pour
1<r <t
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Preuve.
i) det(A) < JI Hbs{|* (c'est 'inégalité de Hadamard).

1<pgn
D’aprés la condition de Lovész, on a || b} [|2> (Cy — C1) || b%_; ||* et par conséquent

[| 6% 2< (Cy — C1)*~" || b% {|? pour tout s tel que s < r et donc

. 1 Cy r
16, 11P< (=520 + S2) B, < (Cr - OB,

On en déduit facilement que [] || b, ||2< (Cg ~ C1) =5 det(A).
1<p<n

i) En utilisant les deux inégalités, (| b, {|*< (=5 Gyt Cll(c;‘bzc‘ ") B, et

153 112 (G — Gy |1 8¢ I, on maore [ b | pac (G — C1)— B

iti) En prenant p = 1 dans i) et en faisant le produit pour s = 1 jusqu’a n de ces inégalités,

on en déduit || by ||2"< (Cy — C1) ™5 det(A)2.

iv) Il existe un entier 7o, 1 <rg <ntelque z= 3, spbp= 3. tpb} avec s, # 0,
1<p<ry 1<pS7o

sp € Aet t, € K On aalors 5,y =1,, € A (par la définition des bj).

On en déduit, || @ ||*>] 85, | Bry =| trg | Bro = By,.
Comme d’apreés i), By, >|[ by || (Ca — Cy)o~t || by ||2 (Cy — €)™Y, on a v).

v) On écrit ., = 3 ¢,.b, avec t,, € A pour tout 1 < r < .
i<p<n

Pour un r fixé, on note p(r), le plus grand entier tel que ¢, » # 0. On a || z, {|*>]| b* () 12
pour tout r < ¢

On renumérote les x, pour avoir p(1) < p(2) < --- < p(t). On a alors r < p(r). Sinon,
Zy,%2,..., %, appartiennent & Kb; + Kby + - - - + Kb,_y, ce qui est contraire a 'hypothese
d’indépendance linéaire.

On en déduit || b, {|*< (Cg ~ Cy)—P) || baiy IP<(C2 = C1)' =™ || 2, |? pour tout r < ¢.
| ]

Description de 1’algorithme LLL.

On procéde par récurrence. On suppose que les vecteurs by, ba, ..., b._; sont A-LLL-
réduits. (On commence la récurrence avec r = 2.) On doit vérifier | Lr,s | < Cy pour tout
s <. On suppose que 'on a |y, 5 {< C) pour tout s tel que p < s < r. On pose ¢ = [y p]

(i.e. un entier le plus proche au sens de I'application N de fr,p) - On remplace le vecteur

by par b, — gby, et pyp par fir, — q et ainsi le “nouveau” u, , satisfait | g, , |< Cy.
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Pour ¢ > p, les y,; ne sont pas modifiés (car les vecteurs b} et by, sont orthogonaux). On
a ainsi | g, p, |< Cy pour tout p < 3 < r.

Ensuite, le vecteur b, doit aussi satisfaire la condition b). Si oui, on passe au vecteur
suivant (i.e. on incrémente r de 1). Sinon, on échange b, et b,_; et on décrémente r de 1,
puisque seuls les vecteurs by, by, ..., b,_3 sont A-LLL-réduits.

On peut améliorer cet algorithme de la fagon suivante :

Avant de tester la condition b), on a seulement besoin d’avoir b e re1 | S Cq. 1l est done
inutile de réduire les autres g, pour p < r — 1. On pourrait aussi calculer tous les
coeflicients d, et u,, au départ et ensuite les changer chaque fois que cela est nécessaire.
Mais cela est inutile car ils seront probablement modifiés avant que 'on teste si »r < n. On
les calcule donc au fur et & mesure, tout en gardant dans une variable 74,4, le maximum
de la valeur de r que 'on a atteint.

On va maintenant donner 'algorithme.
Donnée : une matrice de produits hermitiens (b, , = b,.bs) d’ordre n.
Sortie : une matrice de produits hermitiens dont les vecteurs sont A-LLL-réduits.

Etape 1

roe— 2
Tmaz *— 1
B, ‘“—51,1;

Etape 2
tant que r < n faire
{sir > rmaes

{Tma:c - r;

pour § = 1, 2, , r—1
{ar,s = Urs
pour? = 1,2, ..., 8—1 ar5 & Grs — Qpt Pspt;
frs < B
}
By« bup;
pourt = 1,2, ..., r—1 B, «— B, — aptfirt;
}
Etape 3
RED(x, r-1} ;
tant que B, < (C2 — | phrr_1|) Br_1 faire
{ SWAP(r) ;
ro— max(r, 2);
RED(r, r-1) ;

}

pour § = r—2 ¢r—3, ..., 1
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{ RED(r, s) ;
roe— 1 4 1;
}

}
sortirb M

Sous-Algorithme RED(r, s)

{qg « |tns];
br,r A br,r + qbs,sq_ - qbs,r - br‘sq; N
pour ¢t = 1,2, ...,n si & #F v {b, — by — byeq; byy — byr;}
commentaire : b, «— b, — q by
Hes — Hrs — G,
pour t = 1,2, ..., 8—1 fpy — pet — q fos;
sortir M

}

Sous-Algorithme SWAP(r)
pour t = 1,2, ..., n
si t# 71 et ¢t #r—1
{‘U A br,t; br,t — br—l,t; b'r—-l,t U bt,r A br,t; bt,r—l — br——-l,t ;}
Vo= br,r j bpp e brml,r—l; br——l,r—-l e
v o= br,r—l 3 br,r—l - br—l,r ; br——l,r vy

commentaire : échange des vecteurs b, et by _1

pour s = 1: 23 RS r—2 {'U — Hrsy HPrs & frelsy Mr-is 'U;}
commentaire : échange des iy 5 et [ir_3 4
o S 2,

pour t = r+1, 2, ..., Timaz

MHtr & Hpp—1 — V i}
Htgp—1 & V + K, r Hrr—1 3

}

sortir M

Preuve de I’algorithme.

Comme on ne fait que des opérations du type, “échange de deux vecteurs” et “remplace-
ment d’un vecteur par la différence de ce vecteur avec un autre vecteur multiplié par un
scalaire”, on reste toujours dans le réseau de départ (i.e. on fait des opérations unimodu-
laires). On peut voir facilement qu’au cours de l'algorithme, juste avant de tester si r < n,
les vecteurs by, by, ..., b._.1 sont A-LLL-réduits.

Il nous reste & montrer que l'algorithme se termine effectivement.
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Pour cela, on utilise les scalaires d, définis précédemment et on pose D = [] d,. Le
1<p<n~1

scalaire D > 0 est modifié lorsque les d, le sont, c’est-a-dire lors des échanges des vecteurs
b, et b._1 {dans le sous-algorithme SWAP). Dans ce cas, seul d,_; est modifié. Il est
multiplié par un facteur au plus égal & Cy et par conséquent D) aussi.

On note A, le sous-réseau de A engendré par les b, pour 1 < p < r et N(A,) sa norme
minimale. On a

d. > N(AT)T’YT_T > N(A)T'Y:T

ol N(A) est la norme minimale de A et v,, la constante d’Hermite en dimension r. Cette
expression ne dépend que de r et donc d, est minoré par une constante ne dépendant que
de r et du réseau A. Par conséquent, D est minoré par une constante ne dépendant que
de A. Cect montre que le sous-algorithme SWAP n’est exécuté qu'un nombre fini de fois.
|

Comme nous n’utilisons que des réseaux dont le produit hermitien est a valeurs dans A,
nous allons aussi décrire I'algorithme LLL qui ne travaille qu’avec des éléments de A. Pour
cela, on a besoin des deux propositions suivantes (cf. [Col).

Proposition 1.
On considére la matrice (b,.b,) et on pose dp = det((b,.bs)1<rs<p) = [| Bs pour
1<s<p
1<p<mnetdy=1. Alors,
i) Pour tout p et r telsquer <p,onad,_ 1B, €Z et p,.d. €A

it) Pour tout p, r, t telsquer <t <p,onad, Y, ppsitsBs € A.

1<a<r
Preuve.
i) On a Iégalité suivante d,_1 B, = d,, donc d. € Z (et méme € N). Pour la seconde
assertion, on considére pour s < r le vecteur v = b, — 3 pepby = b5 ~ 37 urpbp.
1<p<s s<p<r
Pour tout p tel que 1 < p < s, on a v.b; = 0, ou de maniére équivalente v.b, = 0
(puisque 3, Kby = 3 Kbp). Onaalorsv = b, — 3> xpb, avec 2, €K
1<p<s 1<p<s 1<p<s
Les relations v.b, = 0 peuvent étre écrites sous la forme matricielle
bl.bl P . bl.bs Iy bl.b-,-

bs.by ... ... bgby Ty b,.b,
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Le déterminant de la matrice est, par définition, d, et en inversant la matrice, on voit que
les z, sont de la forme 2 avec m, € A.

12 it _ * B : * — R
L'égalité 1<§:< zpb, = 1<Z< prpby montre par projection sur b que , = py, = 1=
<p<s <p<s

On en déduit alors I'assertion,
it) Par ¢), dsptr 5 est un élément de A pour tout s < r, donc d,v est une combinaison
A-linéaire des b, ; par conséquent d,v.by € A pour tout 1 <t < n.

On en déduit alors d, D py it p By € A. [
1<p<s

Proposition 2.
Avec les mémes notations que la proposition précédente, on pose
Arg = [y odg pour s < v (A, € A) et A,y = d,.

Pour s < r fixés, on définit la suite u, par ug = b,.b, et pour tout p tel que 1 < p < s,

u, = dptip—1 — Aypio,

dp--l

Alorsu, € A et ug_1 = Ay 5.

Preuve
Par récurrence sur p, on montre que

/\r,t/\s,t

Up = dp (br-bs - ): dp (br-bs - Z .ur,tﬂ's,tBt)l

1<egp L 1<t<p

ce qui montre (gréce & iz)) de la proposition 1} que u, € A.

On a ensuite les égalités :

Us—1 = dy—1 (brbs — D e pliepBp),
1€p<Le—1
=ds—1 (b + > ﬂr,tb:)-(b: + Z P"s,qb;)_ dy_3 >, tr plis pBp,
1<t<r 1<g<s 1<p<Ls—1
= Hpsg de—1 B,
= d, Hr,a,

= Ars. =



On obtient ainsi deux nouvelles conditions de A-LLL-réduction qui sont les suivantes :
a) | As|€Cid? pouri<s<r,

b) dedig 4+ | Arpo1 |2 Cad?_; pour2<r<mn.

On donne aussi 'algorithme ne travaillant qu’avec des éléments de A.
Donnée : une matrice de produits hermitiens (b, s = by.b,) d’ordre n.
Sortie : une matrice de produits hermitiens dont les vecteurs sont A-LLL-réduits.

];jtapel
o 2
oz ¢~ 1

do — 1; di « b11;

Etape 2
tant que r < n faire
{sit > Tnaa
{Tma:n — T3
pourp = 1,2, ..., 7
{u e« byyr; )

de 4 — Ao Aps |

pours = 1, 2, ..., p—1 u «
sip <1 Ap — u;
sip «— 1 dp, — u;

da—l

}
}

Etape 3
REDI(r, r-1) ;
tant que  d dp_n + | Arpo1 |< Co dri?®
{ SWAPI(r) ;
r «— max(r, 2);
REDI(x, r-1) ;
}
pour t = r-2,r-3, ..., 1
{ REDI(r, t);
LIRS A S A
}
}

sortir b W

Sous-Algorithme REDI(r, s)
Ar.s .
{9 « [F=1;
brp by 4 qboe§ — bra G — qhoyr;
pour p = 1, 2, ..., n ~
siop# v {bpyr & bpr — bpa@; bop — bprs}
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commentaire ; b, «— b, — g b,

/\r,.s — /\r,s - qda;

pour p = 1,2, ..., 8s~1 Ay — Ap ~ g Asp;
sortir I

}

Sous-Algorithme SWAPI(r)
{powr p =1,2, ...,n si p+#r et p#Fr—1_ B
{U — br‘,p; br1p — br—l,p; b‘?‘—l,p A U; bp:'r A b"‘?p ;bp,f‘w‘l = br“"lap ;}
v br,r ) bv',r — br-—l,r—l i b'r‘—l,?'—-l N S
v br,r—l ) br,r—l — bf‘—lﬂ‘ 3 b"—ls"‘ DAL

commentaire : échange des vecteurs b, et b,_1

pour p = 1,2, ..., 7=2 {v « Ap; A, Arelp i Ar—ilp € U }
A /\r,r—l 3

’\r,a'wl A ’\7‘,1‘-—1 1

pour 8 = r-1, 2, ..., Tmax

{ Ly « /\s,‘r ;o )\s,r-—l )
b dp — 4 A,
As,r - dp—_1 ’

Iy drp + A 1y |
ASJ'""I A rd,-...l )

de_y — T d_
sortir M

}

Remarque : La preuve de cet algorithme est la méme que celle de l'algorithme travaillant
avec des éléments de K.

On va maintenant traiter les exemples, A = Zi], I'anneau des entiers de Gauss, avec
i1, A= Z{4], 'anneau des entiers d’Eisenstein, avec FP4j+1=0¢et A= M, ordre
de Hurwitz.
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3.3 ’ALGORITHME LLL SUR Z[i, Z[j], 9.

3.3.1 Sur Z{i|, Z] j.
Dans cette partie, les réseaux sont définis sur Z[i] (resp. Z[7]) et on considere le produit

hermitien z.y = Y. z,7, ol ¥, est le conjugué complexe de y, sur Z[i] (resp. Z[j]).
1<psn

Ces anneaux sont euclidiens pour la norme de corps de nombres N : z -+ z&. Lorsque
& = a+1ib (resp. a + bj), N(z) = a® + b? (resp. a® + b% — 2ab).

Les notations sont les mémes que celles du paragraphe précédent et pour un complexe «,
| @ |*= ad& représente le carré de son module. Pour tout réel #, la quantité |z] désigne un
entier le plus proche (i.e. |z] = [z + 1]).

Définition.
On dira que la base (by)1<p<n est Z[i] (resp. Z[j] )-LLL-réduite lorsque :
)

).

a) Cy = = (resp.
b) Cy =

B2 p|m
by Lo

(resp.

Remarques : Tout élément z de Q[i] (resp. Q[f]) peut se représenter comme un point se
trouvant & l'intérieur d'un carré (resp. d'un losange) dont les sommets sont des éléments
de Z[i} (resp. de Z[j]) de c6té 1. On rapproche I'élément z = x + iy (resp. z = = + j y)
ducoine = a + ib(resp. @ + jb)aveca = |z] et b = |y]|. Dans le cas Z[i], c’est

le centre du carré qui fournit la plus grande distance (1) avec un des sommets.

Dans le cas Z[j] = Z{W}, il est bien connu que Cy = 3 (cf. {L]). Les points les plus
éloignés de Z[j] au sens de la norme de Q[j], sont les points congrus a g—}l (mod Z[j]) ou &

M2 (mod Z[j]). (Dans le losange ci-dessous, ils correspondent aux deux centres des
triangles équilatéraux.)

(a,b+1) tasd, bely {a,bsl) fatl.bely

L.y}

(a, bl {2,by {a+d, by
a, {a+l, bl

Remarques : A partir de la matrice des produits hermitiens sur Z[z] (resp. Z{7}), on peut
construire la matrice de Gram sur Z en utilisant, comme produit scalaire,
< z,y >= Tr(z.y), avec pour tout z € Z{i] (resp. Z[5]), Tr(z) = z + z.
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Autrement dit, le coeflicient a,. , + by 4i (resp. ars + brs7) d’indices {r, s}, explose en le
bloc 2x2,

2(1,- E] zbr 8 26,- s — br 8 Qbr g™ Qp g
’ ! resp. ’ ' ’ ! .
( —2brs 20y, (resp ~Qp s — by 20y 5 — by s )

3.3.2 Sur M.

On peut écrire I’algébre non commutative des quaternions de Hamilton H sous la forme,
H = R[¢, j, k] avec ij = —ji = k, 1% = j2 = —1. Soit y = yo+1iy1 + jy2 + kys, un quaternion
de Hamilton, on définit son conjugué § par § = yo — ty1 — jy2 — kys. On pose

Nrd(y) = y7 = y§ + y? + y2 + y2 et Nrd(y) est appelée la norme réduite de y. On peut
aussi définir la trace réduite de y par Trd(y) = y + § = 2yp. L’ordre de Hurwitz

(M = Z[i, j,w] avec w = “LELITRY ogt euclidien (3 droite ou & gauche) pour la norme
réduite (cf. [H-W]). On le considére comme module & gauche.

Pour tout entier de Hurwitz, x = ¢ + iz; + jry + wzs, on notera x = (xo, T1, T2, x3).
On utilisera le symbole |a] pour désigner un entier le plus proche du réel a.

Les réseaux considérés sont entiers sur 9 et on utilise le produit hermitien z.y = >zl
1<p<n

ou ¥, est le conjugué quaternionien de y,. Toutes les notations, ainsi que les définitions
de la suite (u;)1<p<n sont les mémes que dans la partie précédente sauf pour d,.,r > 1 qui

n’est plus défini que par [[ B, (car la notion de déterminant n’a pas de sens dans une
1<s<r

algébre non commutative). La preuve de ’algorithme va donc changer dans ce cas, ainsi

que la preuve de la proposition 1 {celle de la proposition 2 n’est pas modifiée).

Remarque : A l'aide de la matrice des produits hermitiens, on récupére la matrice de
Gram sur Z, en utilisant le produit scalaire, < z,y >= Trd(z.y). Le coefficient
a-+1b + je + wd d’indices {r, s}, explose en le bloc 4x4,

2a — d 20+ d 204+2c—d —a+b+c+2d
—2b—d 2a — d —d a+b+ec
—2c—d d 2a—d a—b+e
—a-b—c—d a—-b-c—d a+b—-c—d 2a — d
Définition.
On dira que la base (bp}1<p<n est M-LLL-réduite lorsque :
a’) Cl = 1’

AL

b) Cy =

«
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Remarques : Si on considére le quaternion y = yj + iy} + jyb + kyh, on cherche un
élément de Hurwitz z = xo + 12y + jT2 + wrs, proche pour la norme réduite. On écrit
Y = Yo + ty1 + jys + wys et on pose & = (xq, @1, T2, T3) avec T3 = |ys],
zy = Yo + BT, o = [y + B52, wo = [yo ~ H?"Eﬂ]
On a ainsi Nrd(y — &) = (yo — 2o — §(ys — 23))* + (y1 — 21 + 2(ys — x3))+
(y2 — x2 + $(y3 — 23))? + 1(yz — =3)* < 12 = 0.8125.
Mais, on peut trouver un entier de Hurwitz plus proche de y.

Pour cela, on calcule d’abord la différence entre y et & (les trois premiéres coordonnées

sont comprises entre —3 et 2 et la quatritme entre —% et 7). Elle sera notée 2. On

effectue les différences z ~ (fg, 1y, t2, t3) avec t, € {1, 0, 1}, de méme signe que z,,
pour p = 0, 1, 2, 3. On prend alors un élément de Hurwitz, z = & + (fo, t1, ta, t3) ol
(to, t1, te, t3) est tel que Nrd(z — (to, t1, ta, t3)) est la plus petite. En général, cet

élément est unique. Cependant, pour des quaternions y congrus a l—%ﬂ (mod M), ou 1—;"-1
(mod 9M), ou %1 {mod 9M), ce procédé exhibe 8 entiers de Hurwitz & avec Nrd(y — z) la

plus petite possible. Par exemple, pour y = l;%:i, les éléments z € {0, 1, 3, 1+4¢, 1+
w, t—w, 1 —j+w, i+ 77— w} réalisent le maximum de la norme réduite. D’autres ont 2
entiers de Hurwitz les plus proches.

On peut identifier 9 au réseau de racines I, par M = {(xo, 21, T2, T3) € Z* | o + 71+
xy+x3 = 0 (mod 2)}. Labasede Dy, (-1, 1, 0, 0); (1, 1, 0, 0); (0, 0, 1, 1)5 (1, 0, O, 1))
correspond 3 la base de Hurwitz (1, i, 7, w). Dans le cube Dy, il y a exactement 24

3
éléments z de &?* dont la distance d(z, Dy) = inf{N{z —2) = 3 (2, — 2,)? | * € Dy} vaut
p=0

5. Les 24 éléments de 9 correspondants sont de la forme 1=ty ol u est une unité de M

(i.e. un élément de {£1, +i, +j, +k, _ilii;ciiw 3.
Le maximum de la norme, 1, est atteint lorsque y3 € Z, une des trois autres composantes

de y est entiére et les deux autres sont demi-entiéres.

Preuve de la proposition 1.
i) La premiére assertion est évidente et on montre par récurrence sur s que g, ,d, est un
élément de 'ordre de Hurwitz pour tout s tel que 1 < s < r.

i7) Un calcul explicite de la somme donne i:) pour toute valeur de s. On donne le résultat
pour s=1et s =2.

— by, b .
Pour s = 1, dl,up’l[.t-t,lBl = Bl*%‘l‘l%‘?iBl € M.

Pour s = 2, da(ptpa1fte,1 B1 + pp 2Bt 2B2) = (ba.ba)(bp.b1)(b1.b:) + B1(bp.ba)(ba.be)—
(bpbg)(bzbl)(blbt) — (bp.bl)(bl.bg)(bg.bg) e M. |
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Preuve de ’algorithme.
Dans la preuve de l'algorithme, on utilisait auparavant une inégalité due 4 Hermite,

dr > N(A) v > N(AY v

r iy

Ici, on utilise la formule detz(A,) = d?.disc(9M)", ot le déterminant d’une matrice de Gram
de 9 (en tant que réseau sur Z} disc(9N) vaut I si on prend comme produit scalaire sur
Z, < x,y >= % Trd(z.y) et detz(A,) est le déterminant du réseau A, sur Z.
On a alors comme inégalité

dﬁ > N(A)4r’y;4r4n.

Le scalaire d, est minoré par une constante ne dépendant que de r et du réseau et par
conséquent D est minoré par une constante ne dépendant que du réseau A. Ceci montre
que le sous-algorithme SWAPI n'est exécuté qu'un nombre fini de fois. [ |

3.4 QUELQUES EXEMPLES NUMERIQUES.

Dans chaque exemple, on donne les bases des réseaux et les matrices des produits hermitiens
sur Z[j] (resp. M).

Exemple 1 : le réseau K;3, dans une base de vecteurs minimaux, en tant que
Zij]-module.

On construit la matrice B = (by.b,) des produits hermitiens des vecteurs minimaux de
K12, & partir de la base donnée dans [M], b = (0, 0, 0, 0, —1, 1); by = (0, 0, 0, —1, 1, 0);
b3:'1"}_,; (13 1, 1, 1, 1, 1); b4:(0? -1, 0, 1, 0, 0); b5=(0: -3, 1, 0, 0, 0);

bg = (0, 0, —1, 1, 0, 0). On obtient la matrice suivante :

2 -1 0 0 0 0
-1 2 0 -1 0 -1
0 0 2 0 j+1 O
0 -1 0 2 —j-1 1
0 0 —j 3 2 -1
0 -1 0 1 -1 2

Aprés Z[j]-LLL-réduction, on obtient la matrice suivante,

y) 1 1 —j—1 § —j—1
1 2 —j i1 0
1 j+1 2 - 0 —j—1
¥] 7 Jj+1 2 |

—j—1 —j—1 0  j+1 2 0
j 0 i j4+1 0 2



Exemple 2 : le réseau Kj; en tant que Z[j]-module.

On reprend la méme matrice B et on considére U, une matrice de Glg(Z), de déterminant
1. Puis, on construit la matrice *UBU de Ky;. Ce qui donne la matrice

73 2 — 66 —2j+63 —2j+ 117 —4j+221 55— 279
—~2j — 68 65 —2§ — 62 —2j—112 —4j—212 55+ 268
27 +65  2j—60 60 106 201 —254
27+ 119 25 — 110 106 194 366 463
45 + 225 45 — 208 201 366 692 —874

~5j — 284 —Bj+263  —254 —463 —874 1106

A la fin du programme, on obtient la matrice

2 —3—1 j g 1 —7-1
J 2 -5 -i-1 J 0
—-j—1 3+1 2 —j w1 0
—3—1 j j+1 2 - 0
1 —7—1 i i+1 2 0
7 0 0 0 0 2

On peut remarquer que les termes diagonaux sont tous égaux a 2.

Remarques : Dans les deux exemples précédents, on a donné & la constante Cs, les
valeurs 0.75, 0.8, 0.85, 0.9, 0.95, 0.99. Dans le premier exemple, lorsque la constante
est > 0.8, on obtient dans chaque cas, la méme matrice. Pour chacune de ces valeurs,
les matrices obtenues ont une diagonale de 2. Dans le deuxiéme exemple, on obtient les
mémes matrices pour 0.8 et 0.85 et pour Cy > 0.9, mais une matrice différente lorsque
Cy = 0.75. La aussi, toutes les matrices ont une diagonale de 2.

Exemple 3 : le réseau BW35 en tant 9M-module, dans une base de vecteurs
minimaux.

On a pris comme 9M-base : by = (1, 1, 1, 1); by = (0, 144, 1+¢, 0); bs = (1+1, 144, 0, 0) ;
by = (2, 0, 0, 0).

La matrice des produits hermitiens, aprés division par 2, est la suivante,

2 1—¢ 1—z¢ 1
1+ 2 1 0
141 1 2 141

1 0 1—1 2
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Aprés 9M-réduction, on obtient

2 -1+¢ —-14:¢ —1
) 2 1 7
—1-—-3 1 2 4

-1 1 —1 2

Exemple 4 : le réseau de Leech en tant que M-module.

On considére la M-base : by = (1, 1, 1, 1, 0, 1, 1 +2w); by = (0, 1 +14, 0,—1+ 4, 1+
t —144) 5 b3 =(0, 0, 1+, —1+j, ~1+34, 14+4); by=(0, 0, 0, 2, 0, —2) ;
bs=(0, 0, 0, 0, 2, —=2) ; bg = (0, 0, 0, 0, 0, 2 + 2).

Elle correspond & la matrice des produits hermitiens, aprés division par 2,

4 —2wl—17-2j+2w —2w —2w3—1i—27+ 4w

2+ w 4 0 0 2+4i—j 2w

~144¢+ 25— 2w 0 4 ~2—t4+3-2~04] 2
2 + 2w 0 —24i—j 4 2 ~2 + 20
242w2—1+43 —~241i—3 2 4 —2 42

-1 +14+2f — 4w ~2 — 2w 2 -2-2r -2-2 4

Le programme sort comme matrice des produits hermitiens,

4 1—2425 —1+2+52~i43 21427 —1+43i— 2w
1+2—-25 4 2—1—74 2w 02—20—-25 + 4w —f ]
~1—-2t~3 1+ 7~ 2w 4 -2 - 2w 2~1—33—1—27+ 2w
24+i~—j 0 2w 4 2+ 2w —24 2
21— 25 24214+ 25 — dw 24+i47 ~2w 4 1—354 2w
1—3i+ 2w i+ ldi42f — 2w ~2 -2 —1+7-2w 4

Exemple 5 : les réseaux de Ch. Bachoc sur ’ordre de Hurwitz en dimensions
32, 40, 48.

On notera ces réseaux BCsz, BCyg et BCyg (ils sont construits & partir de codes (B 1] et
[B 2{). Pour ces réseaux , qui au départ ne sont pas dans une base de vecteurs minimaux,
on a appliqué la M-LLL-réduction. Ensuite, on a permuté les vecteurs de la base réduite
afin de classer la diagonale (qui correspond aux normes hermitiennes des vecteurs) par
ordre croissant et on a réduit la matrice ainsi obtenue. Enfin, on a recommencé les deux
opérations précédentes jusqu’d ce que I'on “tombe sur” une base de vecteurs minimaux
{que P'on obtient aprés une itération pour BCjq, deux pour BCyy et trois pour BCys,
lorsque la constante dans la condition de Lovész est 0.85).
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Les deux matrices suivantes sont les bases des réseaux BCjsy (resp. BCyp). Les vecteurs
sont donnés en colonnes et la partie supérieure de chacune de ces matrices est formée de

0.
( 1—1
1—1 2
1—1 0 2
I—14 2 2 2+ 2
1—1 2 - 2t + 2w 2w 0
1—1 2 4 2w 2t — 2w 2+ 23
-1+ 2422w 20—2w 2-+2j
w1l 41— 4w 67 — 2w 22w 242
1
1 0 1+
1 —1+7 1+
1 g —F 141 28
1 0 141 0 2
1 0 ~14+34 26 26 2—2i—2)+ 2w
1 144 1+4 28 29 21
1 =143 —1437 2 2i %
1 —i—3 —i—3 0 2 2
1+ 2w 0 —i—7 0 27 —-242j-2w

Voici les 12 vecteurs de 9i-base de BCyg :
by=(1,1,1,1,1,1,1,1, 1, 1, 1, =1 + 25 — 4w),
~1+4, 1+4, =143, 0, 1+14, 0, =1+ 3, 141, =14 j),

by = (0, 1+1, 0,
by = (0, 0, 11,
by = (2, 0, 0, 0,

bs = (0, 0, 0, 2i,
bs = (0, 0, 0, 0,
b7 = (0, 0, 0, 0,
bs = (0, 0, 0, 0,
by = (0, 0, 0, 0,
bio = (0, 0, 0, 0
bllm(e 0 0,0
bz = (0, 0, 0, 0

On donne seulement la diagonale des produits hermitiens, aprés division par 4 (resp. 2)
pour BCsq et BCyo (resp. BCyg) et avant 9M-LLL-réduction, [6, 12, 8, 8, 8, 8, 8, §]
(resp. [3, 3, 4, 4, 6, 5, 3, 4, 4, 4], {10, 8, 8, 12, 8, 8, &, 8, 8, 8, 8, 8]). Le tableau

"'"1+j,

2422

242 4

2421 0 4

2421 -4 -4 4-[—41:/
21

—242]—2w —-2+ 21

2—2—27+ 2w 0
0 —2+ 2

—1+44, 144 0,0, 144 —14+7, =147, 141),

0,0, 14+3i, 144, 1+4, 1+4, 1+, 1+1),

0, 2, 0, 0, 0, 2i, 0, 2i),

, 28, 0, 2—2i— 25 + 2w, 2i, 2 21— 2j + 2w),

— 27 + 2w, 2),

2t, 21, 0, 0, 0, 0, 2i, 27),

0, 0, 0, 2%

0,0,0, 0,2, 2—2—2j+2w, 2—2
0, —242i, 0, 0, 0, 0, 0, —2 + 23),

. 0,0,0,0,0, —2+2i, 0, —2+2),
,0,0,0,0 0, 0, —2+2, —2+24),
,0,0,0,0,0, 0, 0,4).

suivant contient les diagonales des produits hermitiens aprés chaque itération.

-2+
-2+ 2

y



BCj3 BCyy BCys
6,6, 6, 6,6,6,6, 6] |[3 3 3, 3,3, 3, 3,34, 4|5, 8 8 8, 8, 8 8,8, 8 8, 12, 12]
[3,3,3 3,3 33,3 3 3]|[8 8 88 8,8 8, 8, 8, 8 12, 12]
8,8, 8,8 8 8 8 8, 8, 8, 8, §

Remarques : Pour les trois réseaux de Ch. Bachoc, on a appliqué le procédé précédent
a lalgorithme LLL sur Z. On trouve une base de vecteurs minimaux de BCy, au bout
de quatre itérations, mais pas pour BCyg, ni pour BC4s. Lorsqu’on ne fait qu'une seule
IN-LLL-réduction, les calculs sont beaucoup plus rapides que dans le cas de la Z-LLL-
réduction.

On a mis accent au début de cette partie, sur le fait que pour tout quaternion y, il n’existe
pas qu'un seul entier de Hurwitz, z, tel que Nrd(y — z) soit la plus petite possible. Le
programme prend le premier z qu'il trouve. Cela semble avoir beaucoup d’importance
car pour les trois réseaux précédents, on ne trouve pas forcément une base de vecteurs
minimaux (il faut modifier la constante C, dans la condition de Lovdsz).
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Chapitre 4

A propos des minima successifs.

Ce chapitre traite d’une forme de réduction de bases de réseaux. Nous donnons un
algorithme de recherche des minima successifs et 'appliquons aux anneaux d’entiers de
corps de nombres de degrés 3, 4, 5, 7, 11 et 13.

4.1 GENERALITES.

Définition.
Soit A un réseau. Les minima successifs de A sont les n nombres réels my, mg, ..., My,
tels que pour 1 < r < n, m, est la borne inférieure des nombres réels A tels qu’il existe
r vecteurs indépendants de norme inférieure ou égale & A.

Le premier minimum m, est égal & la norme minimale du réseau. Un systéme de vecteurs
de normes les minima successifs n’est pas unique. Le theoreme de Minkowski donne une
majoration du produit des minima successifs.

Théoréme (Minkowski).
Les minima successifs d’un réseau A de dimension n vérifient, pour tout r < n, I'inégalité
mimag ... my < 4% det(A)% ot v, est la constante d’Hermite en dimension n et det(A)
le déterminant du réseau A.

Grace a ce théoréme et a l'inégalité de Hadamard, on en déduit le corollaire suivant :

Corollaire,
L’indice d’un sous-réseau engendré par des vecteurs réalisant les minima successifs d’un
n

réseau A est majoré par . .

Preuve.

Soient A un réseau et A’ le sous-réseau engendré par des vecteurs réalisant les minima
successifs my, mg, ..., My.

L'inégalité de Hadamard nous donne det(A’) < myma...m, et celle du théoréme de

Minkowski, det(A) > mimg...m,v,". On obtient donc % < vp. Comme le carré
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de l'indice [A : A’} du réseau A’ dans A est égal au quotient %%té(%%, on a bien 'inégalité
annoncée dans le corollaire. [ |

La constante d’Hermite en dimension 3, v, est strictement inférieure & 2. Ceci permet de
dire qu'un réseau de dimension 3 posseéde toujours une base formée de vecteurs réalisant
les minima successifs. En dimension 4, la constante d’Hermite vaut 2 et est réalisée par le
réseau de racines IDy. L’indice du réseau engendré par des vecteurs réalisant les minima
successifs vaut donc 1 sauf peut-étre si le réseau est isométrique & Dy. En dimension 5,
indice est majoré par 2, un systéme de vecteurs de normes les minima successifs n’est pas
nécessairement une base du réseau. L’indice est 2 dans le cas du réseau cubique centré
Ds. Pour les dimensions supérieures, la majoration de Pindice croit assez vite. On trouve
4 pour la dimension n = 6, 8 pour n = 7 et 16 pour n = 8. On voit donc que trouver
une base de vecteurs réalisant les minima successifs est en général limité aux dimensions
n < 4. Par conséquent, on doit chercher d’autres formes de réduction de bases comme par
exemple la LLL-réduction.

Description de P’algorithme de recherche de vecteurs réalisant les minima suc-
cessifs.

Donnée : une matrice de Gram dun réseau A entier de dimension n.

Sortie : une matrice de Gram du réseau A’ engendré par un systéme de vecteurs réalisant
les minima successifs de A et la matrice de passage de A & A’.

On notera (m;)1<i<n les minima successifs.

En pratique, on commence par remplacer la matrice de Gram donnée par une réduite LLIL,
et on reviendra en fin d’algorithme & la matrice de départ.

e k=1,
e Chercher un vecteur minimal vy du réseau L.
e Tant que k < n
Etape 1 : Vérifier que le nombre de vecteurs de norme my, est supérieur ou égal &
k.
Si oul, prendre un vecteur viyy de norme my,
vérifier que les vecteurs vy, va, ..., vy sont linéairement indépendants.
S’ils sont dépendants, choisir un autre vecteur de norme my, et faire cela
jusqu’a ce que l'on en trouve un tel que v1, va, ..., Vgy; soient linéairement
indépendants.
Sinon, incrémenter my de 1 et revenir & I’étape 1.

Etape 2 : Si tous les vecteurs vg4.1 de norme my, sont tels que le systéme {v1, va, «ry
Uk41} est linéairement dépendant, incrémenter my, de 1 et revenir & 1'étape 1.
Sinon, stocker vgi1, poser my,1 = my, et incrémenter & de 1.

¢ Construire la matrice de Gram du réseau engendré par les vy.
Cet algorithme est basé sur la recherche de vecteurs de normes données et en particulier

de norme minimale. Lorsque le réseau n’est pas entier, on travaille avec les nombres réels
et on n'obtient qu’une approximation des normes. En 1982, dans [LLL], A.K. Lenstra,



H.W. Lenstra, Jr et L. Lovész exhibent un algorithme, qui sera appelé algorithme LLL,
polynomial en temps, qui permet de trouver des vecteurs de normes assez petites et tres
souvent de norme minimale. La recherche des minima successifs peut &ére considérée
comme une application de 'algorithme LLL.

Nous avons implanté P’algorithme des minima successifs afin de chercher des “bases plus
agréables” des anneaux d’entiers de corps de nombres. Les matrices de Gram sont entiéres
et par conséquent tous les calculs sont exacts. L’expression “base plus agréable” signifie
ici base composée de vecteurs de normes plus petites que celles de départ.

4.2 APPLICATIONS AUX BASES D’ENTIERS DE CORPS DE NOMBRES.

Nous allons maintenant examiner le cas des réseaux formés par les anneaux d’entiers des
corps de nombres totalement réels de degrés 3, 4, 5, 7, 11 et 13. Il est & noter que
pour tout automorphisme o d’un corps K = Q(6), si 0 représente un minimum m;, o(9)
représente le méme minimum. On pourra ainsi réaliser les minima 7n;, M1, ... par un
certain nombre de relations de dépendance liant les conjugués de 8 et les représentants des
minima précédents.

On considére un corps de nombres K, de degré n, de signature (ry, 2} (r1 + 2r2 = n).
On note oq,...,0, les n plongements de K dans C, indexés de fagon que oy soit réel
pour 1 < k < ry et que Oy, 4rpt+k S0it le conjugué complexe de oy, 4 pour 1 < k < 7o,
On plonge K dans la R-algébre C*, que I'on munit du produit scalaire C-hermitien défini

n
positif z.2' = 3 op(2)dr(2’).
k=1

Proposition.
On a my = n, et ce premier minimum est atteint exactement sur les racines de I 'unité
de K.

Preuve
On a en effet les deux inégalités

T

S ou0)an®))
k=l Hak(ﬂ O'k 9) NK/Q(9)2 > 1

[

et I’égalité a lieu si et seulement si les |o;(8)]* sont tous égaux et de produit égal & 1. Ces
conditions entrainent que les conjugués de @ sont tous de module 1, et donc, par le lemme
de Kronecker, que 8 est une racine de I'unité.

Réciproquement, il est clair que les racines de 1'unité sont des vecteurs dont la longueur
est de carré n. [ |

Ainsi, dans le cas des corps cycliques de degré ! premier, les minima successifs sont
représentés par 1, puis par [ — 1 conjugués d’un représentant de ms.
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4.2.1 Les corps cubiques.

Soit K un corps cubique cyclique. On peut trouver un entier algébrique 8 tel que K = Q(0).
On notera P(X) = X°-SX?4+TX ~ N, le polynéme minimal de . Comme K est galoisien,
il est totalement reel On notera G = Gal(K/Q) =< ¢ >z Z/3Z, son groupe de Galois.
On considére ¢ = exp (&™) une racine cubique de 'unité. Ce n’est pas un élément de K
car K est totalement réel. Le corps K(() est de degré 6 sur Q, galoisien, de groupe de
Galois engendré par le prolongement de o en o(¢) = ¢ (noté encore o) et la conjugaison
complexe 7.

On a le lemme suivant :
Lemme 1. .
Soient v = 0 + (?0(6) + (o?(6) et B = oy (v, BE K(Q)).
Alors P(X) = X* - SX? + Sza"eX — 33_3237‘3""3“ otte=p01(f) et u=PF+7(0) (ie. eet

u sont la norme et la trace de B considéré comme élément de Q((¢)).

Par la théorie de Galois, on montre que § est un élément de Q(¢). Il peut done s’écrire

ubwy/—3
2

sous la forme ol u et v sont deux rationnels. D)’aprés le lemme précédent, on a

e = u?4-3v°
- _u:tw_4 .
Le lemme suivant donne une forme bien pratique du polynéme P.

Lemme 2.
Pour tout corps cubique cyclique K, il existe une unique paire d’entiers (e, u) tels que
e est un produit de nombres premiers distincts congrus & 1 modulo 3 u est congru a2
modulo 3 et K = 0') ot ¢ est une racine du polynéme Q(X) = §X — 5% de
Z[X] ou de maniére équivalente K = Q(6) ot § est une racine du polynome
P(X)=27Q(X/3)= X% — 3eX — eu.

Le lemme 3 va nous donner une base d’entiers et le discriminant du corps K.

Lemme 3.
Soit K = Q(0) un corps cubique cyclique ou1 @ est racine du polynéme P(X) = X3 —
3eX —eu, e = i——— avec u = 2 (mod 3) et e est un produit de nombres premiers
distincts congrus & 1 modulo 3.
a) Supposons 3{v. Alors (1, 8, o(0)) et (1, 8, a%()) sont des bases d’entiers de K et
le discriminant di de K est (9e)?.
b} Supposons 3 | v. On pose &/ = 2. Alors (1, 0/, o(0')) et (1, 6, 0%(8')) sont des
bases d’entiers de K et le discriminant dg de K est e2.
De telles bases sont dites normales.
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A partir de ces lemmes, on obtient le théoréme suivant :

Théoréme 1.
Tout corps cubique cyclique K est donné (& isomorphisme prés) par
1) si 3 est ramifié dans K, alors K = (6) ot 8 est racine du polynéme & coefficients

entiers, P(X) = X% — £X — & avec e = ﬁ:l:iz’ﬁﬁ, u=6(mod9),3tv, v >0,
u = v (mod 2) et § est un produit de nombres premiers distincts congrus 4 1 modulo 3.

2) Si 3 n’est pas ramifié dans K, alors K = Q{8) o1 8 est racine du polynéme de Z[X],
P(X)=X%-X?4 158X - 1=8ctet svece = yfif—ﬁ’—z,u52 (mod 3), v > 0,

u = v (mod 2) et e est un produit de nombres premiers distincts congrus & 1 modulo 3.
Dans les deux cas, le discriminant de P, disc(P) est e*v? et celui du corps K, dg = €?.
3) Inversement, si e est égal & 9 multiplié par un produit de (t — 1) nombres premiers
distincets congrus & 1 modulo 3 (resp. e est un produit de t nombres premiers distincts
congrus & 1 modulo 3) alors il existe, & isomorphisme prés, exactement 2°~} corps
cubiques cycliques de discriminants e? définis par un polynéme donné dans 1) (resp.

2)).

On pourra trouver une démonstration des trois lemmes ainsi que du théoréme dans [Co].

Nous avons cherché les minima successifs des corps cubiques K totalement réels accessibles
par ftp sur megrez.math.u-bordeaux.fr (147.210.16.17). Nous avons utilisé la table des
112 444 corps de nombres de discriminant inférieur ou égal a 2 000 000, construite par
M. Olivier. On s’est plus particuliérement intéressé aux corps cycliques. On associe le
produit scalaire {(z, y) = Y. o(x)o(y) = Trggzy) au corps K.
cE€Gal(K/Q)

Muni de ce produit scalaire, ’anneau des entiers Zg est un réseau. Comme K est to-
talement réel, Zy, en tant que réseau, est entier. On a traité le cas des corps réels car
on a employé la fonction minim du systéme PARI, pour chercher des vecteurs de normes
données. Cette derniére utilise la version avec des calculs entiers de 'algorithme LLL.

On a obtenu le résultat suivant :

Théoréme 2.
Soit K = Q(6) un corps cubique cyclique. On peut trouver une base d'entiers formée
du “vecteur” 1 réalisant le premier minimum et de deux vecteurs conjugués, réalisant
le deuxiéme, ces deux vecteurs étant définis par les polynémes qui interviennent dans le
théoréme 1.

Preuve.

On utilise les notations du théoréme 1 et des lemmes précédents. D’aprés le lemme 3, tout
élément de 'anneau d’entiers Z g peut s’écrire sous la forme a + b8 + co(0) ot @, b, ¢ sont
des entiers et o un générateur de Gal( K/Q).
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a) Cas olt 3 est ramifié dans K.
Le polynéme minimal de ¢ est de la forme P(X) = X? — 3eX — eu. La trace Trg/0(8)
est nulle et celle de 6% vaut 6e. 1l s’agit de trouver les minima successifs de la forme
quadratique Trxg(z?). On pose f(a, b, ¢) = Trg/g((a + b8 + ca(8))?).
On a f(a, b, ¢) = Trg g(a® + b20% + c20(0) + 2abl + 2acc(0) + 2bcho(6)),

= 3a? + 6b%¢ + 6c%e — 6Gebe,

= 3a® 4 6e[(b — £)? + 2¢7).
Comme e est strictement positif, on a f(a, b, ¢) > 3a® > 3 si a # 0 avec I’égalité si
a=:=x 1.

Si a est nul, la quantité 6e((b— £)? + g—cz) ne peut pas étre strictement inférieure a 3 sauf
st b et ¢ sont nuls.

Le premier minimum vaut donc 3 et est réalisé par les “vecteurs” =& 1.
Cherchons maintenant le deuxiéme minimum.

Supposons que a ne soit pas nul. On a f(a, b, ¢) > 3a® > 3. 1l faut chercher le minimum
de la forme g(b, ¢) = 6e[(b— £)? + 3c2).
Si ¢ est nul, g(b, 0) > 6eb? et b ne peut pas étre nul (car on cherche le deuxiéme minimum).
Donc g(b, 0) > 6e avec 'égalité si b = +1.
St ¢ est non nul et b est nul, g(0, ¢) > 6e avec Pégalité si ¢ = +1.
51 b et ¢ sont non nuls, deux cas se présentent :

e b £ et alors g(b, ¢) > 6e(; + 3c?) > 6e avec Iégalité si c = b = 1.

o b= et alors g(§, ¢) > Zec?. Mais dans ce cas, ¢ est pair et | ¢ |> 2, donc

g(%, ¢) > 18e. '

Dans tous les cas, g(b, ¢) > 6e et donc f(a, b, ¢) > 3 + 6e.
Si on suppose a nul, f(0, b, c) > 6e.
Par conséquent, le deuxieme minimum est 6e et il est atteint lorsque (a = ¢ = 0 et b = +1)
oua=b=0etc==xl)ou(a=0etb=c=+1), Il est réalisé par les six “vecteurs”
6, +o(8), £(8+ o(8)) = Fa(8).
Comme (1, 0, o(6)) est une base d’entiers, c’est aussi une base de vecteurs réalisant les
deux premiers minima.

b) Cas ot 3 n’est pas ramifié dans K.
Le polyndme minimal de 6 est de la forme P(X) = X® — X* 4 1ze X . 1=deten [, grace
de 0 vaut 1 et celle de 62 vaut 24t et est supérieure ou égale 4 5.
On a f(a, b, ¢) = Trg g((a + b0 + ca(6))?),
= 3a® 4 b?2ekl 4 (2224l 4 9gp + 2be + 2bel3E.
OnposeEzz—‘zgtLES.

Alors, f(a, b, ¢) = 3(a+ Y42)2 4 (E - H[(b~ &) + 3.
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Cherchons le premier minimum.

On a f(a, b, ¢) > 3(a+ 2E2)2 Sib=c=0, f(a, 0, 0) > 3a® > 3 si a n'est pas nul et
I’égalité a lieu lorsque a vaut 1.

Sib=0etc#0
e sia= 3 alors f(5%, 0, ¢) = (£ —3)c® > ¥ >3,
e sia# 32 alors fla, 0, ¢) >3+ (F— $)? > 3.
On obtient les mémes résultats si on suppose ¢ = 0 et b # 0.
La quantité (E — $)[(b — £)? + 3c?] est toujours supérieure & 3 sauf si b= ¢ = 0.

Le premier minimurm vaut 3 et est atteint par les “vecteurs” +1.

On cherche maintenant le deuxiéme minimum. Pour cela, on suppose d’abord que a est
nul.

Sic=0, f(0, b, 0) = Eb* > E avec I'égalité si b = £1 (car b ne peut pas étre nul).
Sic#0etb=0, f(0, 0, c) = Ec? > FE avec I'égalité si ¢ = +1.
Si b et c sont non nuls et si b= §, f(0, &, ¢) = 2c® + Ec* > E car c est pair et | ¢ {> 2.
Si b et c sont non nuls et si b # £, f(0, b, ¢) > 2(b+c)? + (E — })(1+ §c?),
esib=—¢, f(0, —¢, ¢) > H(E~3})>E,
esibs —c, f(0, b, ¢)> 1+ HE~3)>E.
Lorsque a = 0, on a f(0, b, ¢) > E.
Supposons maintenant que a ne soit pas nul.
¢ Sib=0, f(a, 0, c) =3(a+ £)*+ (E ~ %—)cz,
¢ doit atre non nul car on cherche le deuxiéme minimum,
esia= 32 f(35, 0, ¢) = (E— 3)c® > 9(E — %) car ¢ divisible par 3,
done f(55, 0, ¢) > E, I
051a¢3,f(a,0 c)> +(E - })c* > E.
On a des résultats analogues si ¢ est nul.

Si b et ¢ sont tous deux non nuls,
esib=3, fla, §, ¢)=3(a+ 2)2+(E $ic%
esia= 3%, f(55 £, 0)=(E—-3 3.2 > 3(E %) car cest pairet | ¢ |> 2,
d’onr f(=5, 5, ¢) > E,

esia# 35 f(a, §, ¢) = 3+ 3Ec® > F car c est pair,

osibs £, fla, b, ) >3(a+ )2+ (B~ $)L + 3%,
esib=—c, f(a, —c, c) > §+E> E,
esib —c, fla, b, ¢} >+ (E — 1) > E avec 'égalité lorsque a = 1,
b=c=—-loua=-1L,b=c=1
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Quelle que soit la valeur de a, le deuxiéme minimum est E et il est atteint lorsque o = ¢ = 0
etb==%1 (ie.en+B)oua=>b=0et c==+1 (le. en +o(f))ona=1,b=c= -1
(ie. en 0?(@)) oua = —1,b=c=1 (i.e. en —o2(4)).

Comme (1, 6, o(8)) est une base d’entiers, c'est aussi une base de vecteurs réalisant les
deux premiers minima. |

Remarque : On peut éviter tout calcul en observant que, étant donné un Z{G]-module
A de rang 1 (avec G = {1, o, ¢*} cyclique d’ordre 3), A/AS est un module de rang 1 sur
Panneau des entiers d’Eisenstein, donc libre, la base étant unique au produit prés par un
élément F07. Un élément 6 de Zx engendrant une base normale et de trace dans [—1, +1]
est donc unique au signe prés et & conjugaison pres, et, comme le second minimum engendre
aussi une base normale, il coincide avec 1'un des +07(8).

4.2.2 Les corps de nombres de degré 4.

Nous avons utilisé la table des 13 073 corps de nombres, de discriminants inférieurs a
1 000 000, totalement réels de degré 4 construite par J. Buchmann, D. Ford, M. Pohst.
Elle est aussi accessible par ftp sur megrez.math.u-bordeaux.fr.

Nous avons calculé ci-dessous dans la limite de la table utilisée tous les minima successifs
pour les corps imprimitifs totalement réels de degré 4. Le type galoisien est Cy = Z/47
ou Cy x Cy = Z/27Z x Z[27Z. On traite aussi le cas diédral D,. Pour chacun, on donne le
plus petit discriminant et les possibilités rencontrées.

L 04.
Premier cas : les deuxiéme, troisi¢me et quatridme vecteurs représentant le deuxidéme

minimum ont un polynéme minimal de degré 4. Ils sont alors nécessairement conjugués.
Le premier corps quartique rencontré a pour discriminant 4 913 = 173,

Deuxiéme cas : le deuxiéme vecteur a un polynéme minimal quadratique et les deux
suivants un polynéme minimal quartique. Ces deux derniers sont conjugués et le premier
corps rencontré a pour diseriminant 1 125 = 32.53,

Troisiéme cas : les deuxiéme, troisiéme et quatriéme vecteurs ont méme longueur, mais
deux d’entre eux ont un polynéme minimal de degré 4 et le troisiéme un polynéme minimal
de degré 2. Comme ce cas est assez rare, on donne la liste par ordre croissant, de tous les
discriminants dg des corps quartiques vérifiant cette propriété, ainsi que le discriminant
du corps quadratique dj défini par le polynéme minimal du troisiéme vecteur représentant
le deuxiéme minimum.

di = 2 048 = 211 et di, = 8,

dg = 256 000 = 211.5% et d), = 40,

dg = 256 000 = 2'1.5% et d}, = 40.

Ces deux derniers corps ne sont pas isomorphes.

L Cg X Cg
Premier cas : les deuxieme et troisiéme vecteurs ont un polynéme minimal quadratique.
Le discriminant du corps défini par le polynéme minimal du deuxidme vecteur est stricte-
ment inférieur au discriminant du corps défini par le polynéme minimal du troisieme. Le
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quatriéme vecteur a un polynéme minimal de degré 4. Le premier corps quartique pour
lequel cette situtation se produit a pour discriminant 1 600 = 2°.5%,

Deuxiéme cas : les deuxiéme et quatridme vecteurs ont un polyndome minimal quadra-
tique. Le discriminant du corps défini par le polynéme minimal du deuxiéme vecteur
est strictement inférieur au discriminant du corps défini par le polynéme minimal du qua-
trieme. Le troisiéme vecteur a un polynéme minimal de degré 4. Le plus petit discriminant
est 2 304 = 28.3%

Troisieme cas : les deuxidme et troisiéme vecteurs ont un polyndéme minimal quartique.
Ils sont conjugués. Le quatriéme vecteur a un polynéme minimal de degré 2. Le premier
corps quartique rencontré a pour discriminant 7 056 = 24.32.72.

Quatriéme cas : les troisiéme et quatriéme vecteurs ont un polyndéme minimal quartique.
Ils sont conjugués. Le deuxiéme vecteur a un polynéme minimal de degré 2. Le premier
corps quartique rencontré a pour discriminant 53 361 = 3%.7%.112,

.D4

Premier cas : le premier vecteur réalisant le deuxiéme minimum a un polyndéme minimal
quadratique et les deux suivants un polynéme minimal quartique. Le plus petit discrimi-
nant est 725 = 52.29.

Deuxiéme cas : les deuxiéme et troisiéme vecteurs ont un polyndéme minimal quartique.

Ils ne sont pas conjugués. Le quatridme vecteur est quadratique. Le plus petit discriminant
est 9 248 = 2°.17%,

Troisiéme cas : les deuxiéme et quatriéme vecteurs ont un polyndéme minimal quartique.
Ils ne sont pas conjugués. Le troisiéme vecteur est quadratique. Le plus petit discriminant
est 4 752 = 24.3%.11.

Quatriéme cas : les deuxidme, troisidme et quatriéme vecteurs ont un polynéme minimal
de degré 4. Ils ne sont pas nécessairement conjugués. Le plus petit discriminant est
4 205 = 5.29%. (Le corps correspondant a la méme cléture galoisienne que celui du premier
cas.) '

4.2.3 Les corps de nombres de degré 5.

Nous avons cherché les minima successifs des 22 740 corps quintiques, de discriminant
inférieur & 20 000 000, de la table construite par F. Diaz y Diaz, M. Pohst, A. Schwarz.
Cette table est disponible sur megrez.math.u-bordeaux.fr. Le résultat le plus étonnant
est le suivant :

Théoréme 3.
Pour les 22 740 anneaux d’entiers des corps quintiques totalement réels de discriminant
inférieur & 20 000 000, les vecteurs réalisant les minima successifs constituent une base
d’entiers.

Théoréme 4.
Soit K un corps galoisien de degré 5, totalement réel, de discriminant d;, < 20 000 000.
On peut trouver, une base d’entiers formée de 1, vecteur réalisant le premier minimum
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et de quatre autres éléments conjugués, réalisant le deuxiéme. Ces vecteurs sont la trace
sur K d'une racine de I'unité d’ordre f minimum tel que K soit un sous-corps de Q(( f).
Le discriminant de K, dg vaut f4.

Preuve.

1l existe seulement 5 corps quintiques K = () cycliques galoisiens totalement réels de
discriminant inférieur & 20 000 000. Pour chacun d’eux, on donne le discriminant de X ,
une base d’entiers, les conjugués de 6 sous l'action du groupe de Galois G = Gal(K /Q) =
< o > Z/5Z donnés dans Pordre 8, o(0), o2(0), o3(8), o*(8), la matrice de Gram
des éléments de la base d’entiers, la matrice de passage de la base de départ 3 la base
des vecteurs réalisant les minima successifs, la matrice des produits scalaires des vecteurs
réalisant les minima successifs, 'expression des vecteurs réalisant le deuxiéme minimum
en fonction des conjugués de 8, le polynéme minimal d’un vecteur réalisant le deuxiéme
minimum et une valeur de 8.

o Corps 1 : dg = 114,
base d’entiers : [1, 8, 82, 6%, 64,

conjugués de 8 : [0, 83 — 30, —6% 4 2, —0% 4 462 — 2, 0% — 6% — 362 + 20 + 1],

5 1 9 4 25
i 9 4 25 16
matricede Gram: | 9 4 25 16 78 |,

4 25 16 78 64
25 16 T8 64 257

1 2 1 0 -2
0 0 2 -3 O
matrice de passage: | 0 ~4 -3 0 1],
0O 0 -1 1 0
0 1 1 0 0
5 -1 1 1 -1
-1 9 2 2 -2
matrice de Gram des minima successifs : 1 2 9 -2 21,

-1 -2 2 2 9

expression des vecteurs réalisant le deuxiéme minimum en fonction des conjugués de 8 :
2—4074+0* = —03(6), 1420362 —0° 4 0* = 0(8), —30+6°% = 0(6), —2+62 = ~a%(86),

polyndéme minimal d’un vecteur réalisant le deuxiéme minimum : #° —2*—4z%+ 322+ 3z —1,

on peut prendre 8 = —2cos(2%).
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e Corps 2 : dg = 25%,
base d’entiers : [1, 0, 02, 63, 1/76* — 3/76% —1/78% - 2/70 + 2/7],

conjugués de 8 : [6, —1/70%+3/76° +8/70%-19/70—9/7, 3/76* —2/70%—24/76% —6/70+
6/7, 2/76% 4 1/76° — 23/70% — 18/70 + 25/7, —4/70* — 2/70° + 39/70% + 36/70 — 22/7],

5 0 20 15 15

0 20 15 160 —40
matrice de Gram : | 20 15 160 255 80 ,

15 160 255 1475 —250

15 ~40 80 —250 175

1 2 0 3 1

0 -4 0 -2 3
matrice de passage: { 0 -5 -3 -3 -1,

0 2 1 1 0

0 4 3 2 1

5 0 0 0 0

0 20 o 5 =5
matrice de Gram des minima successifs : | 0 5 20 -5 &5 [,

0 5 -5 20 5

0 -5 5 h 20

expression des vecteurs réalisant le deuxiéme minimum en fonction des conjugués de @ :
2 — 40 — 502 + 26°% + 4(1/70% — 3/76% — 1/76% - 2/78 + 2/T) = —o*(6),

—30% + 6% + 3(1/70% — 3/70% — 1/76% — 2/70 + 2/7) = o%(6),
3—20—302+6%42(1/76* - 3/76° — 1/76% - 2/70 + 2/7) = 3(8),
14+36—0%41/76* —3/76% ~ 1/76% — 2/70 + 2/7 = —0o(0),

polynéme minimal d’un vecteur réalisant le deuxiéme minimum : z* — 102® — 522 + 10z — 1,

on peut prendre § = —2(cos(2X) + cos(1:x)).

o Corps 3 : dy = 314,
base d’entiers : {1, 8, 02, 63, 1/50* + 2/50% — 1/56% — 2/50],

conjugués de 8 : [, 2/50% — 1/56% — 22/50% + 31/50, —1/56* — 2/50° + 6/56 4 2/50 +
2, 2/56% 4+ 4/56% — 17/560% — 14/50 + 2, —3/50* — 1/56°% + 33/56% — 24/56 — 3],

5 1 25 —26 34
1 25 26 249 18
matrice de Gram : 25 26 249 564 325 |,
26 249 —564 2950 586
34 —18 3256 —hB&6 442
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1 ¢ -3 2 -2

0 -7 -6 -2 0
matrice de passage : | 0 4 6 -3 11,

0 1 1 0 0

0 -2 -3 2 1

5 -1 1 1 -1
-1 25 6 6 -6
matrice de Gram des minima successifs : 1 6 25 -6 6 |,
1 6 -6 25 6
-1 —6 6 6 25

expression des vecteurs réalisant le deuxi®éme minimum en fonction des conjugués de @ :
~T0 + 467 4 03 — 2(1/50% + 2/56° — 1/50% — 2/50) = —o(8),

—3 — 60 + 66% + 6° — 3(1/56 + 2/50° — 1/56% — 2/50) = (8),

2 — 26 — 36% 4 2(1/50* + 2/50° — 1/56% — 2/50) = o3(8),

—2— 6% +1/56% + 2/50% - 1/56% — 2/50 = —g2(6),

polynéme minimal d'un vecteur réalisant le deuxiéme minimum : £°—g*—12234212% +2—5,
on peut prendre § = —2(cos(3T) + cos(102) + cos(121)).

o Corps 4 : dg = 414,
base d'entiers : [1, 6, 6%, 1/30° —1/30, 1/96* — 1/96° — 1/96% — 5/90 — 1/3],

conjugués de 6 : [0, ~1/96% +4/96° + 10/96% — 34/96 — 2/3, —1/90* +1/96° + 19/96% —
4/90—11/3, 4/90*—7/96%—58/96 +19/90+20/3, 2/96%+2/90%4-29/96% +10/96 —4/3],

5 1 33 21 44

1 33 64 160 99
matrice de Gram : | 33 64 513 524 766 |,

21 160 524 941 808

44 99 766 808 1158

i 8 2 4 1
0 4 0 1 4
matrice de passage: | 0 —6 -3 -2 —1 |,
0 -1 0O 0 -1
0 4 2 1 1
5 1 -1 -1 -1
1 3 8 8 8
maftrice de Gram des minima successifs ; | —1 33 -8 -8,

8
-1 8 -8 33 -8
8
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expression des vecteurs réalisant le deuxi®me minimum en fonction des conjugués de 0 :
8 + 460 — 66% — (1/36% — 1/30) + 4(1/90% — 1/96° — 1/96% — 5/96 — 1/3) = o3(0),

2 — 362 4+ 2(1/96% — 1/96% — 1/96% — 5/90 — 1/3) = —o*(8),

4460 —20% 4+ 1/90% — 1/96% — 1/96% — 5/90 — 1/3 = —0*(6),

1+ 40 — 0% — (1/36% — 1/36) + 1/90* — 1/96 — 1/96% — 5/90 — 1/3 = —a(0),

polynéme minimal d'un vecteur réalisant le deuxiéme minimum : z° — z* — 16z% — 5z% +
Nz + 9,

on peut prendre 8 = —2(cos(2Z) + cos(SE) + cos( 15T ) + cos(FF)).
o Corps 5 : dg = 614,
base d’entiers : [1, 0, 02, 6%, 1/290* — 12/290° — 8/296% — 11/296 — 12/29),

conjugués de 6 : [6, 25/290%—39/296% —577/296%+740/2960+599/29, —11/290*+16/296%+
262/296% —314/290 — 332/29, —8/296*+9/296°+180/296% —173/296—136/29, —6/290* +
14/290% + 135/296% — 282/296 — 102/29], _

5 1 49 22 10

1 49 22 1017 —425
matrice de Gram : | 49 22 1017 606 220 |,

22 1017 606 22618 9289

10 -425 220 —9289 4046

1 -16 -31 8 -6
0 -15 -3 9 12
matrice de passage : § 0 6 13 -4 3 |,
0o -4 -9 3 -2
0 -11 -25 8 —6
5 1 -1 -1 1
1 49 12 12 —12
matrice de Gram des minima successifs : | —1 12 49 12 12 |1,

~1 12 =12 49 12
1 —-12 12 12 49

expression des vecteurs réalisant le deuxiéme minimum en fonction des conjugués de 8 :
—16 — 150 + 602 — 46° — 11(1/296* — 12/296° — 8/296% — 11/296 — 12/29) = o*(8),
~31 — 350 + 136% — 963 — 25(1/290% — 12/296° — 8/296% — 11/296 — 12/29) = —o(0),

8 4 90 — 402 + 303 + 8(1/290* — 12/296% — 8/296% — 11/296 — 12/29) = —a°(8),

6 — 120 + 30% — 263 — 6(1/290% — 12/296°% — 8/2962 — 11/296 — 12/29) = *(9),

polynéme minimal d'un vecteur réalisant le deuxiéme minimum : ° —g* — 242® + 172% +
41z + 13,
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on peut prendre § = 2(cos(5T) + cos(22L) + cos( L) + cos( 2T ) + cos( 225 ) + cos( X)), m

4.2.4 Les corps de nombres de degré supérieur ou égal a 5.
Nous énongons la conjecture suivante :

Conjecture (J. Martinet).
Soit K un corps cyclique de degré premier ! > 5 et de conducteur f (le plus petit entier
tel que K soit un sous-corps du corps Q{¢), ot { est une racine d’ordre f de 1 ‘unité).
Soit § = Trgyey /i (¢). Alors, 0 et ses conjugués représentent les minima d’indice > 1 de

L.

Afin de tester cette conjecture, nous avons calculé des polynémes correspondant & des
corps quintiques totalement réels cycliques de discriminant f* pour f < 2 000. Ce dernier
est soit un produit de nombres premiers distincts deux & deux, congrus & 1 modulo 5,
soit 25 multiplié par un produit de nombres premiers distincts deux & deux, congrus & 1
modulo 5. On a ainsi trouvé 132 corps deux & deux non isomorphes et pour chacun d’eux
la conjecture s’est révélée vraie.

Nous avons aussi cherché des polynémes correspondant 3 des corps de degré 7 totalement
réels cycliques de discriminant f© lorsque f est un produit de nombres premiers distincts
deux a deux, congrus & 1 modulo 7 et f < 1 000. Nous avons obtenu 28 corps deux & deux
non isomorphes. Pour chacun d’eux, 1, 8 et ses conjugués réalisent les minima successifs
et ils forment une base d’entiers.

Nous nous sommes intéressés a des polynémes associés & des corps de degré 11 (resp.
13) totalement réels cycliques de discriminant f1° (resp. f*?) lorsque f est un produit
de nombres premiers congrus & 1 modulo 11 (resp. 13) et f < 1 500 (resp. f < 2 000).
Nous avons ainsi trouvé 22 (resp. 24) corps deux a deux non isomorphes et avons vérifié
que pour chacun d'eux, 1, ¢ et ses conjugués représentent les minima successifs et qu’ils
constituent une base d’entiers.

BIBLIOGRAPHIE

[B] B.C. Berndt and R.J. Evans, The Determination of Gauss Sums, Bull. Amer. Math. Soc. 5 (1981),
167 — 129,

[C] J.W.S. Cassels, Rational Quadratic Forms, Academic Press, London, 1978,

[Co] H. Cohen, A course in computational elgebraic number theory, Springer-Verlag, Graduate Texts in
Mathematics, 1995,

[LLL] A.K. Lenstra, H.W. Lenstra, Jr and L. Lovdsz, Factoring polynomicls with rational coefficients,
Math. Ann, 261 (1982), 515 — 534,



69

[M] J. Martinet, Les réseaus parfaits des espaces euclidiens, livre en préparation.
[Pari] Ch. Batut, D. Bernardi, H. Cohen and M. Olivier, User's Guide to PARI-GP.
[8i] C.L. Siegel, The trace of totally positive and real algebraic integers, Ann Math. 46 (1945), 302 — 312.

[V] B. Vallée, Algorithmique en géométrie des nombres. Applications & la cryptographie et 4 la factori-
sation des entiers, Dossier en vue de P'obtention de 'habilitation & diriger des recherches, 1989.



70



71

Résumé.

Cette thése se compose de quatre parties qui sont toutes consacrées a 'étude des réseaux
euclidiens, et qui plus est sous un aspect résolument algorithmique. Ces quatre chapitres
traitent des questions suivantes : sections de quelques réseaux importants, algorithme de
voisinages de Voronoi, réduction des réseaux par une variante de I'algorithme LLL et enfin
réduction et minima successifs des anneaux d’entiers algébriques.

Abstract.

This thesis contains four sections which are all devoted to the study of euclidean lattices
especially from an algorithmic point of view. These four chapters deal with the following
questions: sections of some important lattices, algorithm of Voromnoi's neighbourhood,
reduction of the lattices with a new version of the LLL algorithm and at last, reduction
and successive minima for the algebraic rings of the integers.

Mots-clés.

Réseaux euclidiens, de Leech, de Ch. Bachoc, de Coxeter, voisinages de Voronoi, LLL-
réduction, algorithme des minima successifs pour les anneaux d’entiers de corps de nom-
bres.






