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Introduction

Cette thése traite de problémes de géométrie des nombres liés aux empilements de
sphéres associés & un réseau euclidien. En particulier, on construit algorithmiquement
des réseaux pour lesquels la densité de cet empilement est un maximum local (réseaux
extrémes) : leur densité ne peut que diminuer sous l'effet d’une déformation assez pe-
tite. Pour étudier ces réseaux, Korkine et Zolotareff introduisent en 1875, en termes de
formes quadratiques, la notion de perfection, plus faible que celle d’extrémalité mais qui a
I’avantage de pouvoir s’exprimer dans le cadre de I'algébre linéaire. Traduite géométrique-
ment, cette notion fait intervenir les vecteurs minimaux du réseau (c’est-a-dire les plus
courts vecteurs non nuls, dont le carré de la norme euclidienne est par définition la norme
du réseau) :

Un réseau est parfait sl perd des vecteurs minimauz dés qu’on le déforme. (La définition
formelle est donnée & la fin de ce chapitre.)

En 1908, Voronoi reprend ’etude des réseaux parfaits. Il prouve que, pour une dimension
n donnée, ils sont en nombre fini & similitude prés. Il introduit, dans l'espace des réseaux,
une relation de contiguité entre réseaux parfaits pour laquelle le graphe est connexe. Il
donne ainsi un algorithme permettant d’obtenir, pour une dimension donnée, toutes les
classes de similitude des réseaux parfaits & partir de I'un d’entre eux (cf. 0.4). C’est autour
de cet algorithme que s’articulent les trois chapitres-de cette thése.

Cet algorithme permet & Voronoi de retrouver les 8 réseaux parfaits de dimensions
inférieures ou égales & 5 (liste établie par Korkine et Zolotareff) et d’amorcer 'étude de
la dimension 6. {Incidemment, Voronoi découvre un réseau parfait non extréme, ce qui le
conduit & introduire la notion d’eutaxie.] En 1957, cette étude est reprise avec succés (et
sans ordinateur) par Barnes ([Barl],/Bar2]).

Implanté sur ordinateur, cet algorithme énumére en quelques heures les réseaux parfaits
jusqu'a la dimension 6. Toutefois, le nombre des réseaux & traiter croit trés rapidement
avec n, et jusqu’a la fin des années 80, la dimension 7 paraissait hors d’atteinte par cette
méthode (bien que plusieurs résultats partiels aient été obtenus par Stacey, Conway et
Sloane, etc.). Pourtant, F'. Sigrist puis D.O. Jaquet reprennent cette méthode, qui permet
4 Jaquet de confirmer en 1990 que la liste des 33 réseaux parfaits de rang 7 établie par
Stacey (par d’autres méthodes) est compléte. Lors de cette recherche, Jaquet a di faire
tourner son programme plus de 100 jours pour obtenir tous les contigus du réseau de
racines Eq.

On peut donc penser que I’énumération compléte des réseaux parfaits de rang 8 par
cette méthode n’aboutirait pas au bout d’un temps raisonnable. Une premiére étape a
toutefois été achevée par Jaquet, qui a déterminé les 48 contigus du résean de racines Dy
(ainsi que les 226 contigus du réseau Dy ([Jaql], 1992)).

Afin de pouvoir prétendre traiter de fagon analogue des dimensions supérieures, on est
donc amené a restreindre I’étude & certaines familles affines de réseaux a priori intéressants



du point de vue de la densité, ou des symétries, ou de la dualité... et pour lesquelles on
puisse utiliser un algorithme se déroulant dans un sous-espace de dimension raisonnable
de I’espace des réseaux.

Un premiére idée consiste & définir une méthode de récurrence a partir de réscaux
de dimensions inférieures connus. Systématisant la méthode d’eztension introduite par
Barnes ([Bar3]), on peut par exemple imposer aux réseaux une section hyperplane donnée
de méme norme. Cette méthode, mise au point par M. Laihem ([Lai], 1992) lui a permis
d’obtenir, par un algorithme se développant dans un espace 7 de dimension 8, la liste
des 1171 réseaux parfaits de rang 8 construits & partir des 30 réseaux parfaits de rang 7
différents de A7, D, B ; il a aussi proposé une liste vraisemblable de 4 extensions parfaites
pour ces trois réseaux. Pour ce dernier cas, la difficulté résidait dans I'énumération des
contigus du réseau de racines .

Dans le premier chapitre de cette thése, nous reprenons cette étude en perfectionnant
lalgorithme pour réduire le temps d'exécution des programmes. Cela nous permet de
confirmer qu'il n’y a que 4 réseaux parfaits de dimension 8 au-dessus des trois réseaux
de racines de dimension 7. On construit aussi les extensions de réseaux classiques denses
dans des dimensions supérieures (9, 10, 11). On obtient ainsi des réseaux (pour la plupart
nouveaux) intéressants du point de vue de I'empilement de sphéres associé.

Cette sélection de réseaux & section hyperplane parfaite élimine sans doute beaucoup
de réseaux : alors que jusqu’a la dimension 6 presque tous les réseaux sont susceptibles
d’une telle définition, seulement 15 des 33 réseaux parfaits de dimension 7 ont une section
hyperplane parfaite ; et d’ailleurs H. Napias vient de construire, en dimension 8, par
contiguité & partir des réseaux les moins denses de la liste de Laihem, plus de cing mille
réseaux parfaits sans section hyperplane parfaite!

C’est pourquoi, dans le second chapitre de cette thése, nous utilisons un autre procédé
de recurrence. On restreint I’étude de la densité & une famille F de réseaux en patchwork,
Clest-a-dire sommes directes de réseaux de méme norme isométriques & des réseaux donnés.
Comme précédemment, on recherche les réseaux de F les plus denses parmi ceux qui
réalisent un maximum local de densité sur F (réseaux F-extrémes). On obtient pour
ces réseaux des résultats analogues & ceux de Voronoi . Comme dans le cas classique,
on les caractérise par des propriétés liées & leurs vecteurs minimaux ; notamment, on
définit la notion de F-perfection, moins restrictive que la notion classique de perfection,
et qui, cependant, coincide avec elle lorsque les sections imposées sont parfaites. Cette
étude débouche done bien sur un nouveau procédé de construction de réseaux parfaits par
récurrence. Par exemple, lorsque chaque section imposée est de dimension 1, on obtient
une méthode de construction des réseaux parfaits ayant une base de vecteurs minimaux.
L’autre situation extréme consiste 4 imposer une section hyperplane et une section de rang
1. Il s’agit alors d’une étude proche de celle des extensions développée au premier chapitre,
mais plus restrictive (il existe une extension de Dy qui n’est pas un tel patchwork).

D’une fagon générale (que les réseaux de départ soient parfaits ou non) nous montrons
que les réseaux F-parfaits sont & similitude prés en nombre fini et nous développons un
algorithme & la Voronoi dans cette famille affine. Remarquons qu'une telle étude algo-
rithmique de famille affine de réseaux, généralisant celle de Laihem, a été proposée par



Bergé, Martinet et Sigrist ([B-M-S], 1992), mais sous des hypothéses trop restrictives pour
pouvoir étre directement appliquée ici (voir chapitre II, Remarque suivant 3.3).

On applique cet algorithme & la construction de nouveaux réseaux parfaits de dimensions
moyennes et, en particulier, on détermine tous les réseaux parfaits de rang 8, sommes
directes d’un réseau parfait de rang 6 et du réseau parfait de rang 2 parmi lesquels on
trouve exactement 53 réseaux parfaits sans section hyperplane parfaite.

On sait que les réseaux parfaits sont proportionnels a des réseaux entiers (sur lesquels
le produit scalaire ne prend que des valeurs entiéres), et on constate que les plus denses
d’entre eux sont généralement pairs (le produit scalaire ne prend que des valeurs paires).
Notre étude de patchwork de réseaux impairs confirme ce fait expérimental.

Dans les deux premiers chapitres, on a utilisé I'algorithme de Voronoi (ou l'un de ses
dérivés) pour construire des réseaux parfaits. Dans le troisiéme chapitre, nous 'utilisons
comme moyen d’exploration de ’espace des réseaux. On s’y intéresse plus particuliérement
aux propriétés de dualité. On construit notamment des familles a un parametre stables par
dualité, par exemple des chemins de Voronol dans lesquels se situent un réseau et son dual,
sur lesquels on recherche des réseaux isoduauz (semblables a leurs duals) : c’est ainsi que
I’on a retrouvé les réseaux isoduaux les plus denses connus a ce jour pour les dimensions 5,
6 et 7, réseaux que Conway et Sloane ont construits par d’autres méthodes ([C-S1], 1994),
et nous améliorons leur record pour la dimension 9. On étudie aussi, dans ce chapitre,
la densité moyenne d’un réseau et de son dual. Nous construisons notamment un réseau
extréme de dimension 9 qui réalise la valeur record de cette densité en dimension 9.

Nous remercions les auteurs du systéme de calcul PARI (Ch. Batut, D. Bernardi, H. Cohen et M.
Olivier), et en particulier Ch. Batut dont nous avons aussi utilisé certains programmes non intégrés au
systeme PARI.



Notations

Dans cette thise, F désigne un espace euclidien de dimension n dont on note .y le
produit scalaire. Par abus de langage, on appelle norme d’un vecteur = de E le carré
N(x) = z.x de sa norme euclidienne ||z|| = /zx.

1. Quelques généralités.

Un réseau L de E est un sous-groupe discret de rang maximum, c’est & dire de rang n.
C’est donc aussi un Z-module libre engendré par une base 3 de E.
Soit L un réseau de E, on appelle norme (ou minimum) de L le nombre réel

l\r(L) = iIlerL\(D) !V(ZL‘);

la sphére de L, .
S(L)={xr € L, N(z) = N(L)},

est I'ensemble des vecteurs minimauz de L, c’est-a-dire ceux dont la norme réalise le mi-
nimum de L. On note s(L) = 1|S(L)| le nombre de couples de vecteurs minimaux (+x)
de L. Classiquement, on associe au réseau L 'empilement des sphéres de rayon % N(L)
ayant pour centres les points du réseau ; 'entier s(L) s’interpréte alors comme la moitié
du kissing number, nombre de contacts des sphéres de 'empilement avec la sphére centrée
a lorigine.

Soient € = {e1,... ,€,} une base orthonormée de F et 8 = {f1,..., .} une base de L,
le discriminant de L est le réel positif

A(L) = |det(Br,... , Au)l-

n
Cest le volume du parallélotope P = {3 a;8i, 0 < a; <1} engendré par la base 8. On
i=1

note det(L) le carré du discriminant ; c’est aussi le déterminant de la matrice de Gram de

la base £,
Gram(L. 8) = (8i.5;).
On note
(L) = N(L)det(L) /"

Uinvariant d’Hermite de L. Ce nombre, invariant par similitude, a d’ailleurs une in-

terprétation géométrique : élevé a la puissance 7, il est proportionnel a la densité de
I’empilement de sphéres associé au réseau. Un des problémes de la géométrie des nombres

est de trouver la valeur maximale v, = max Yn(L) de cet invariant pour une dimension

donnée. On ne connait cette constante (constante d’Hermite) que jusqu’a la dimension 8.
Cependant, on en connait de bonnes majorations en toutes dimensions. Nous donnons une
borne grossiére de «, ci-dessous.

Rappelons les inégalités de Hadamard et d’'Hermite. Elles comparent le déterminant
d’un réseau L avec les normes des vecteurs d’une base, et donnent donc un encadrement
pour son invariant d'Hermite.
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Inégalité de Hadamard (1893) : Soient ey,..., e, n vecteurs indépendants d’un réseau I,
de E, alors
AL < el - .- llenll-
Inégalité d’Hermite : Tout réseau L de E posséde une base § = {f,...,B,} satisfaisant
n{n—1
182l lBall < (4/3) 7 A(LD).

On déduit de cette derniére inégalité la majoration suivante de la constante d’Hermite
d'unréseau L de E :

va(L) < (4/3)4F.

[En fait, Minkowski a obtenu des majorations asymptotiques linéaires.]

Rappelons quelques propriétés liées a la dualité.
Soit L* le dual de L, défini par

L*={z€E, zy€Z Vyel}.

A chaque couple de réseaux (L,L*), Berge-Martinet (cf. [B-M]) introduisent en 1989
une variante de v, : la constante d’Hermite duale v',{L) définie par

¥'2(L) = (L) (L) = N(L).N(L*).

S

La méthode classique (qui, en ce qui concerne 7,, remonte & Korkine et Zolotareff)
consiste a rechercher les valeurs maximales v, et 4',, parmi les maxima locaux des invariants
Tn(L) et v',,(L). On montre qu'ils sont atteints sur des réseaux (eztrémes, dual-eztrémes)
dont les sphéres engendrent E : en adoptant la terminologie de A. Ash (“well rounded
lattices”), nous qualifierons de tels réseaux de bien entourés. Remarquons que dans le cas
de Pinvariant v/, (L) qui fait jouer un role symétrique & L et & son dual, la sphére du dual
d’un résean dual-extréme engendre également E. On doit donc avoir 4 la fois s(L) > n et
s(L*) =2 n. .

Voronoi a aussi montré que les réseaux extrémes sont proportionnels & des réseaux
entiers, c’est-a-dire sur lesquels le produit scalaire ne prend que des valeurs entieres (ce
qui est équivalent & dire qu'ils sont contenus dans leurs duals). On verra au chapitre 3
qu'il n’en est pas de méme peur la constante ',

2. Réseaux-formes quadratiques.

Soient I un réseau de E et § une base de L ; on note A la matrice de Gram de la base
B. On définit sur R™ la forme quadratique g associée & la matrice A,

(X)) =' XAX.
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Elle est définie positive car, pour tout vecteur = de E, représenté dans la base 3 par le
vecteur X € R™, on vérifie facilement que

9(X) = N(z).

Nous dirons que A est définie positive. Réciproquement, toute matrice symétrique définie
positive peut étre interprétée comme associée & un réseau L dans une base convenable de
E.

Les notions introduites pour le réseau L peuvent étre traduites en terme de formes
quadratiques ou de matrices. Par exemple, si z est un élément de L représenté dans la
base § par le vecteur X de Z", alors

N(L) x)

= min
,\’EZ"\(O}q

est appelé minimum de ¢ (ou de A) et noté min(g) (ou min(A)). On note également
S(A) = S(g) = {X € Z™,¢(X) = min(g)} I'ensemble des vecteurs minimauz de A ou de g,
soit encore des représentations, dans la base 8, des vecteurs minimaux de L.

D’une fagon générale, par abus de langage, on emploiera pour les matrices symétriques le
vocabulaire des formes quadratiques, et, si elles sont définies positives, celui des réseaux. En
fait, algorithmiquement, on préferera le point de vue des formes quadratiques (identifiées
parfois & leurs matrices).

Précisons la correspondance réseau-matrice.

Soit GL,(Z) le groupe des matrices entiéres d’ordre n de déterminant +1 et soit L un
réseau de E de base 8. La mairice de passage P de la base B & une autre base 8’ de L
appartient au groupe linéaire, et ’on a :

Gram(L, 8') = *PGram(L, §)P,

ol l'on note ‘P la matrice transposée de P. De plus, deux réseaux isométriques ont dans
des bases convenables la méme matrice de Gram.

On fait ainsi correspondre & une classe d’isométrie de réseaux une classe d’équivalence
modulo GLn(Z) de matrices symétriques définies positives, ot I’équivalence de deux ma-
trices est définie de la fagon suivante :

A~B<+=>3P€GL,(Z), B="'PAP.

3. Réseaux parfaits et eutactiques.

Afin d’étudier les formes quadratiques eztrémes, c’est-a-dire celles qui réalisent un max-
imum local de la constante d’Hermite, Korkine et Zolotareff introduisent en 1873 la notion
moins restrictive de formes parfaites.

Adoptons, en vue des généralisations qui font l'objet des chapitres suivants, le point de
vue des résequt.
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Plagons-nous pour cela dans ’espace des endomorphismes symétriques de E
Endy(E) = {u € End(E), ‘u=u},
ou ‘u est ’endomorphisme transposé de u, défini par
tu(z).y = z.u(y) Ve,y € E.
n(nt1)
2

Cet espace, de dimension , est muni d’'une structure euclidienne naturelle par le
produit scalaire {(u,v) = tr(u.v), o tr est la forme linéaire trace.

3.1 Définition : Soient = € E et p; la forme linéaire v — u(z).z définie sur End,(E).
Un réseau L de E est parfait, s'il vérifie la propriété suivante :

0(u)=0 VzeS(L)= u=0.

Afin d’obtenir une condition nécessaire et suffisante pour ’extrémalité, Voronoi introduit
la notion d’eutazie dont on donne une définition équivalente ci-dessous.

3.2 Définition : Un réseau L est eutactique s'il existe des coefficients p, strictement
positifs (z € S(L)) tels que '’endomorphisme trace s’écrive :

tr = Z PrPz.

z€S(L)

Voronoi montre alors qu’un réseau est extréme si et seulement s’il est parfait et eutac-
tique. Il montre aussi que les réseaux parfaits sont & similitude prés et pour une dimension
donnée, en nombre fini, et il donne un algorithme qui permet de les trouver tous en un
nombre fini d’étapes et que P'on décrit briévement ci-dessous.

4. Algorithme de Voronoi .

Cet algorithme se déroule dans l'espace des matrices symétriques réelles n X n,
M(n x n,R), que on munit d’une structure d’espace euclidien grice au produit scalaire
{A,B) = trace (AB). On appelera cet espace, version matricielle de 'espace des endo-
morphismes symétriques muni du produit scalaire trace, espace de Voronot .

Soient alors A une matrice symétrique définie positive de minimum N et S(4) =
{v1,... ,Us} C Z" 'ensemble de ses vecteurs minimaux, définis par les relations :

tyiAv; =min(A) =N  Vie {l,...,s}.

On remarque que ‘v; Av; = (4, v;'v;), de sorte que, & chaque vecteur minimal v;, on fait
correspondre dans 1'espace de Voronoi la matrice

Vi = vitu;.



Aux formes linéaires ¢, associées dans 3.1 & un réseau L, correspondent en langage
matriciel les formes linéaires M s (M, V;) sur M;(n xn,R), et I'on retrouve donc & partir
de 3.1 la définition historique (et algorithmique) de perfection :

La matrice A est parfaite si elle est déterminée de facon unique par la donnée de son
minimum N et de ses vecteurs minimaux v; € Z", c’est-a-dire que le systéme suivant

(M,v;'v;y=N Viel{1,...,s},

a pour unique solution M = A.
Il revient au méme de dire que le systéme des vecteurs V; est de rang maximum.

Remarquons de méme que, lorsqu’on représente un endomorphisme v € End,(E) par
sa matrice (symétrique) M dans les bases duales 8 et 8*, on a tr(u) = (471, M), ot A
désigne la matrice de Gram de f.

La définition 3.2 se traduit donc de la fagon suivante pour la matrice A : il existe des
coefficients p, strictement positifs (2 € S(L)) tels que :

A7l = Z pzv;i'v;.

z€S(L)

On appelle domaine de Voronoi de A 'enveloppe convexe D4 des demi-droites portées
par les V; (¢ € {1,...,5}). On voit donc que A est parfaite si et seulement si son domaine
de Voronoi D4 est de rang maximum (c’est-a-dire L{Hl) Supposons qu'il en soit ainsi.
Une face de codimension 1 du domaine D4 de A parfaite est I'intersection de D4 avec
un hyperplan d’eppui F, que 'on peut représenter par un vecteur de face B orthogonal a
Ihyperplan F et dirigé vers l'intérieur du domaine :

(B,V)=0 VVicF et (BV)>0 VV.

On définit de fagon analogue une face de dimension quelconque. En particulier, on appelle
eréte du domaine une face de dimension 1.

Soit B un vecteur de face du domaine de A ; pour tout réel strictement positif € suf-
fisamment petit, la matrice A 4 €¢B a encore pour minimum N mais a pour sphére le
sous-ensemble des vecteurs minimaux v; de A tels que V; € F. On pose

p =sup{e | min(A + eB) = N}.

On montre que cette valeur existe, est atteinte’et que la matrice A’ = A+pB est de nouveau
parfaite. On Pappelle contigué de A par la face F'. Voronoi montre que si I'on part d’une
forme parfaite arbitraire et si ’on itére la recherche des formes contigués en supprimant &
chaque étape les matrices équivalentes & une matrice déja trouvée, on obtient la liste de

toutes les formes quadratiques parfaites (& équivalence prés). Il donne alors ’algorithme
suivant :
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¢0. Trouver une matrice A parfaite.

el. Déterminer la liste des faces de son domaine de Voronoi .

¢2. Déterminer la contigué de A pour chaque face.

#3. Supprimer de la liste des contigués toutes les formes équivalentes & une forme déja
rencontrée.

o4. 5i l’on a trouvé une matrice nouvelle, aller en 1 ; sinon terminer.

Dans la pratique, cet algorithme a permis de trouver ou de retrouver les 48 formes
parfaites de rang inférieur ou égal 4 7.
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Chapitre 1

Réseaux a section hyperplane parfaite

Dans sa thése (1990), Laihem met au point un algorithme qui lui permet d’énumérer
les réseaux parfaits de dimension 8 ayant une section hyperplane parfaite de méme norme
autre qu’un réseau de racines. Il donne aussi 4 extensions des réseaux de racines E7, Dy et
Az sans pouvoir prouver que ce sont les seules. Dans cette premiére partie, nous achevons
la preuve grace & une amélioration de ’algorithme de Laihem :

il y a exactement 1175 réseauz parfaits de dimension 8 ayant une section hyperplane
parfaite de méme norme.

Cet algorithme nous permet également de construire des réseaux assez denses dans des

dimensions supérieures parmi les extensions de certains réseaux classiques de dimensions
8,9, 10.

I.1. Introduction et notations

On se place dans un espace euclidien E de dimension n et on considére un réseau Lo
de dimension (n — 1) inclus dans E ; soit H ’hyperplan de E engendré par Ly. On note
R la famille des réseaux L de E de méme norme N que Ly, et tels que LN H = L :

R ={L réseaude E, LNH =L et N(L) = N(Lo) = N}.

Par abus de langage, nous adopterons pour de tels réseaux L le terme d’eztensions de Lo,
introduit par Barnes pour les formes quadratiques. Dans ce chapitre, on détermine algo-
rithmiquement les réseaux R-extrémes d’une telle famille R, c’est-a-dire ceux qui réalisent

un maximum local dans R de la constante d’'Hermite yn(L) = %SI;),;.

Rappelons la méthode mise au point par Laihem. Comme dans le cas classique, il
introduit une propriété plus faible, la R-perfection, facile a tester :

un réseaw L de R est R-parfait si et seulement si les vecteurs minimauz de L hors de
H = R.Ly engendrent E.

De plus,

dans le cas ott Ly est parfaitl au sens classique, la notion de R-perfection est équivalente
i celle de perfection.

11 s’agit donc d’une méthode de construction par récurrence de réseaux parfaits en di-
mension n & partir d’un réseau parfait de rang n — 1, méthode implicitement contenue dans
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l'article de Barnes ([Bar3], 1959). Laihem obtient aussi, pour les réseaux R-parfaits, un
résultat de finitude modulo les isométries de E qui conservent globalement Ly. Toutes ces
propriétés justifient que I’on entreprenne la recherche des extensions de Lg les plus denses
par la détermination de celles qui sont R-parfaites. D’autant plus qu’il adapte  cette
situation l'algorithme de Voronoi en définissant une notion de R-contiguité entre réseaux
R-parfaits, relation pour laquelle le graphe est connexe. On donne dans le paragraphe 1.2
les grandes lignes de cet algorithme. Disons seulement ici que les calculs se déroulent dans

H . H n 1
un espace de dimension n au lieu de —%

En appliquant cet algorithme en dimension 8, Laihem trouve les 1171 réseaux parfaits de
rang 8 & partir des 30 réseaux parfaits de rang 7 autres que les réseaux de racines A7, Dy et
E;. Le traitement de ces trois derniers cas aurait exigé un temps de calcul prohibitif et ’on
a arrété le programme aprés qu'il elit fourni quatre extensions : les réseaux de racines Eg,
Dy, Ag et le réseau AZ construit par Barnes comme extension de Ag. L’ordinateur avait 3
explorer un nombre considérable de combinaisons de génératrices du domaine de Eg avant
de trouver une face de ce domaine. (D’une fagon générale, les temps de calcul croissent trés
vite avec la différence entre le nombre de vecteurs minimaux hors de la section imposée et
la dimension de I’espace dans lequel ’algorithme se déroule.)

On donne dans ce premier chapitre, une méthode pour accélérer les programmes de
recherche des contigus d’un réseau R-parfait, en éliminant par une remarque de convexité
certaines génératrices du domaine. Revenant & la dimension 8, cette méthode nous permet
d’obtenir tous les contigus (au sens de Laihem) de Eg et de prouver que les quatre réseaux
Eg, A2, Dy, Ag sont bien les seuls au-dessus des trois réseaux de racines de dimeusion 7.

Dans le dernier paragraphe, on applique ’algorithme en dimensions 9, 10, 11, notam-
ment & partir de réseaux parfaits classiques (réseaux de racines, réseaux laminés ...), et
I'on obtient dans chaque cas des listes complétes d’extensions parfaites dont nous étudions
les nouvelles venues.

L.2. Description de ’algorithme de Laihem.

Dans ce paragraphe, on rappelle bri¢vement les différentes étapes de 1’algorithme de
Voronoi adapté a ’étude de la famille R. Pour une étude plus approfondie, on référe le
lecteur aux travaux de thése de M. Laihem [Laih].

Soit L appartenant & R ot R est la famille des réseaux définie ci-dessus (L posséde donc
une section hyperplane isométrique au réseau Lo ; de plus on a N(L) = N(Lp) = N et
donc S(Lo) C S(L)). Fixons une matrice de Gram Ag de Lyg ; tout réseau L de la famille
R admet alors une base ayant une matrice de Gram A de la forme :

*

Ao
* .. *

Soit Mz l'ensemble des matrices symétriques définies positives de la forme ci-dessus et
de minimum N (N = min(A) = min(A4)) ; c’est un céne convexe de la variété affine des
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matrices qui ont un coin supérieur gauche égal a la matrice de Gram Ag. On note

le sous-espace vectoriel associé, qui est de dimension n et que ’on munit du produit scalaire
(, ). Cest relativement & cet espace que se déroulent 'algorithme de Voronoi adapté & la
famille RR.

Dans la suite, on emploiera le vocabulaire des formes quadretiques (ou de matrices
symétrigues) plutot que celut des réseauz. Cela permet une approche plus algorithmique du
probléme.

Soit A une matrice de Mz et S(4) = {v1,...,vs} C Z" I'ensemble de ses vecteurs
minimaux, définis par les relations :

Yidv; (= (A,0'v)) =N Vie{l,...,s}.

Lorsque ces équations linéaires & n inconnues déterminent la matrice A de fagon unique
dans Mg, on dit que la matrice A est R-parfaite. Remarquons que les vecteurs minimaux
de la matrice Ag n'interviennent pas dans la résolution du systeme : pour que A soit
R-parfaite, il faut et il suffit que ses vecteurs minimaux hors de la section Ay engendrent
RrR™

Comme dans le cas classique, on associe & chaque forme R-parfaite A un domaine
convexe, contenu cette fois dans 7 : i s’agit de la projection orthogonale projr(Da) sur
le sous-espace 7 du domaine de Voronoi D4 de A. On montre facilement que A est
R-parfaite si et seulement si le domaine projr(Da) est de rang maximum dans 7. Ce
domaine est engendré par les projections orthogonales ; sur 7 des matrices V; = v;'v;
(vi € S(A)\ S(Ag)) (les vecteurs v;‘'v; correspondant & la matrice A¢ n’interviennent pas
dans la construction du domaine projr(D4) puisqu'ils ont une projection orthogonale sur
7 nulle). On note s’ le nombre de génératrices £; du domaine projzy(D4).

t
v vy V2 V2

T

Ensuite, on obtient un résultat de finitude pour les formes R-parfaites Ja.1s My modulo
I’équivalence définie par :

A~ B & 3P € Gly(Z), telque'PAP=DB et '‘PTPCT.
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Comme pour le cas classique de P’algorithme de Voronoi, lorsque la matrice A est R-
parfaite, on considére une face d’appui hyperplane F' du domaine proj7(D 4), représentée
par un vecteur de face B € T vérifiant :

(B, =0 VY € F et (B,Q)>0 VQ,.
On associe a cette face la nouvelle forme parfaite de Mz : A' = A+ pB ol
p=sup{e >0, min(4+ eB)=min(4d)= N}.

On obtient ainsi une relation de contiguité dont le graphe est connexe, et donc un algo-
rithme analogue & celui de Voronoi pour les déterminer, algorithme qui se déroule main-
tenant dans P’espace 7 de dimension n. La principale difficulté dans la pratique de cet
algorithme se situe dans la recherche des faces du domaine (la détermination de p, dont
on sait e priori qu'il est rationnel, s’avérant au contraire trés rapide dans tous les cas que
nous avons traités). En effet, le probléme est de trouver tous les hyperplans d’appuis du
domaine, et donc d’abord de chercher (n — 1) génératrices indépendantes parmi celles du
domaine.

. . U . ’ 3
On a donc a prior: m,—:@]—), tests d’indépendance a effectuer.

A titre d’exemple, lorsqu’on cherche les faces du domaine de Eg (s(Eg) = 120) en im-
posant une section hyperplane semblable & Ay (s(A7) = 28), le nombre de génératrices du
domaine s = 120 — 28 = 92 est algorithmiquement trés important. Expérimentalement,
'algorithme, tel qu’il est décrit ci-dessus, ne permet pas de résoudre dans un temps
raisonnable le cas des réseaux pour lesquels la différence (s’ — n) est supérieure a 25.
C’est & la résolution de cette difficulté qu’est consacré le paragraphe suivant.

1.3. Amélioration de I’algorithme.

Un phénomeéne nouveau apparait, qui va permettre d’éliminer, lors de la détermination
des faces, un grand nombre de génératrices €); : il s’agit des génératrices qui sont combi-
naisons linéaires a coefficients strictement positifs d’autres génératrices. Contrairement au
cas classique oli cette situation ne se présente pas puisque chaque génératrice est une aréte
(ce résultat a été démontré par Jaquet [Jaq2]), on verra que I'on peut éliminer un grand
nombre de génératrices.

Soit .
Q= Z /\,'Q,' )\,‘ >0
i=1

une génératrice du domaine projr(D4) combinaison linéaire & coefficients strictement posi-
tifs d’autres génératrices §2;, et soit F' une face du domaine contenant {2 et B un vecteur
de face correspondant. On a donc :

k
(B,Q) =) (B,),
i=1
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avec

(B,%) >0 Vi<s

Comme les coefficients A; sont strictement positifs ’équation (B, 1) = 0 entraine la nullité
de tous les termes (B,€;) (1 <7 < k) ; ce qui veut dire que toutes les génératrices ;
appartiennent & la face F.

Lors de la recherche de la face F, le vecteur §2 est inutile puisque 1’on pourra construire
la face en se servant des vecteurs §; (1 <i < k).

Remarquons d’abord que deux génératrices du domaine ne peuvent pas étre proportion-
nelles.

T
Eneffet,siv= | : | € Z"est un vecteur minimal de 4, la génératrice & = projr(v'v)

Tn

T

13 . 0
correspond & la matrice : x,
Tn—1
\ T e Tn—1 Tn

On détermine alors toutes les relations de la forme :
Q=M1 + Ay

avec A\; et g positifs. [Dans la pratique, on applique la fonction kerint() de PARI pour
chaque triplet de génératrices.] L’examen de ces relations permet d’éliminer un nombre
suffisant de génératrices inutiles pour la détermination effective des faces du domaine.

On peut maintenant appliquer ’algorithme de Laihem aux formes ayant un grand nom-
bre de vecteurs minimaux, et en particulier traiter le cas des réseaux de racines.
I.4. Résultats.

Dans les exemples ci-dessous, on construit principalement les extensions de réseaux de
racines ou de réseaux qui leur sont liés. Nous obtenons dans chaque cas la liste compléte
des extensions R-parfaites & isométrie prés, ce qui nous permet de calculer la constante
d’Hermite pour la famille ®. Dans certains cas, nous précisons le graphe de contiguité
des réseaux obtenus et leurs propriétés (perfection, eutaxie, extrémalité, etc). On les
énumere par ordre de densité décroissante dans des tableaux dans lesquels figurent leurs
caractéristiques : dans la premiére colonne figure s’il y a lieu le nom du réseau dans la
terminologie de Conway et Sloane [C-S2] ou de Barnes [Bar2} . Tous les réseaux trouvés
sont parfaits donc proportionnels 4 des réseaux entiers ; on donne dans les deuxiéme et .
troisi¢éme colonnes le déterminant (det) et la norme u du plus petit homothétique entier.
On précise ensuite les nombres s,s* de couples (£z) de vecteurs minimaux du réseau
et de son dual. Enfin, on donne la constante d’Hermite, v et le carré de la constante
d’Hermite duale ¥'* = vy* (ot 7* est Pinvariant d’Hermite du dual), arrondies & trois
décimales. Enfin, dans la derniére colonne, on étudie ’extrémalité du réseau (E, extréme ;
N-E, non-extréme ; s-e, semi-eutactique).
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1.4.1 Dimension 8 :

Dans ce paragraphe, on ne s'intéresse qu'aux extensions des trois réseaux de racines Ey ,
D; et A7. Pour les extensions des trente autres réseaux parfaits de rang 7, on se réferera
a la liste informatisée sous forme PARI construite par Laihem ([Lai]). On donne dans
chaque cas le graphe de contiguité oli I'on représente la relation de contiguité entre deux
réseaux R-parfaits par une aréte du graphe. A la fin de ce paragraphe, on rappelle, dans
un tableau, les caractéristiques des réseaux trouvés (apparus depuis bien longtemps dans
la littérature).

Les extensions de By :

Les seuls réseauz parfaits ayant une section hyperplane parfaite de méme norme sem-
blable au réseau By sont le réseau de racines By et le réseau A de Barnes.

La méthode de réduction du nombre des vecteurs minimaux hors de la section imposée
ne permet pas d’abréger les temps de calculs puisque seulement une génératrice a pu étre
supprimée. Il reste donc 56 génératrices du domaine. Sur une machine du type SPARC
10, on trouve les R-voisins du réseau Eg en 345812 sCPU. Ce temps, lié & la machine,
correspond a trois jours de calculs environ.

Graphe de contiguité

O

Les extensions de I
Il n'y a que les deuz réseauz de racines Dy et Kg.

Apres I"élimination des génératrices intérieures du nouveau domaine de Eg (on en sup-
prime 46 sur 78), il a fallu 21477 sCPU pour déterminer les faces du R-domaine de Eg, ce
qui correspond a une dizaine d’heures de calcul.

Graphe de contiguité

9
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Les extensions de A; :

Dans ce cas, on obtient les irois réseauz de racines Ag, Fg, Dy et le résean Ag,
Ici, nous avons pu éliminer 64 génératrices intérieures au domaine de Eg (il en reste
seulement 28) ; le temps de calcul est encore une dizaine d’heures.

Graphe de contiguité

®

On vient donc de montrer le résultat suivant :

I1.4.1.1. Théoréme : Il y a ezactement 4 réseauz parfaits de rang 8, d savoir Ag, Dy, Fg
et A2, ayant une section hyperplane de méme norme isométrique & Pun des trois réseauz
de racines de rang T.

En ajoutant a cette liste les 1171 réseaux trouvés par Laihem au-dessus des trente autres
rése.ux parfaits de rang 7, on montre :

1.4.1.2. Corollaire : Il y a ezactement 1175 réseauz parfaits de rang 8 ayant une section
hyperplane parfaite de méme norme.

L’étendue de cette liste (et le peu d’intérét de la “queue de liste”) suffirait & dissuader
d’entreprendre un travail d’énumération analogue pour des dimensions supérieures. Nous
nous sommes donc bornés, pour les dimensions 9, 10 et 11, a énumérer les extensions de
quelques réseaux intéressants soit du point de vue de la densité soit de celui de la dualité.

On rappelle ci-dessous les caractéristiques des 4 réseaux Eg, AZ, Dy et Ag, puisque, au
moins pour les trois premiers, nous allons en chercher les extensions.

ldet |[L I (s,5%) | |Aut| |'y \7'2 |Extr
Es |1 |2 (120,120)]2143%527 |2 4 E .
Al 157614 [(71,1) 28325.7 |1.807|1.333|E
Dy |4 |2](56,8) 2183257 11.681 |2 E
As |9 |21(36,1) 28345.7 |1.519|1.777|E




22
1.4.2 Dimension 9 :
Les extensions de Eg -

Ici encore, on ne trouve que des réseaux connus, le réseau laminé Ay conjecturalement

le plus dense en dimension 9 et le réseau A3 construit par Barnes par raffinement de Ag
(c’est aussi une extension de A} ~ Eg).

1.4.2.1. Proposition : Les seules estensions parfaites de Eg sont les résevuz Ag et A.
Remarquons dans ce cas, que la différence entre le nombre de génératrices du domaine
de Ag et la dimension ne dépasse pas 7. Les temps de calculs, pour obtenir le graphe de

contiguité suivant, sont inférieurs a une seconde.

Graphe de contiguité

Q

Ay
Idet |,u|(s,s*) ||Aut| |7 ‘7’2lExtr
Ag | 512 4 1(136,1) | 10321920 | 2 2 |E
A3 218706 |(129,1) | 725760 |1.976|1.8|E

Les extensions de Dy

On obtient les réseaux Ag, Dy et un réseau Jy, lui aussi extréme au sens classique, le
plus dense des 226 contigus de Dy obtenus par D. O. Jaquet ([Jaql]). Ses seules sections
hyperplanes parfaites sont Dy et Ag.

‘det | u | (s,8%) l | Aut| | v i'y'g l Extr
Ag | 512 4 1(136,1)10321920 |2 2 E
Jg | 17915904 | 12| (65,8) |80640 1.876 2.781 E
Dy |4 2 | (72,9) 185794560 |1.714|2 E

Les extensions de AZ :

Parmi les 5 extensions de A2, on reconnait seulement la plus dense (le réseau Ag), et la
moins dense (le réseau A§’4’2 de Baraes, extension de Ag et raffinement de Ag). On donne
les caractéristiques des cinq extensions dans le tableau suivant :
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deb n|(s,8*) ||Aut] ¥ % | Extr
Ag |512 4 |(136,1)]10321920| 2 2 E

896 4 [(91,1) |4608 1.879|2.285 |E

19595520 |12 (80,2) |1440 1.857{2.314 | N-E

1152 4 |(81,2) |4608 1.827|2 E
AZ42 11280 4 [(80,2) 161280 |[1.806]|1.8 |E

On observe ici 'un des rares cas ol 'ordre des constantes d’Hermite duales differe de
celui des constantes d’Hermite.

Les extensions de L .

Le réseau de Barnes L}, obtenu par raffinement du réseau Ay L Ay 1L Ay L Ay se
retrouve également sous un autre pseudonyme, K's : c’est une section du réseau K5 de
Coxeter-Todd, qui appartient & la suite X', (0 < n < 12) définie par Martinet ([Mar])
a partir de Ky, par une méthode “d’antilamination”. Notons que les réseaux K', sont
extrémes pour n > 5. Parmi les trois extensions de ce réseau L} ~ K's, on trouve donc
le réseau K'y (obtenu aussi par Barnes par extension de L§), intéressant du point de vue
de la dualité. Nous avons en effet montré qu’il réalise un maximum local de la constante
7' : comme il est extréme, il suffit pour cela, d’aprés [B-M1], de vérifier qu’il existe des
constantes p; > 0 et p'; > 0 telles que, si A désigne une matrice de Gram du réseau, V; les
matrices symétriques représentant ses vecteurs minimaux, VJ' celles de son inverse :

E s*
A Z piVi= z p;iV';A™!  (dual-eutaxie.)

i=1 j=1
La valeur v/(K'9) n’est toutefois pas la meilleure connue 4 ce jour ; le record est notamment
détenu par le réseau A5 de Coxeter (voir chapitre III).
On reconnait dans la moins dense des trois extensions le réseau L3 de Barnes.
ldet l,ul(s,s*) ||Aut| l'y |7’2 lExtr
K'g|972 |4 ](81,13)|2592 |1.862|3 B
1296 {4 | (68,1) (768 [1.803{2.25(E
L4 | 145814 |(66,1) {62208(1.780|2 |E

Les extensions de Ky :

Jusqu’ici, nous avons étudié des familles R de réseauz pour lesquels on impose une

section hyperplane parfaite, ce qui conduisait inévitablement & une sélection de réseauz
parfaits.

Dans le cas suivant, on impose une section hyperplane isométrique au réseau Kz de la
suite K, construite par Leech (par antilamination de Kj3), réseau qui n’est pas parfait
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(le défaut de perfection est 1), et I'on obtient 5 réseaux R-parfaits, qui sont également
parfaits au sens classique. Ce sont les premiers exemples de réseaux parfaits construits 3
partir d’une section hyperplane non-parfaite.

A notre connaissance, le seul de ces réseaux déja apparu dans la littérature est le réseau
Iy (semblable au réseau Lg de Barnes).

Le plus dense de la liste, qui est extréme, est une section (la deuxiéme en densité
aprés Ag) du réseau laminé Ajg, qui réalise la meilleure constante d’Hermite connue en
dimension 10. Sa section la plus dense en dimension 8 (non parfaite) se trouve sur un
chemin de contiguité de Eg & lui-méme sur lequel on a s = 75, ce qui est, d’aprés Watson,
le record pour les réseaux distincts de Es (le réseau I{s n’en posséde que 66).

det (s,s%) | |Aug| {v ¥? [ Extr

©
768 |4 (99,3)]1843211.011 | 2.666 | E
Ko |864 |4](90,3)|2304 |1.887|2.666|E
960 |4 {(84,1) 384 [1.865|2.400
8
4

528384 |8 | (76,1) | 96 1.850|2.232
1056 (80,1) {192 |1.845]2.181

1.4.3. Dimension 10 :
Les extensions de Ag :

On trouve naturellement le réseau A1 obtenu par lamination de Ag. Il est intéressant
de voir que les cing autres réseaux sont presque aussi denses que lui. L’un d’eux, qui se
- . A . 2,4,2
distingue par un groupe d’automorphismes énorme (g = 2'7.32.5.7), est le réseau By; " de
Barnes, raffinement du réseau ;g qu’il contient avec V'indice 2. Ce réseau est en effet une
. 2,4,2
extension de Bg'™"® ~ Ag.

det po|(s,8*) | |Aut| v ¥ | Extr
Ay |768 4 |(168,3)|84736  |2.058|2.666 |E

960 4 |(154,2) 322560 |2.012|2.133 |E
B:4? | 1024 4 |(154,2) [41287680 |2 2 E

60466176 12 | (146,1) | 5760 2 2 N-E
65505024 [ 12 | (146,1) | 80640 1.98411.846 | E

Les extensions de A3 :

Dans ce cas, la famille R contient 16 réseaux parfaits qui ont au moins 139 (=10+129)
vecteurs minimaux ; les constantes d’Hermite sont assez proches du record. Nous donnons
dans le tableau suivant les caractéristiques des 8 réseaux les plus denses. On y observe
une coincidence étonnante : les deux réseaux les plus denses de cette liste ont les mémes
caractéristiques excepté 'ordre de leur groupe d’automorphismes. Ils différent d’ailleurs
aussi par la structure du groupe déterminant (L*/L).
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det nol(s,s*) ||Aut] ¥ ¥? | Extr
54675 6 |(147,3) 4354560 (2.015]2.4 E
54675 6 |(147,3)|7776  |2.015|24 |E

3400690959 [18|(141,1)]1440 2.005 | 2.227 [N-E
561273046875 | 30 [ (139,2) | 5760 2.005(2.283 | N-E
59533056 12(141,2) | 288 2.003 | 2.257
3419822835 |181(139,1) | 2304 2.003 | 2.265 [ N-E
61344055296 |24 |(139,1)| 1440 2.001[2.158 | N-E
60466176 121(146,1) [ 5760 2 2 N-E

Réseauz au-dessus de Dy

Parmi ces réseaux, on obtient bien str le réseau Iy et son raffinement unimodulaire
. . 24,2 1y , .
Df,. Le réseau le plus dense est le réseau Big ° déji signalé comme extension de Ag.
10 p 10 ]
L’énumération des 9 extensions de Iy a été beaucoup plus longue que les précédentes. La
difficulté ne provenait pas de 'absence d’une base de vecteurs minimaux pour le réseau
p:
Dt (situation a laquelle j’ai adapté Palgorithme standard), mais de la présence du réseau
10 q J P y
B%%? dont le R-domaine de Voronoi a un grand nombre de génératrices (82, contre 18
10 El
pour son domaine au-dessus de Ag).
Les réseaux trouvés sont relativement peu denses, mais sont toutefois tous extrémes et
p bl
beaucoup plus intéressants du point de vue de la dualité que les précédents, bien que seuls
DY, et Dy soient dual-extrémes. Notons que la valeur record (& ce jour) de ' est détenue
10 q J Y
notamment par le réseau ]D}Lo.

det poi(s,s*) | |Aut| v % | Extr
B | 1024 4 |(154,2)| 41287680 |2 2
Df, |1024 4 {(90,90) | 1857945600 | 2 4

E
BE
65505024 12{(90,9) | 725760 1.98413.282 | E
1191182336 |16 (82,9) | 725760 1.97913.380 | E
E
E
E

11600000000 | 20 | (82,6) | 34560 1.9703.103
1275068416 |16 |(85,5) |46080 1.965|2.947
73903104 12((92,4) |92160 1.960 [ 2.727
1310720 8 1(108,3) | 276480 1.955(24 &
Do |4 2 [(90,10) [ 2183527 1.74112 |E
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I.4.4. Dimension 11 :
Les extensions de Aqg :

Parmi les 6 extensions, on reconnait les deux réseaux laminés pour la dimension 11, A'I“Ii"
et AP, dont les caractéristiques ne différent que par le nombre de vecteurs minimaux et
leurs groupes d’automorphismes.

det no{(s,8%) ||Aut| ¥ +'% | Extr

11024 4 |(219,4) | 3538944 |2.130| 3 B

AT 11024 4 |(216,4)198304 |2.130|3 E
4
4

1152 (204,2) [ 36864 |2.107|2.666 | s-e
1408 (188,1) | 9216 2.069]2.181 | N-E
262020096 |12 {(179,1) | 192 2.060 | 2.076 | N-E
272097792 |12 |(179,1) | 1152 2.053 |2 N-E

1.4.5. Commentaires

Remarquons que les tétes de listes sont toujours de norme minimale p = 4, sauf bien
entendu les extensions de A3 de norme 6. On observe également dans les tableaux ci-dessus
un phénomeéne assez fréquent quoiqu’inexpliqué : lorsqu’on parcourt les listes, le nombre
s varie dans le méme sens que la densité sauf lorsque la norme g diminue, & la notable
exception du réseau Dy dans la suite des extensions du réseau Iy. Notons que la constante
d’Hermite des extensions de A3 de méme que celle des extensions de Ajg, est atteinte sur
deux réseaux non semblables.

La construction de réseaux parfaits par cette méthode, sorte de généralisation de la
méthode de lamination, permet, & partir d’un réseau de rang n — 1 assez dense, d’obtenir
des réseaux de rang n également intéressants du point de vue de la densité et du kissing
number. On retrouve bien entendu la suite A,, 8 < n < 11 des réseaux laminés, qui
réalisent les meilleures constantes d’Hermite connues, sauf pour n = 11.

Par contre, si ’on veut construire des réseaux intéressants du point de vue de la dualité,
cette méthode est inefficace (la dualité ne se propage pas par extension), et on constate
en effet, dans les tableaux précédents, que les nombres de vecteurs minimaux des duals
valent pour la plupart 1, 2, 3, 4. Seuls le réseau de racines Eg et 'extension K'y de L} sont
intéressants du point de vue de la dualité puisque Es réalise naturellement la meilleure
constante d’Hermite duale de dimension 8 (v'*(Eg) = 4) et K’y donne la deuxiéme connue
en dimension 9 (y'2(K's) = 4)
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Chapitre 11

Densité des réseaux en patchwork

Le but de ce chapitre est de construire des réseaux denses qui sont somme directe de
réseaux de méme norme. On adopte les méthodes locales d’extrémalité pour lesquelles on
développe une théorie & la Voronoi. On obtient aussi un algorithme qui permet notamment
de déterminer toutes les classes d’isométrie de réseaux parfaits sommes directes de réseaux
parfaits donnés, algorithme que I'on applique dans le dernier paragraphe en dimensions
moyennes.

I1.1. Introduction et notations

Soit E un espace euclidien de dimension n. Dans ce chapitre, on restreint 'étude de la
densité & une famille F de réseaux en patchwork de E, c’est-d-dire de réseaux de norme
N donnée, sommes directes de r (r > 2) réseaux (L;)i<, de norme N isométriques & des
réseaux (L?) donnés. En particulier, on recherche les réseaux les plus denses de F parmi
ceux dont la constante d’Hermite réalise un maximum local sur cet ensemble (réseaux
F-extrémes). Llexistence de tels réseaux n’est pas assurée a priori, mais résulte de la
compacité modulo isométrie de la famille F (cf §.2).

Dans Pespace des réseaux de E, paramatré par le céne des endomorphismes symétriques
positifs de E, la famille F est associée & un sous-espace strict V de l'espace End,(E) (elle
s'identifie & un convexe de cet espace). Nous introduisons des notions de perfection et
d’eutaxie relatives & ce sous-espace qui nous permettent une caractérisation & la Voronoi
des réseaux F-extrémes. On s’intéresse par la suite davantage A la notion de F-perfection
que I’on caractérise par une propriété des vecteurs minimaux : wn réseau J-parfait perd de
ses vecteurs minimauz hors sections dés lors qu’il subit une perturbation (tout en restant
dans F) (cf. 1L.3). De cette propriété d’unicité, nous déduisons les théorémes attendus
de finitude et de rationalité. Nous montrons de plus que ces réseaux sont parfaits (au
sens classique) lorsque les sections imposées le sont. Tout ceci justifie notre entreprise
d’énumération des réseaux F-parfaits, & laquelle est consacré le paragraphe 4.

Notamment, lorsque chaque section L; est de dimension 1, on obtient une méthode de
construction des réseaux parfaits ayant une base de vecteurs minimaux.
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On y adapte l'algorithme de Voronoi pour la détermination de toutes les formes quadra-
tiques F-parfaites (nous adoptons en effet maintenant le point de vue plus algorithmique
des formes quadratiques). Cet algorithme se déroule dans le sous-espace de matrices
symétriques n X n associé a V ce qui abaisse ainsi la taille des calculs et permet d’aborder
des valeurs moyennes de n hors d’atteinte par 'algorithme de Voronoi usuel.

On associe a toute forme quadratique de la famille un domaine convexe de cet espace
(les formes F-parfaites correspondent aux domaines de dimension maximale dim(V')). On
définit ici encore une relation de contiguité entre les formes F-parfaites, pour laquelle nous
obtenons un théoréme de finitude et de connexité. Des phénomeénes nouveaux apparaissent
dans la pratique de cet algorithme, ne serait-ce que parce qu’il se déroule sur un compact
et qu’il s’arréte donc au bout d’un nombre fini d’étapes sans qu’il soit nécessaire de tester
les équivalences. Toutefois, on introduit une notion d’équivalence compatible avec la con-
tiguité pour améliorer l'efficacité de I'algorithme. D’autre part, on observe aussi le méme
phénomeéne que dans le chapitre I : certaines génératrices du F-domaine de Voronoi de la
forme F-parfaite peuvent ne pas étre des arétes, et on utilisera la méthode du chapitre I
pour les éliminer.

Enfin, dans le dernier paragraphe, on applique 'algorithme en dimensions n < 10. Tout
d’abord, on teste la rapidité de notre algorithme en déterminant les réseaux parfaits en
dimension 5 et 6 auxquels on a imposé une base de vecteurs minimaux (patchwork de
n réseaux de rang 1). Nous construisons aussi en ces dimensions des réseaux “presque
parfaits” assez denses que nous étudions du point de vue de la dualité, de I'eutaxie et de
la norme.

En dimension 8, on ajoute & la liste des 1175 réseaux parfaits & section hyperplane
parfaite (cf chap. I) 53 réseaux parfaits patchworks de réseaux parfaits de rang 2 et 6,
dont on donne les caractéristiques principales dans I’annexe I.

C’est ainsi qu’en dimension 9 et 10, on ajoute en somme directe des réseaux par-
faits de rang 2 et de rang 7 ou 8. Au-dessus du réseau critique E7, on a seulement
retrouvé les réseaux A3 et BZ de Coxeter et Barnes. Par contre, on trouve 8 formes par-
faites de rang 9 au-dessus du dual E} (parmi lesquelles aucune n’est entiére de norme
3). Le nombre d’extensions parfaites trouvées semble varier en raison inverse du nom-
bre d’automorphismes du réseau de départ. Par exemple, on posséde une liste de plus
de 600 réseaux parfaits au-dessus de P§ (notation de Conway et Sloane) qui n’a que 192
automorphismes.

Au-dessus de g, on trouve une douzaine de réseaux parfaits de rang 10. Les plus denses
d’entre eux (parmi lesquels bien siir le réseau Ayp) ont déja été rencontrés au chapitre I.

Enfin, situons I’étude du chapitre II par rapport aux études analogues de la littérature.
Tout d’abord, la méthode d’extension exposée au chapitre I ne conduit pas e priori &
des réseaux patchworks de réseaux de dimensions n — 1 et 1 (voir Pexemple du réseau
D}, extension de Dy). Par ailleurs, on trouve dans [B-M1] une étude de densité dans des
familles de résecaux paramétrées par des sous-groupes fermés du groupe linéaire. Il est
facile de voir que les réseaux en patchwork ne sont pas susceptibles d’une telle définition.

Par contre, la notion de F-perfection est un cas particulier de celle qui a été attachée
dans [B-M-S] & un sous-espace vectoriel de matrices symétriques. Toutefois, on donne
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un exemple (aprés 11.3.3) qui prouve que les hypothéses faites dans [B-M-S| ne sont pas
nécessairement vérifides ici.

11.2. Etude de la constante d’Hermite sur F

-
On se donne » réseaux LY de méme norme N et de rangs n; avec Y. n; = n, et l'on

=1
se propose de paramétrer la famille patchwork F correspondante & partir de 'un de ses
.

réseaux L = @ L;, avec pour tout i L; ~ LY et N(L) = N.

i=1

Posons F; = RL; Vi (on adonc E = 6} F}), et soit

1=1

V = {v € End,(E) tels que, Yi € {1,---,7}, o(F:) C Fi}.

Alors on a :

F={u(l), v€ GL(E), avec 'uu—1id € V et N(u(L)) = N(L)}.

La démonstration découle immédiatement du lemme suivant.

11.2.1 Lemme. Soient F un sous-espace de E, M un réseau de F et v € GL(E). Alors
la restriction de u & M est une isométrie si et seulement si I'on a :

(‘uu — id)(F) c Ft,
ol ‘u désigne Pendomorphisme transposé de u.

Démonstration :

Soit u € GL(E). Alors on a les équivalences suivantes.

wp est une isométrie & Va,y € M w(z)u(y) =2y
& Va,y €M (‘un—id)(z)y=0
& (fuu—id)(F) c FL.

.
On a obtenu une nouvelle définition de F & partir de 'un de ses réseaux L = @ L; :
i=1

F={u(L), ue GL(E), avec ‘uu —id € V et N(u(L)) = N(L)},
si V est le sous-espace de ’espace End,(E) des endomorphismes symétriques de E :

V = {v € Endy(E) tels que, Vi€ {1,---,7}, o(F) c F'},
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ot Fy est le sous-espace engendré par L;.

Remarque sur la condition N(u(L)) = N(L) : Soit S = S(L) ’ensemble des vecteurs
minimaux de L ; P'application u +—— N(u(z)) étant continue, pour u voisin de 'identité,
les vectcars minimaux du résean u(L) proviennent de ceux de L. En posant v = 'u.u —id,

N(u(L)) = 1;11€1}91 N(u(z)) =N(L) + rrneirsu,a,(v) ol p,(v) = v(z).z,

et donc N(u(L)) = N(L) équivaut & meirsupr(v) = 0. On se place donc dans le cdne C de
r
V défini par :
¢ = {ve Viminps(v) =0}

Notons que pour tout v suffisamment proche de 0 appartenant a ce céne (plus précisément
a valeurs propres supérieures & —1), il existe u € End,(E) défini modulo O(E) (groupe
orthogonal de E) tel que 'u.u —id = v. En particulier, si v = 0 alors u est orthogonal et
le réseau u(L) est isométrique a L.

Munissons pour toute la suite F de la topologie induite par la topologie naturelle sur
I’ensemble des réseaux de E. Les voisinages dans 7 d’un réseau L € F correspondent
donc a des voisinages de 0 dans le céne C de V.

On introduit alors une notion analogue a l'extrémalité classique introduite par Korkine et

Zolotareff (K-Z).

I1.2.2 Définition Un réseau L de F est F-eztréme si sa constante d’Hermite réalise un
maximum local dans F.

L’existence de tels réseaux dans la famille F s’obtient grace au théoréme de compacité
de Mahler [Cas].

11.2.3 Théoréme (MAHLER). Soit £ une famille de réseaux vérifiant les deux conditions
suivantes :

(1) I existe m > 0 tel que Von ait N(L) > m pour tout L € L ;
(2) I existe M > 0 tel que I'on ait det(L) < M pour tout L € L.
Alors, L est d’adhérence compacte.

Les réseaux de la famille F sont tous de méme norme N ; de plus, d’aprés une
généralisation évidente de I'inégalité d’Hadamard,
det(L) =det(Ly ®...® L;)
< det(Ly).... .det(L,) = det(L3).... .det(L?) pour tout L € L.
Les deux hypothéses du théoréme de Mahler étant vérifiées, ’ensemble fermé F est com-

pact. La fonction L — (L) = EEK-(IIY_)"T continue sur ’ensemble F et & valeurs dans R
admet donc un maximum sur F. Il existe donc au moins un réseau F-extréme dans F.
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11.2.4 Caractérisation. La F-extrémalité équivaut a la condition suivante, ot tr désigne
la trace :

Siv €V vérifie néiréga,(v) =0 et tr(v) <0, alorsil est nul. (1)
Démonstration :
Soient L un réseau de F et S l'ensemble de ses vecteurs minimaux. Alors L est F-

extréme si et seulement si pour u assez voisin de I'identité on a : y(u(L)) < (L). Puisque
N(u(L)) = N(L), on a I’équivalence :

(u(L)) € (L) <> det(u) > 1.

1) Supposons L F-extréme, et montrons la condition (1). Soit v non nul appartenant &
C tel que tr(v) < 0. Prenons v sur la sphére unité & de V, et u tel que 'u.u = id +€v avec
¢ > 0 suffisamment petit pour que I’on ait I'implication :

v €C = N(u(L)) = N(L).

Soit Po(X) = det(Xid —v) = X" — T1(v). X" + ... 4 (=1)".Tx(v) le polyndme ca-
ractéristique de v. On a Ti(v) = tr(v) = Y Aiet Ta(v) = 3, Aidjolt Ay, Ag, e n
i=1 i<j

désignent les valeurs propres de v. (Elles sont toutes réelles car v est symétrique.)

On remarque que : (T1(v))? = 2.T3(v) + Y A? > 2.T3(v) puisque v est non nul, donc

i=1
que T>(v) est strictement négatif si Tj(v) = 0.
Grace au développement limité a ’ordre 2 suivant :
det(id + ev) = (—€)" Py(—1/e) = 1 + €Ty (v) + 2Ty (v) + o(e?), (2)

on obtient donc les implications (pour &€ > 0 assez petit) :

y(u(L)) € y(L) => det(u) 2 1 => T1(v) > 0.

Ceci est contraire a I’hypothése tr(v) < 0. v est donc nul.

2) Montrons la réciproque. Soit L vérifiant la condition :

veCl
= v=0
tr(v) <0

(c’est en fait une condition sur S = S(L) via le céne C). Soit K lintersection de ¥ avec le
cone € = {v € End,E, xréixé z(v) = 0} alors K est compact. Supposons tr(v) > 0 (v est
z

donc non nul) ; d’aprés (2), il existe B, > 0 tel que V¢,0 < t < j, entraine det(tv+id) > 1.

Par ailleurs, pour tout ¢, la fonction v s det(tv + id) est continue donc en particulier,
pour tout v dans K, il existe un voisinage B(v) de K tel que Yw € B(v) det(f,w+id) > 1.
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Or la fonction t —— log(det(tv +7d)) est sirictement concave (il suffit de calculer la dérivée
seconde), donc si log(det(tv + id)) est positif pour ¢ = 3, alors il en est de méme sur tout
Uintervalle }0, 3,[. On obtient donec :

Yw € B(v), Vt €]0, B[, det(tw +id) > 1.

Les voisinages B(v) forment donc un recouvrement du compact /. En extrayant un sous-

P
recouvrement fini (| B(vi)) et en prenant 8 = minf,,, on a :
i=1 1sp

Yw e K,Vt €]0,8[, det(tw+id) > 1.

Soit L' = u(L) un réseau de F non isométrique a L, alors ‘w.u — id est non nul et
appartient au cone C. D’aprés ce qui précéde, si 0 < ||'u.u —id]| < 3, alors le déterminant
de u est strictement supérieur a 1, et donc y(u(L)) < v(L).

Remarquons que le maximum local de la constante d’Hermite est strict, ce qui signifie
qu’d isoméirie preés, les réseaus extrémes sont tsolés.

Pour exploiter la condition (1), qui ne fait intervenir que les restrictions & V des ¢, et
de la trace, on introduit des notions de perfection et d’eutaxie relatives au sous-espace V.

I1.2.5 Définition: Un réseau L € F est F-parfait si 'on a la propriété suivante :
(p:(v)=0 Vae S(LYetve V = v=0).

11.2.6 Définition: L € F est F-eutactique s’il existe des coeflicients p, > 0 pour tout z
dans S(L) tels que :
tr(v) = Y prprv)  VveV.

r€S(L)

Remarquons que ces notions sont plus faibles que les notions classiques correspondantes.
Rappelons un théoréme de programmation linéaire que ’on utilisera pour la caractéri-
sation des réseaux F-ezirémes.

11.2.7 Théoréme. (Stiemke) Soient W un espace vectoriel réel de dimension finie et
©@1,-.,0p des formes linéaires sur W, alors les conditions suivantes sont équivalentes.

(i) A p1,...., pp tous striciement positifs tels que py.p1 + ... + pp.pp =0

(ii) On a Iimplication :

7)) >
e1(v) 2 0 or(0) = 0
wp(v) 2 0
ve W wp(v) =0

On obtient alors 1’équivalent du théoréme de Voronoi [V} pour les réseaux de F.
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I1.2.8 Théoréme. Soit L € F, il y a équivalence entre les deux propriétés suivantes -

(i) L est F-exztréme.
(i1) L est F-parfait et F-eutactique.

Démonstration :
o ((¢) = (¢7)) Supposons la F-extrémalité, c’est-a-dire (d’aprés 11.2.4)

( g}gm @:(v)=0 et tr(v)< 0 pour v€ V = v=0),

et montrons la F-eutaxie.
La F-extrémalité nous donne la condition (ii) du théoréme de Stiemke pour 'espace V et
les formes (—tr) et (¢ )zes(1), I'équivalence du théoréme donne directement la F-eutaxie.

Montrons la F-perfection. Soit v € V tel que p.(v) = 0 Vz € S(L) On a donc

ms1(r}l)go,(v) = 0, mais on a aussi ¢,(—v) = 0 Vz € S(L), donc, quitte & changer v en
€

~v, on peut supposer tr(v) < 0, et par la caractérisation de la F-extrémalité, v est nul.
p PP

o((71) = (1)) Soit maintenant un réseau F-eutectique et F-parfait, et montrons qu’il est
F-extréme.

Soit v € V tel que xrg&) wr(v) = 0 et tr(v) < 0 ; la relation de F-eutaxie donne la
€

condition (7) du théoréme de Stiemke pour les formes (—tr) et {v:)zes(1), et en appliquant
la condition (i7) & v, on obtient ¢, (v) = 0,Vz € S(L) (et tr(v)=0) ; la F-perfection permet
de conclure : v =0.

Remarque : Dans la pratique, pour trouver tous les réseaux F-ezirémes, il est beaucoup
plus facile de chercher dans un premier temps les réseaux F-parfaits, puis d’examiner la
F-eutaxie (qui n’est pas toujours facile a détecter).

Enumérons certaines propriétés des vecteurs minimaux des réseaux F-parfaits ; celles-ci
nous permettront une simplification de I’étude algorithmique.

11.2.9 Caractérisation. Soient L = @ L; un réseau de F et §' = S(L) \ U S(Li)

Pensemble des vecteurs minimaux hors des sections (Li)i<r. Alors L est F- pa.rfalt si et

seulement si les restrictions & V des formes ¢, pour v € S’ engendrent V*, 'espace dual
de V.

Démonstration :
Soient W le sous-espace de V* engendré par les restrictions & V des (pz)zes(z) et

Wt={vevV, g, (v)=0 V¥ ¢, € W} son orthogonal dans V. Par définition de la
F-perfection, on a les équivalences :

L F-parfait <= W' = {0} <= W = V™.

-

Par ailleurs, remarquons que les formes ¢, pour z € |J S(L;) n’interviennent pas dans la
i=1

construction de W+ : en effet, si = est dans une section L; alors Vv € V ¢,(v) = v(z).z =0
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par définition de V. Donc IV est en fait engendré par les restrictions & V des ¢, pour
re S

On en déduit qu'un réseau F-parfait doit avoir suffisamment de vecteurs minimaux hors
des sections L; :

I1.2.10 Corollaire. Le nombre s' rle couples (+z) de vecteurs minimaux hors des sec-
tions F; = R.L; (1 € {1---r}) d’un réseau F-parfait est supérieur ou égal & : dim V=
Zl<i<j<r ni.nj (ott n; = dim Fy).

Démonstration :
Il est clair que, si L est F-parfait, on doit avoir s' > dim(V) d’aprés 11.2.9. Calculons
donc la dimension de V. (dans des bases convenables) ayant ses blocs diagonaux nuls
Soit My 'ensemble des matrices symétriques n x n ayant des blocs diagonaux de di-
mensions ny,... ,n, nuls, c’est-a-dire de la forme

@ _4';’ e AT
a [0]

Aroy
lAul- Lotagn

r—1

Tout endomorphisme v de V' peut étre représenté par une matrice symétrique de Mp.
r

Fixons en effet une base 8 de E telle que g = |J Bj ot §; = (,e';i)ie{l,m,n,-) est une
j=1

base de Fj et soit 3* sa base duale. Soit v € {/ Sa matrice dans les bases (8, 3*)

est symétrique ; de plus, pour tout j € {1,---,r}, la condition v(Fj) C FjJ‘ équivaut

a: vel)el =0 Vike {1,---,n;}. Donc nécéssairement v(el) est nul sur espace

engendré par {(e{)*, e ,(e{;i )*}. On aboutit alors & la représentation annoncée dans les

bases (8, #*). La dimension de V est donc : Elgiq‘gr n;.nj, d'ou le résultat.

Le résultat suivant va nous permettre de construire par récurrence des réseaux parfaits
en “patchwork” de dimension donnée.

11.2.11 Théoréme. Soit L = € L; avec chaque L; parfait (au sens classique). Alors L

i=1
est parfait si et seulement s’il est F-parfait.

Démonstration :
Rappelons qu’un réseau L est parfait si :

(pz(v) =0 Vze S(L)etve End(E) = v=0),

et que si L est parfait alors il est nécessairement F-parfait. Montrons la réciproque sous
les hypothéses du théoréme.
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Soit v € End; E tel que Vo € §  v(x).z = 0. Montrons que v est nul. Il se décompose
de maniére unique sous la forme v = vy + w avec v; & VietweV.

Soient 1 < j < r et (2} )r=1.s; les vecteurs minimaux de L; ; ils appartiennent aussi
a § car L et L; ont méme norme. On obtient donc :

u(ar{_)..r{ =0= 171(17‘,’;).;75{_ + w(l‘{,).ar{_ Vk=1...sj.

Or puisque .1:{_ EFjetweV, w(ri) € F;* donc le dernier terme est nul. Par conséquent
vi(x}).x} = 0 Vk. La perfection des L; nous conduit & vi/s; = 0 Vj € {1,..,7} ce qui
prouve que v; = 0. D’olt v = w appartient & V ; la F-perfection de L permet de conclure :
v=0.

I1.3. Expression matricielle

Dans la suite, on identifiera ’espace vectoriel réel des matrices symétriques sur R™ avec
celui des formes quadratiques sur R", et on appliquera aux matrices symétriques le vo-
cabulaire des formes quadratiques (matrice positive, définie positive, F-parfaite, minimum
sur Z", ensemble des vecteurs minimaux).

Pour tout j, (1 < j <r), on se donne une représentation de la classe d’isométrie de L?
par une matrice de Gram A;.

r r
Soit L = @ L; un réseau de F, et soit § = |J B; une base de L ol f; est une base
i=1 j=1

de L; ayant pour matrice de Gram A; ; alors la matrice de Gram de cette base est de la
forme :

On note Mz 'ensemble des matrices de ce type représentant un réseau de F (leurs blocs
diagonaux A; sont donc fixés, et elles ont pour minimum N). Toutes les bases utilisées
dans la suite seront de la forme ci-dessus.

-

I1.3.1 Proposition. Soit L = € L; un réseau de F, alors il n’existe qu’un nombre fini
i=1

de représentaiions de L dans M.

Démonstration :

Soient B == (€i)i=1..n une base de L et A sa matrice de Gram dans Mz. Les blocs
diagonaux de A étant fixés, le maximum D des termes diagonaux de la matrice A ne
dépend pas de la base choisie. On a alors :

Vi<n, c.e; < D.
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Or il n'y a qu'un nombre fini de vecteurs dans L vérifiant cette inégalité, donc il n’y a
qu'un nombre fini de bases de L dont la matrice de Gram appartient & M .

Donnons une interprétation matricielle de la proposition I11.2.9.

r r
Soilent L = P L; un réseau de F et 8 = |J f; une base de L de la forme habituelle. On
i=1 =1
note 4 sa matrice de Gram dans M. Téut vecteur minimal = de L peut &tre représenté
dans cette base par X =' (z1,... ,2n). On associe & # la projection orthogonale p, sur
la droite Ra définie par p.(y) = 7%z pour y € E et la matrice P, = Px = X'X de
Pendomorphisme N(z)p, exprimée dans les bases f* et § (3 est la base dual de ).
Rappelons que tout endomorphisme symétrique ¢, dans V peut étre représenté par une
matrice de Mg dans les bases 8* et 3, ot My est défiui au paragraphe I1.2.
On munit End, E (resp. M,(nxn,R)) du produit scalaire (u,v) = tr(uv) (resp. (U, V) =
tr(UV)).

I1.3.2 Corollaire. Soient A € Mz et S' I'ensemble des vecteurs minimaux hors des
sections imposées. Alors A est F-parfaite si et seulement si les projections orthogonales
Qx des Py = X 'X sur M, engendrent My lorsque X décrit S'.

Remarque : On pose :

M| o - - 0

Mg =M, = b Mie Mo(ni x ni,R)
. T 0
0 0 [ My

La projection orthogonale sur My d’une matrice de End,E s’obtient en remplacant les
blocs diagonaux par des blocs de zéros. Soit pu, cette projection.

Démonstration :

D’aprés la proposition 11.2.8, la F-perfection d’un réseau L équivaut au fait que le
systéme d’équations ¢,(v) = 0 pour z minimal hors sections n’a pas de solution non nulle
dans V.

-

Soient 8 = {e;) = |J /j une base de L et v un endomorphisme symétrique de V ; alors
j=1

v admet une représentation matricielle B = (v;;) € My dans les bases # et #*. On a donc :

n n n
w(v) =v(z)a = U(Z Ti€i). Zo;,—e,— = Z Tjvije; kaek
=1 i=1 i k=1

= E TjVijT;VijTi
ij

= tr(BX'X) = (B, X'X).
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11 suffit donc de remarquer que toute matrice de My n’agit que sur la projection or-
thogonale Qx de Px sur My (§2x est a blocs diagonaux nuls). Donc (B, X'X) = (B,,).
1l y a donc équivalence entre la F-perfection d’un réseau L et le fait que les projections
orthogonales Qx des Px = X 'X sur Mg engendrent My lorsque X décrit S,

I1.3.3 Proposition. Une matrice A dans M x est F-parfaite si et seulement si elle est
déterminée de facon unique par les projections orthogonales Qx des Px sur My lorsque
X décrit S(A) (ensemble des vecteurs minimaux de A).

Démonstration :
Soit A et A' deux matrices de M ayant le méme ensemble des x ; on a donc :

Qx = pato(Px) = pmo(Pxs) VX € S(4),VX' € S(4)
On obtient alors :

(A - A"),90x) = (A — A"), Px) = min(A) — (4', Px) <0 car min(A) = min(4’)
= {(A — A"),Px:) = (4, Px+) —min(4') > 0.

Donc :

(4,9x) = (4',Qx) VX € S(4)

Donc A’ — A appartient & 1'orthogonal dans M du sous-espace engendré par les Qx.
Puisque A est F-parfaite, le sous-espace < f2x, X € S(A) > est égal a My, et on obtient
A=A

Réciproquement, supposons L non F-parfait ; d’apres le corollaire I1.3.2 on a :
Mo #< Qx, X € S(A) > .

Soit B # 0 dans M, orthogonal & tous les x. Pour € assez petit, le minimum de la

matrice A, = A + ¢B est atteint sur certains vecteurs minimaux de A, c’est a dire :
S(AL) C S(A).
11 existe donc Xo € S(A) tel que :

min(4:) = (4e, Px,) = (A +€B), Px,)
= (A, Pxo) 4 €<B,Pxo)
= min(A) + &(B,0x,)
= min(A)

Donc A, est bien une matrice de Mz dont les vecteurs minimaux sont contenus dans
S(A). Le calcul précédent étant valable pour tout vecteur minimal X de A4, on a aussi :

S(A) C S(Ae).
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Pour ¢ assez petit, 'ensemble des vecteurs minimaux de A, est égal & celui de A. A4 et A,
sont donc deux matrices de Mz possédant le méme ensemble des 2x. Il n’y a donc pas
unicité de la matrice A.

Remargue : La notion de F-perfection est celle de [B-M-S 2.1.] ; toutefois ’hypothése
(I1.2.2) sous laquelle les auteurs définissent et étudient leur algorithme peut ne pas étre
vérifiée. Voici un exemple de réseau F-parfait dont les vecteurs minimauz n’engendrent

pas Uespace E.
On prend en dimension 4
2 0
A=Ay = (0 4) ,

la matrice
2 0 -1 -1
0 4 0 -3
A= -1 0 2 0
-1 -3 0 4
posseéde les 6 vecteurs minimaux
1 0 1 0 1 1
0 0 0 1 1 1
oty )tr)’fof’tog)’ty1
0 0 0 1 1 1

de rang 3 dans R* mais les images () engendrent 7.

I1.3.4 Corollaire. Si les matrices A; sont rationnelles, alors les matrices F-parfaites dans
M le sont aussi.

Démonsiration :
La proposition précédente montre qu’une matrice F-parfaite est solution unique d’un
systeme d’équations affines de la forme suivante :

(A, X'X) = min(4) VX € S(4).

Or dans ces équations les coefficients des matrices X*X sont entiers. On a donc un
systéme de Cramer a coefficients entiers. Les solutions sont donc rationnelles.
11.3.5 Théoréme. L’ensemble des classes d’isométrie des réseaux F-parfaits de F est
fini.

Démonstration : .
Soient L € F un réseau F-parfait et § = |J Bj une base de L telle que :
j=1

Vie{l...r} Gram(B;) = 4;.



39

Soient D le maximum des termes diagonaux de la matrice de Gram de la base B et z =
n
> aiei, a; € Z un vecteur minimal de L exprimé dans la base § = (e;).

l=IS’i1 n’est pas nul, |a;| est I'indice dans L du sous-réseau
L' =< e1,- - ,€im1,%,Cit1y--- €0 >
dont on majore le déterminant par 'inégalité d’Hadamard :
det(L') < N(e1)... N(ei—1)N(z)N(eit1)...N(en) < D*7'N,

. 3 . ’ : 2 n iy
Par ailleurs, le déterminant d’un réseau de rang n, de norme N, est minoré par J57- ot v,
est la constante d’Hermite en dimension n. On a donc :

n n—1
) e’ < ’x—nD"_lN = 7,,"—]%—"——_—1—.

Les a; étant entiers, et la majoration étant indépendante du réseau étudié dans F, on
en déduit qu’il n’existe qu’un nombre fini de n-uplets d’entiers pouvant représenter un
vecteur minimal de L. Or la matrice de Gram dans la base 8 d’un réseau F-parfait est
déterminée de fagon unique par les composantes entiéres de ses vecteurs minimaux dans la
base f (prop. 11.3.3). On obtient donc un nombre fini de matrices dans Mx représentant
un réseau F-parfait de F.

Dans le paragraphe suivant, on adapte I’algorithme de Voronoi a la détermination de
tous les réseaux F-parfaits de F. En fait, on adoptera le point de vue plus algorithmique
des formes quadratiques sur R".

II.4. Algorithme de Voronoi pour la famille F.

On note Q7 'ensemble des formes quadratiques définies par une matrice A de M. Il
s’agit donc des formes quadratiques définies positives sur R* de minimum N et telles que :

Q((L‘l,.,. ,mn,,O,,.. ,0) = Ql((L‘l,... ,In‘)
Q(Oy 30, T 4150 3 Tnygng, 0, )0) = Q2(mn1+ly~~~ 71:n1+n2)

Q0,... ,0,Tncn,t1s-- 1Tn) = Qr(Tn—n,+1,--- »Zn)

ot les Q; sont des formes quadratiques données sur R™ de méme minimum N. Par abus
de langage, on appelle sections les sous-espaces de R" formés des vecteurs dont toutes les
composantes sont nulles sauf peut-étre celles d’indices € [ny +... +ni-1 + 1,01 4+ ... +
ni—1 +nil.

11.4.1 Définitions: Soient @ une forme quadratique de Q@r et S'(Q) 'ensemble des
vecteurs minimaux hors des sections imposées, le F-domaine de Voronoi Dg de Q est
I’enveloppe convexe dans Mg des demi-droites fermées portant les 2, pour z € 5'(Q).



Rappelons que §; est la projection orthogonale sur Mp de P; = z'z et que la F-
perfection de @ équivaut au fait que intérieur du F-domaine est non-vide dans Mgq. Si
@) est F-parfaite, on appelle face R du F-domaine Dg son intersection avec un hyperplan
d’appui (dans Mp). On lui associe une matrice Bg de My. unique & homothétie positive
prés, telle que :

(it) (Br,Q-) =0<=> Q. R
Si Q@ est la forme quadratique définie par la matrice B, on associe & chaque face R une
nouvelle forme @y = Q + 6Qr qui est encore dans Q@ puisque By est dans Mj. Lorsque
9 > 0 est proche de 0, les vecteurs minimaux de la forme quadratique Q¢ proviennent de
ceux de Q. Il existe donc z vecteur minimal & la fois de @ et de Qs de sorte que :

min(Qe) = Qo(z) = Q(z) + Qr (<) = min(Q),
et il y a égalité sur 'ensemble des vecteurs minimaux « de @ dont I'image P, = ' dans

I’espace de Voronoi se projette orthogonalement sur My dans la face R. Pour € > 0 assez
petit, les formes @ et Q4 ont donc méme minimum.

Soit p > 0 la borne supérieure des 8 > 0 tels que Qp soit positive de méme minimum
que . Notons que p est fini car la forme @Qx n’est pas positive (puisqu’elle appartient
& Mp). 1l esiste alors un vecteur & € Z" tel que Qr(z) soit négatif, et donc tel que la
fonction 8 — Qg(z) soit décroissante. Le phénoméne d’impasse rencontré dans d’autres
variantes de I’algorithme ne se produira pas ici.

Alors, comme dans la cas classique, par définition de p, il existe y € Z" tel que :

Qo(y) = min(@)
Qoly) < min(@) V8> p
Le vecteur y est donc minimal de (2, et comme :

Qs(y) = Q(y) + Q= (y) <min(Q) = Qy) YI>p,

{ (8 (Br,) >0 VaeSQ)

on obtient :
Qxr(y) = (Br, Py) = (Br, ) <0.
La projection orthogonale Q, sur My de P, = y'y n’est donc pas dans la face R.

L’ensemble des vecteurs Q. pour z € S(Q,) contient, en plus des vecteurs qui appar-
tiennent & ’hyperplan R, @, ¢ R ; il engendre donc My et la forme @, est F-parfaite.

Cette nouvelle forme appartenant & Qr sera appelée contigué de Q) par la face R.

On construit ainsi a partir d’une forme F-parfaite un graphe de contiguité. Montrons,
comme Voronoi V’a fait dans le cas classique et A.M. Bergé, J. Martinet, F. Sigrist [B-M-S]
sous d’autres hypothéses, que toute forme F-parfaite de Qx appartient & ce graphe. Cela
est basé sur le résultat suivant dont on trouve une démonstration dans [Mar].

11.4.2 Lemme ( Voronoi ). Soient @ une forme quadratique définie positive, K et m deux
constantes strictement positives, alors I’ensemble des formes parfaites Q' de minimum m
vérifiant (Q, Q') < K, est fini.
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11.4.3 Proposition. Soient @ et Q' deux formes quadratiques définies positives dans
Qr de matrices A et A' dans Mz. Supposons Q F-parfaite, alors il existe un chemin
Qo = Q,Q1, ..., Qi deformes F-parfaites telles que Q; est contigué & Qiy1 et la projection
orthogonale sur My de A' appartienne au F-domaine de Qy.

Démonstration :

Supposons que paq,(A’) ¢ Dg, alors il existe une face de Do dont P'orthogonal R.B
dans M, vérifie :

(B, pm,(A")) = (B, 4") < 0.

Soit @1 la contigué de Q & travers cette face. On a donc: (Q1,Q") < (Q,Q’'). On construit
ainsi une suite strictement décroissante

< (QZ»Q'> < <Q11Q’) < (Q’QI)

Les formes Q; étant F-parfaites et de méme minimum, le lemme 11.4.2 permet de conclure

que la suite s’arréte a partir d’un certain rang et donc qu'il existe k > 0 tel que paq (A4') €
Do..

11.4.4 Lemme. (cf. [B-M-S]) Soient Q et ' deux formes quadratiques F-parfaites de

o o
méme minimum et soit Dg: V'interieur du domaine Dy ; alors, si Do N D est non vide,

Q=0

Démonstration : .
Alors V2! € $'(Q') il existe B > 0tel que G= 5 B.Q, (rappelons que Q, est
' €5(Q")
la projection orthogonale sur My des P+ pour 2’ € 5'(Q")).
En notant A et A’ les matrices de Q et Q' dans Mz, on a :

(G,A — A’) = Z ﬂ:’ (Qr‘y A- Al)

' €SHQY)
= ﬂ:‘(P:c’aA - A,)
' €5'(Q")
= Y Be(Pey A= D Bu(Pa, A
'€5"(Q") ='€5'(Q")
> 3 Bomin(d)— Y Bymin(4’)=0
'€S'(Q") z'€S'(Q’)

En faisant le méme raisonnement avec les Q; pour ¢ € S(Q), on obtient I'inégalité
inverse ce qui nous prouve que (G, A"} = (G, 4).

D’ou :
> B, A-A) =0
z'€5'(Q")
(e, A—A')y= (P, A-AY >0 Vz'eS§'(Q").
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Comune les 3, sont strictement positifs, on a les égalités :
va' e S'(Q"), (R, A-AY=0;
or les 2, engendrent My, donc A — A’ (qui est dans M) est nul.

I1.4.5 Théoréme de connexité. Soient deux formes quadratiques Q et Q' F-parfaites,
alors il existe un chemin Qo = Q,Q1,... ,Qr = Q' de formes F-parfaites contigués.

Démonstration :
Prenons le cas non trivial ot Q' n'est pas contigué & Q. La F-perfection de Q' nous
o

assure que l'intérieur dans Mg de son F-domaine Dy est non vide. Soit G € Dy, il existe
alors un chemin Qo = @,\,... ,Qx de formes F-parfaites contigués tel que G € Dg,,
donc d’aprés le lemme [1.4.4 on a Q) = Q'.

Remarque : On peut donc maintenant élaborer un programme permettant de trouver
toutes les matrices F-parfaites de M« a partir de 'une d’entre elles.

II.5. Améliorations de P’algorithme

Pour améliorer 'algorithme, et en particulier le temps d’exécution des programmes, on
introduit une nouvelle notion d’équivalence de deux formes quadratiques.
I1.5.1 Définition: Deux formes quadratiques @ et Q' appartenant & Q, de matrices A
et A’ dans M7, sont dites F-équivalentes s'il existe une matrice P € GL,(Z) de la forme

, PleGL,(2)

o
telle que : 'PAP = A'.

11.5.2 Proposition. La F-équivalence entre deux formes F-parfaites Q et Q', de matrices
dans Mr A et A', met en bijection les ensembles de leurs formes contigués, et plus par-
ticuliérement, deux faces F-équivalentes d’une forme stable par cette équivalence donnent
deux contigués F-équivalentes.

Démonstration

~ Soit P € GLp(Z) de la forme de la définition I1.4.1 telle que !PAP = A'. Soient R
une face du F-domaine de @, et R.B son orthogonal dans My. On note 4; = A+ pB la
contigué de A a travers cette face.



43

Remarquons que la matrice P stabilise le sous-espace My et qu’elle définit une bijection
entre les vecteurs minimaux de Q et ceux de @'. En effet, si x € S(Q) alors 2’ = P~z
appartient & S(Q').

On a alors pour ' € S(Q') :

i

(‘PBP,Q,/) = (‘PBP,a''z'y = t«('PBPP~ " (2'z)'P")

= tr(Bz'z) = (B,z'z) = (B,Q.).

La matrice PBP est donc un représentant de l'orthogonal d’une face du F-domaine de
A'. Orona:
Ay =A+4pB donc 'PA;P=A"+p'PBP.

On conclut alors que Ay = 'PA; P est la contigué de A’ par la face orthogonale & {PBP.
Remarque : Notons qu'on trouve dans [B-M-S] une notion d’équivalence moins restric-
tive : la condition imposée aux matrices P de changements de bases est simplement
tPMgP C My, ce qui suffit & assurer la démonstration précédente. Toutefois, cette
condition *PMyP C My, n'est a priori pas trés facile & détecter d’un point de vue algo-
rithmique.

D’un point de vue géométrique, notre F-équivalence consiste a considérer seulement les
changements de bases qui stabilisent les sections imposées et interdit donc “I’échange” de
deux sections isométriques.

Cependant, si I’on considére une famille de patchwork F dont les sections imposées sont
deux & deux non-isométriques, alors on vérifie facilement que les deux notions d’équivalence
coincident dans la pratique.

Le groupe Gr(A) des F-équivalences stabilisant la forme A agit sur les faces de cette
méme forme. Pour éviter une recherche trop longue des faces d’une forme, on supprime,
comme dans le premier chapitre, les génératrices “intérieures” (remarquons que dans ce cas,
deux génératrices du domaine peuvent étre proportionnelles), et on détermine seulement
un représentant de chaque classe de face. On peut donc élaborer un algorithme semblable
4 celui de Voronoi pour les formes F-parfaites.

0. Trouver une forme F-parfaite A € Mx (on utilise un programme de balayage).
e1. Trouver les vecteurs minimaux hors des sections imposées et stocker les §2; sous
forme de vecteurs a t = ZISKiSr n;.nj composantes.
2. Déterminer le groupe G r(A) des F-équivalences conservant la forme (7 « 0; f « 0).
3. Supprimer des génératrices “intérieures”.
e4. (Back-tracking) Choisir un €, linéairement indépendant de ceux déja stockés
(i e—i+1).
o5. Si la classe modulo Gr(A) du sous-espace formé par les 2, a déja été trouvée,
(i —i—1) et aller en 4.
¢6. Sinon
4+ Sii<t—1alleren 4.
+ Sinon tester si c’est une face.
* Si ce n'est pas une face, (i « i — 1) et aller en 4.
* Sinon stocker la face (f « f+1;¢ « i — 1) et aller en 4.



o7. Etablir la liste des contigués A,,... , Ay.

#8. Supprimer de la liste toute forme F-équivalente a une forme déja rencontrée.

#9. Terminer si aucune forme nouvelle n'a été conservée, sinon aller en 2 (en prenant
une nouvelle forme).

D.O. Jaquet constate dans [Jaq] que la complexité de I’algorithme de Voronoi classique

dépend dc la différence D entre le nombre s de paires de vecteurs minimaux et Ia dimension

n(n41)

de l'espace des matrices symétriques, . Dans notre cas, on travaille dans un espace

M de dimension inférieure (dim(Mp)=) n;.nj) et seuls les vecteurs minimaux hors des
i<j

sections interviennent dans 'algorithme (soit s’ le nombre de ces paires de vecteurs). La

complexité de notre algorithme dépend donc de la différence D' = s'-dim(Mo).

Concrétement, on remarque que si D' est supérieur & 12, une semaine est nécessaire
pour trouver toutes les contigués d’une forme. Par ailleurs, si cette différence dépasse 25,
on ne peut trouver toutes les contigués en un temps raisonnable. Ces résultats sont tout
& fait comparables & ceux trouvés dans le cas classique par D.O Jaquet.

Considérons plus particuliérement le cas ol les sections imposées L; sont de rang 1. La
famille F est donc ’ensemble des réseaux de E de norme N et ayant une base de vecteurs
minimaux, de sorte que les réseaux JF-parfaits sont les réseaux parfaits (au sens usuel)
qui ont une base de vecteurs minimaux. Cette restriction ne change pas la différence D'.
En effet, si s est le nombre de paires de vecteurs minimaux de la forme étudiée, on a :

! = s — n et on vérifie facilement que :

«

-1 1
D':S'—-dim(/\/to):s’_"(" ):s_n(n+ ):

D.
2 2

Ceci suggere que le fait d’imposer une base de vecteurs minimaux ne réduit pas la com-
plexité de ’algorithme, fait que j’ai constaté expérimentalement en dimensions 5 et 6.

L’utilisation du groupe des F-équivalences qui stabilisent la forme permet (lorsqu’il
n’est pas trivial, c’est-a-dire dans plus de la moitié des cas traités) d’accélérer la recherche
des faces (on gagne environ 50% de temps d’exécution du programme). On donne dans
I’annexe II un échantillonnage des temps de calculs en fonction du nombre de génératrices
du domaine et de l'ordre du groupe des F-équivalents.

I1.6. Résultats

Nous nous sommes bornés dans les exemples ci-dessous & des patchwork de deux réseaux
entiers L, et L, représentés par leurs matrices de Gram A; et A; normalisées a la méme
norme. Nous avons obtenu dans chaque cas la liste compléte des réseaux F-parfaits
(qui sont rationnels (I1.3.4)) & équivalence prés, et donc la constante d’Hermite vr =
supper 7(L). Pour le réseau réalisant cette constante (il est en effet unique & isométrie
prés dans chacun des cas traités), nous précisons une matrice de Gram entiére primitive
(dont les coefficients sont premiers entre eux dans leur ensemble), son déterminant, son
minimum g, le nombre de couples de vecteurs minimaux s, sa constante d’Hermite 7,
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nombre de couples de vecteurs minimaux dans le dual s* et enfin le carré de la constante
d’Hermite duale v'.

Afin de construire des réseaux denses de norme g = 6, nous avons souvent choisi 1’'un des
réseaux de départ dans la suite W; des réseaux de Watson [Wat] de dimension,2 <7 < 7,
(les 1¥; sont des sections de norme 3 de VZE: ;ona: We ~ Dy, Ws ~ A2 Wi ~ A3)
renormalisés au besoin.

Nous utilisons aussi les réseaux de racines, et plus généralement les réseaux parfaits,
pour lesquels nous adoptons les notations de Conway et Sloane [C-S].

Nous donnons d’abord des exemples de dimensions 5 et 6 pour lesquelles on ne cherche
pas & construire des réseaux parfaits (puisque la liste en est déja connue). On choisit
donc 'une des sections non parfaite. Il s’agit en fait d’un réseau de Watson. L’autre est
semblable & un réseau de racines A; donc de norme paire. On obtient donc des réscaux
entiers de normes multiples de 6 qui ne peuvent donc pas étre parfaits au sens classique.

I1.6.1 Dimension § : On choisit d’abord L; semblable au réseau critique en dimension
3 Az, et Ly au réseau de Watson W, :

633
A]=(363> Ag:(”)
336 z6
On obtient quatre matrices F-parfaites. La plus dense,

63333
36333

My=|33603],
33062
33326

dont les caractéristiques sont
(det =1188 s=16 y=14560 s*=1 pu=6 +'*=1.2792),

appartient au chemin de Voronoi reliant deux matrices de Gram de D5 le long duquel toutes
les matrices ont 16 vecteurs minimaux. Elles ont bien entendu un défaut 1 de perfection,
et ce sont les seules & avoir plus de 14 = n(n + 1)/2 — 1 vecteurs minimaux. Mj est la
seule matrice (& équivalence prés) de norme 6 sur chemin.

Remarquons que le réseau le moins dense de cette famille est un réseau eutactique de
norme 4, qui constitue un contre-exemple de dimension minimale & la question posée par
Coxeter {Cox] “les réseauz eutactiques ayant au moins ﬂ';Ll) vecteurs minimauz sont-ils
ezirémes?

La densité de M le situe entre les réseaux parfaits D5 et A :y(A3) = 1.4459 < vx =
1.4560 < 75 = 1.5157. Par contre, ce réseau (comme les trois autres) est médiocre du point
de vue de la dualité ou des automorphismes : /2 = 1.2792, |Aut(M; )| = 48, & comparer &
7*(Ds) = 2, |Aut(Ds )| = 3840.



11.6.2 C'est maintenant L; qui est semblable & W; (donc & D}), et L, au réseau A,

critique en dimension 2.
6 -2 -2
63
A,:(—fz 6 4) A2=(36)
-2-2 6

Les 5 réseaux F-parfaits M'; sont moins denses que les précédents (ils se situent entre
les réseaux parfaits Ag et As et 'on a: yx = 1.4345. Par contre, ils sont plus intéressants
du point de vue de la dualité. En particulier, le réseau le plus dense, de matrice de Gram

6 —2-2 2 3
26 —2 2 —1
Mi=]|-2-26 -2-
2 2 -2 6 3
3 -1-33 6

de caractéristiques
(det=1280 s=14 y=14345 s*=4 p=6 +'>=18750),

fournit la troisitme valeur connue pour % : 7’2(]VI’1) < 7'2(L(1)) = 1.9599, ot L(1) est
le réseau isodual construit par Conway et Sloane dans [C-S1] (cf. chap. III). Remarquons
que ce réseau n’a pas d’autre section parfaite que Lo, et que son dual n'en a aucune de
dimension supérieure a 1.

Il appartient au chemin de Voronoi reliant les réseaux parfaits Dy et A, et clest ici
encore le réseau de norme p = 6.

Dans le but de trouver de nouveaux de norme 3, nous avons aussi étudié la famille
patchwork du réseau Wy et du réseau v/3Z. On obtient trois réseaux F-parfaits dont un
seul est de norme 3 : il s’agit naturellement du réseau Wy, mais le plus dense est un réseau
de norme 6, & savoir le réseau M| précédent. Le réseau le plus intéressant du point de vue
de la dualité est W : rappelons que son dual est semblable au réseau parfait A2.

11.6.3 Dimension 6 : on prend L, et Ly semblables respectivement au réseau de racines
Ay et au réseau de Watson W, , de matrices de Gram

6333
3633 _ (62
A‘_(sass) A?_(zs)'

3336

Il y a exactement 11 réseaux F-parfaits (de norme 6 sauf un, de norme 12). Le plus dense,

de matrice
633333

363332
_| 336300
Ma=1333603 |
330062
320326
est & peine moins dense que P2 ~ B} : 75 = v(Mz) = 1.5949 < v(PZ) = 1.6012. Il
appartient encore & un chemin de Voronoi a 28 couples de vecteurs minimaux au-dessus
du réseau D; joignant le réseau critique Eg & lui méme, et c’est le seul de norme 6.
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Le réseau le moins dense du chemin est encore un réseau eutactique de norme 4, autre
contre-exemple a la question posée par Coxeter.

Ici encore, on étudie les extensions du réseau de Watson Ws. On obtient des résultats
tout a fait analogues & ceux de I1.6.2 : il y a trois extensions F-parfaites, dont une seule,
W, est de norme 3 (7(Ws) = 1.5, s(Ws) = 16) ; mais la plus dense est un réseau de norme
6 presque parfait (y£ = 1.516, s = 20). Une étude analogue en dimension 7 donne 4
extensions F-parfaites de Wy, mais dont la plus dense est évidemment le réseau de norme
3 W7 ~ E7 (le second en densité de la liste des réseaux parfaits de rang 7). L’un des autres
réseaux est également parfait (de norme 6) : il s'agit du réseau P}2.

Dans ce qui suit, on cherche plutot & étendre les listes de réseaux parfaits connus, &
partir de réseaux parfaits de rangs inférieurs.

I1.6.4 Dimension § : Ici, on ajoute en somme directe un réseau parfait de rang 6
avec le réseau plan hexagonal de méme norme. On obtient une liste exhaustive de réseaux
parfaits de rang 8, tous plus denses que Ag, ce qui est conforme & la conjecture de Coxeter :
“A, 1s the least dense perfect lattice in n dimensions”. Parmi ces réseaux, 53 n’ont pas
de section hyperplane parfaite. Compte tenu des résultats de Laihem, on posséde donc
maintenant une liste de 1228 réseaux parfaits en dimension 8 qui ont une section parfaite
de codimension 1 ou 2.

Le tableau suivant fournit, pour ¢ = 1,...,7 le nombre (& isométrie prés) de réseaux
parfaits dans R® sommes directes du réseau hexagonal (semblable & Ay) et d’un réseau
parfait semblable & P§ ou les P} sont les 7 réseaux parfaits de rang 6 classés par ordre
décroissant de densité. On donne aussi le nombre (shp) de formes sans section hyperplane
parfaite, la meilleure constante d’Hermite 7 et le nombre maximum smq; de couples (+x)
de vecteurs minimaux, atteints sur Eg et deux réseaux construits par Barnes, une extension
9(8,1) du réseau P2® et le réseau L} déja rencontré au chapitre L.

F Pl=E |P:=E |Pi=Ds|P¢ Py pg Pl =As
Nombre |5 5 5 71 33 84 >9
shp |2 0 0 19 9 23 >3
vE 2 (Kg) |1.754 (L) |2 (Es) |1.754 (L3)|1.746 (g(8,1)) | 1.754 (L}) |2 (Bs)
Smaz 120 54 120 54 54 54 120

Donnons quelques statistiques sur les 53 réseaux sans section hyperplane parfaite. On
trouvera dans l’enneze I les principales caractéristiques de ces réseaux.

Tous sont nouveaux sauf le seul réseau de norme 10 figurant dans la liste des contigus
de Dy obtenue par Jaquet. Ils ne peuvent pas étre dans la liste des réseaux de Barnes, qui
possédent tous une section hyperplane parfaite de méme norme. Ils sont tous de norme
8 excepté deux de norme 6, cinq de norme 12 et un de norme 10. Seulement 15 sont
eutactiques, donc extrémes. Le plus dense de ces 53 réseaux (y = 1.7354), de norme
6, de la forme Eg @ Aq, est aussi celui qui a le plus de vecteurs minimaux (s = 51)
et le plus d’automorphismes (g = 144). Du point de vue de la densité, il se place en
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douziéme position de la liste de tous les réseaux parfaits connus de rang 8. L’ordre de
son groupe d’automorphismes n’est pas trés important comparé par exemple au réseau de
Barnes Lj qui posséde 62208 automnorphismes. Plus généralement, les ordres des groupes
d’automorphismes des 53 réseaux parfaits valent pour les 5/6-i¢mes d’entre eux 2, 4 ou 8.

Du point de vue de la dualité, la meilleure constante d'Hermite duale atteinte sur
un réseau au-dessus de Ag, (7'rpar = 2-6203), est plus élevée que celle du réseau Dy
(¥7(Ds) = 2), mais ne dépasse pas celle du résean L} (7'2(L“81) = 2.6666) qui est la
meilleure constante connue, mise a part celle de Eg qui vaut 4. Le nombre de paires de
vecteurs minimaux des duals est inférieur ou égal a 4, ce qui laissait présager de faibles
constantes '

Intéressons-nous plus particuliérement aux réseaux au-dessus des trois réseaux de racines
s, D, As.

Dans ces trois cas, il y a peu d’extensions ; l’expérience montre que le nombre d’extensions
des réseaux P§ varie en sens inverse de l'ordre des groupes d’automorphismes des PL
L’étape la plus longue de notre algorithme a ici encore consisté & déterminer les contigus
du réseau Es a cause du grand nombre de ses vecteurs minimaux (120). Grice i la remar-
que de convexité déja utilisée au chapitre I, on peut éliminer certains vecteurs minimaux
pour I’énumération des faces du domaine et donc augmenter la rapidité des calculs ; il a
toutefois fallu 20 jours de calculs sur une station SPARC 10 pour déterminer les voisine de

Fe au-dessus de Ag.

Les réseaux de racines ou liés & ces réseaux que 'on trouve au-dessus de Ag (resp. Ds,

resp. Fg) sont Ag, Dy, A2 et Eg (resp. Dy, Al et [, resp. A et Fs).

Autre résultat : On a également construit des réseaux F-parfaits sommes directes de
réseaux semblables & Dy et au réseau de Watson Wy respectivement. On a notamment
trouvé un réseau parfait de norme 6 avec 47 couples de vecteurs minimaux qui contient un
réseau semblable & IDs mais n’a pas de section parfaite de codimension 1 ou 2 et ne figure
donc pas dans les listes précédentes. C’est donc un nouveau réseau & ajouter a la liste des

1228 réseaux parfaits de rang 8.

11.6.5 Dimension 9 et 10 : On ajoute dans ce paragraphe le réseau plan hexagonal &
un réseau parfait de rang 7 ou 8.

On obtient alors une liste de réseaux parfaits en dimensions 9 et 10. En particulier, il
y a 19 réseaux (resp. 8 et 14) au-dessus de E; (resp. E% et Eg).

En dimension 9, les réseaux obtenus par extension de E; sont assez denses (cf. tableau
I). Cependant, les deux réseaux les plus intéressants du point de vue de la densité, du
groupe d’automorphismes et du kissing number sont déja bien connus : il s’agit des réseaux
B2 ~ Ag et A} de Barnes. Par contre, les extensions de E} (dont aucune n’est de norme
3) ne sont pas trés denses et possédent au plus 62 vecteurs minimaux.

On a également obtenu une liste d’environ 600 réseaux parfaits de rang 9 de la forme
Pf @ Ay, olt P§ est le sixiéme réseau parfait de rang 7. Leurs caractéristiques n'étant en
général pas trés intéressantes, nous avons arrété la recherche. Nous étudions 'un d’eux au
chapitre IIIL.



49

En dimension 10, on ajoute en somme directe les réseaux A; et Eg. On trouve exacte-
ment 14 réseaux parfaits dont le réseau laminé Ayg (cf. tableau II).

Dans les tableaux ci-dessous, dans lesquels figurent les 6 réseaux les plus denses au-
dessus de E; et Eg, on précise dans la premiére colonne ceux d’entre eux qui ont déja été
rencontrés comme extensions.

Tableau I
Eztensions de B

det |N|(s,s*) ||Aut| ¥ 4% | Extr
B2 512 |4 |(136,1)]10321920]2 2 E
Ag 218706 |(129,1)| 725760 1.9761.8 E
ext(Ig) | 768 |4 [(99,3) |18432 1.911|2.666 | E
320766 |(90,2) |2880 1.894 (2318 |E
335346 |(88,1) |288 1.885|2.217 [N-E
ext(AZ) 896 |4 [(91,1) |4608 1.879(2.285 | E
Tableau II
Eztensions de Eg
det N |(s,s%) ||Aut| v % | Extr
Ao | 768 4 |(168,3) 884736 |2.058 | 2.666 | E
ext(A3) | 54675 6 |(147,3)|7776 |2.015]24 |E
ext(Ng) | 960 4 |(154,2) | 322560 (2.012|2.133 | E

ext(A3) | 3400690959 | 18| (141,1) | 1440 |2.005]2.227 | N-E

cxt(AY) | 59533056 [12|(141,2)[288  [2.003|2.257 |N-E

61236 6 [(141,2)|17280 |[1.99212.142|E
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Chapitre III

Algorithme de Voronoi et probléemes de dualité

En parcourant des chemins (stables par dualité ou & automorphisme imposé) joignant

deuz réseaus parfaits contigus, on comstruit des réseauz isoducuz (ou & constante duale
élevée) en dimensions §,5,6,7 et 9.

IIL.1. Introduction et notations

Dans la premiére partie de ce chapitre, nous utilisons l’algorithme de Voronoi pour la
recherche de réseaux “presque” parfaits isoduaux, c'est-a-dire isométriques & leurs duals.
Motivés par des questions de géométrie Riemannienne, Conway et Sloane ont introduit dans
[C-S1] ce type de réseaux, et les ont étudiés du point de vue de la densité. L’algorithme
de Voronoiou une de ses variantes, introduit naturellement des chemins linéaires joignant,
dans I'espace des réseaux, deux réseaux parfaits, éventuellement au sens large. L'un des
intéréts de ces chemins, c’est que l'on y rencontre des réseaux & grand kissing number
(s = n{n + 1)/2 — 1), constant tout le long du chemin. Il est naturel pour la recherche
de réseaux isoduaux, oti plus géneralement semblables & leurs duals, de se limiter & des
chemins de Voronoi stables par dualité. Plus correctement, il s’agit de chemins dans
I’espace des matrices symétriques joignant deux matrices parfaites ~ontigués, et qui sont
stables par inversion modulo normalisation et équivalence. Pour assurer cette condition
dans la pratique, on ieur impose de contenir (& similitude prés) un couple de réseaux duals.
Par exemple, les réseaux parfaits A; et A} (qui sont semblables) sont contigus, de méme
que les réseaux Iy et I (eux aussi semblables), que les réseaux Eg et B¢, et que Er et E7.

Dans les cas des dimensions 2 et 4 évoqués ci-dessus, tous les réseaux du chemin sont
(aprés normalisation) isoduaux. Par contre, sur les chemins reliant Eg et Ef (resp. E7 et
), nous avons trouvé un seul réseau isodual, le plus dense connu en dimension 6 (resp.
7), réseau construit par Conway et Sloane (par “collage” de réseaux de racines, cf. [C-S1])

Conway et Sloane ont également construit par “collage” les réseaux isoduaux de densité
record en dimensions 3 et 5, mais ces réseaux ne possédent pas assez de vecteurs minimaux
pour pouvoir appartenir & un chemin de Voronoi au sens classique. Nous les trouvons
ci-dessous sur un “raccourci” joignant encore deux réseaux parfaits. Enfin, nous montrons
que le réseau de dimension 9 construit par Conway et Sloane n’est pas extréme parmi les
isoduaux, et nous construisons un chemin d’isoduaux tous plus denses.

Précisons la notion d’isodualité (cf. [B-M1]). Un réseau L est dit o-isodual s’il existe une
transformation orthogonale o de E telle que o(L) = L* (ou o(L*) = L), en particulier,
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il est dit orthogonal (resp. symplectique) s’il existe une telle isométrie o avec o2 = id
(vesp. o? = —id, ce qui exige n pair). Un réseau o-isodual est dit o-extréme s’il réalise
un maximum local de densité sur ’ensemble des réseaux o-isoduaux. Nous avons vérifié
que les réseaux isoduaux que nous construisons sont orthogonaux (et symplectiques dans
le cas pair), et g-extrémes. (Dans le cas n = 3, Conway et Sloane ont montré que le réseau
cec est le plus dense des réseaux isoduaux de dimension 3.) Par contre, dans chaque cas,
nous prouvons qu’ils réalisent le minimum de la constante 4’ sur leur chemin.

Nous adoptons dans la pratique le point de vue matriciel. Dans chaque cas, on construit
une famille de matrices symétriques définies positives de méme norme, & un parameétre ¢ :

A =A+tB, tel=lab,

pour laquelle il existe une matrice P € GL,(Z) telle quel que soit ¢ € I, alors tPA, 1P soit
proportionnelle & une matrice A+ de la famille. La recherche du réseau isodual consiste
alors a chercher une valeur de t telle que ¢ = t*.

TI1.2. Cas des dimensions 6 et 7.
I11.2.1. Btude du chemin de Voronoi reliant E; a E.

Dans tout ce qui suit, on utilise Ualgorithme de Voronoi d base de vecteurs minimauz
imposée (cf. second chapitre).

On lance P’algorithme & partir d’une matrice de Gram A (normalisée & 4) du réseau de
racines Eg, et on Parréte dés que 'on trouve 'unique orbite de faces (modulo ’équivalence
classique) conduisant & une matrice de Gram d’un réseau semblable a Eg.

Soit B un vecteur de cette face, c’est-a-dire un représentant de 'orthogonal de la face.
On étudie ici le chemin de Voronoi & un paramétre défini par A +tR ou t décrit la droite
réelle. On obtient alors la matrice A; dépendant du paramétre ¢ définie par :

400222 0 11 0 0 0O
042222 10 0 -1 -1 -1
02 42 2 2 1 000 0 0
Av=A+tB=|, o o9 4 2 9|7t 0 -1 0 0 -1 -1
22 2 2 4 2 0 -1 0 -1 0 -1
22 2 2 2 4 0 -1 0 =1 =1 0
4 —t t 2 2 2
“t 42 —t42 —t+2 —t42
e 2 4 2 2 2
12 —t+2 2 4 —t+2 —t+2
2 —t42 2 —t42 4  —t42
2 —t42 2 —t+2 —t+2 4
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Soit Ly, le résecau associé a la matrice de Gram A, (lorsqu’il existe, il est unique a
isométries prés).

Par construction, le minimum de la matrice A; = A4 4 tB reste constant (min(At) =4)
lorsque t > 0 est “assez petit”, et pour les valeurs ¢ = 0 et ¢ = 1, on obtient les deux
matrices parfaites Ag et A; correspondant aux réseaux de racines Ly ~ Eg et 4 son dual
Ly, ~ Eg.

Le déterminant du réseau L, associé & la matrice de Gram A, vaut 3(f — 2)%(¢ + 2)*, ce
qui prouve que la matrice n’est plus définie positive lorsque [¢| > 2. On montre alors que
si t appartient & | — 2,0[ (resp. ]1,2[), le minimum de la matrice A; décroit linéairement
suivant ¢ selon le graphe ci-dessous.

min(A;)

4

y=2t+4

L) -1

Lemme 2.1.1 : Soit L; un réseau associé a la matrice de Gram A, alors le dual Lj est
semblable & L avec t* = 4t=4,

Démonstration : 1l suffit de vérifier matriciellement la relation * P(4,” )P = 6—(:{—_‘_1sz;4‘¢__-74,
ol P est la matrice d’équivalence suivante :

00 0 -1 0 O
00 -1 0 -10
01 0 0 0 1
P= 10 0 0 0 1 € GLs(2).
01T 0 0 0 O
00 -1 -1 0 O

On vient donc de montrer que la dualié ¢ — t* conserve le segment [0, 1] et échange les

intervalles | — 2,0 et ]0,2[. L} est isométrique & k()L , avec k(t) = 6(:;'—;‘4).

Or, il n'existe qu'une valeur ty €] — 2,2{ telle que t = =2 (¢ = 2(2 — V/3)) pour
laquelle L, est semblable & L},. En renormalisant Ly, de fagon qu’il ait méme norme que
son dual, on obtient un réseau isodual de rang 6, de norme 4k(tp) = 1 + %-, défini sur
Q(v/3). Comme tous les réseaux représentés par les matrices Ay, 0 < t < 1, il posséde 24
couples de vecteurs minimaux. Ce réseau figure dans 'article de Conway et Sloane sous le
nom de M(Es), et il a une interprétation en géométrie riemannienne : J.R. Quine a montré
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qu'’il s’agit de la jacobienne d’une courbe de Picard de genre 3. Il a également prouvé, avec
P.L. Zhang, que ce réseau est symplectique-extréme.

Soit 8 une base de Ly, telle que Gram(f) = A,,. La transformation o représentée par P
dans les bases 3 et §* est du type symplectique. En effet, il suffit de vérifier que 62 = —id,
c’est-a-dire, matriciellement :

(A4, ' P)? = s,

olt Ay, "' P est la matrice de ¢ dans les bases (3, 8).

Etudions la constante d’Hermite duale 7 sur un tel chemin.
Proposition 1I1.2.1.2. Sur un chemin de Voronoi stable par dualité, il eziste au plus
un résean o-isodual o-extréme (avec 0® = tId), et ce réseau réalise le minimum de la
constante v' sur le chemin. ’

Démonstration :

Soit L un réseau o-extréme, c’est-a-dire qu'il réalise un maximum local de la constante
d’Hermite sur I’ensemble des réseaux o-isoduaux. Un tel réseau doit vérifier une condition
d’eutaxie relative & o (cf. [B-M1]) : il existe des coefficients p; > 0 tels que

Z f)r(pr _pa(r)) = 01

z€S(L)

ol les p; sont les projections orthogonales sur les droites Rz. Une telle relation s’écrit
aussi : :

Z PPz = Z PzPo(z)»

zeS(L) z€S(L)

ou le vecteur o(z) décrit S(L*) lorsque z décrit S(L). La relation précédente est donc un
cas particulier de la relation de dual-eutaxie (cf. [B-M2)).

Par ailleurs, tout le long du chemin de Voronoi, les matrices de Gram A; ont méme
ensemble de vecteurs minimaux S ; la stabilité de ce chemin par dualité fait que 1’ensemble
S* des vecteurs minimaux de leurs matrices inverses ne dépend pas non plus e t. Ce
chemin est donc contenu dans une “classe au sens dual” telle qu’elle est définie dans [Ber],
classe qui contient, & similitude prés, au plus un réseau dual-eutactique (car S engendre
R™), sur lequel la constante 4’ atteint son minimum.

Revenant & ’exemple précédent, nous notons que le réseau isodual n’est pas eutactique.
L’unique réseau eutactique (& isométrie prés) sur le chemin {L;, 0 < ¢ < 1} correspond
3 la valeur ¢t = 2/3, et réalise naturellement (cf. [B-M1]) un minimum de densité sur ce
chemin : y(Ly/3) = 1.573 < v(Ly,) = 1.577 < 7(Ef) = 1.601 < v(Ee) = 1.665 (les valeurs
de 7' sont 7'(Ly,) = 1.577 < v'(Lgy3) = 1.581 < ~'(Eg) = +'(Es) = 1.632).

1I1.2.2. Etude du chemin de Voronoi reliant E; a E;.

On effectue en dimension 7 un travail similaire & celui du paragraphe précédent pour
déterminer un réseau semblable & son dual.
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Pour obtenir une paramétrisation du chemin, on applique I’algorithme de Voronoi dans
le cas ou une base de vecteurs minimaux est imposée en partant d’une matrice de Gram
de E¢ (dont le domaine de Voronoi est trés facile & déterminer) et 'on obtient une famille
de matrices 4, dépendante du parameétre ¢ :

2 2t —2t 2t —t+1 —i4+1 —t+41
2t 2 2 —t+1 2 ot 2
—2t 2t 2 t—1 —t4+1 —t4+1 —t41
Ac=| 28 —t4+1 t-1 2 2 2t 26 |, tel-1,1/2,
—t4+1 2t —t+1 2 2 —t+1 —t+1
—t41 2t —t+1 2 —t4+1 2 —t41
—t41 2t —t+1 2t —t+1 —t+41 2

(le déterminant de cette matrice est —2(2¢ — 1)(t + 1)°®). Par construction les matrices Ao
et A L correspondent aux réseaux E; et Ej. On vérifie aisément que 'on a :

o4y 1 B3
PACIP = 3 s A
ol P est définie par :
10 0 01 €O
01 0 1100
00 1 0111
P=]11 -11000
10 0 01 10
10 0 1111
11 1 0111

On vient donc de prouver qu'un réseau L, correspondant & la matrice A; posséde un
dual semblable au réseau Li-sc. La valeur pour laquelle le réseau L; est semblable & son
-5t

3
dual est 2o = 1/5.

5 1 -1 1 2 2 2

1 5 1 2 111
11 5 -22 2 2
5/24,= 1 2 -2 5 1 1°1
2 1 2 1 5 2 2

2 1 2 1 25 2

2 1 2 1 225

Ce réseau rationnel posseéde 27 couples de vecteurs minimaux et réalise la meilleure
constante d’Hermite connue parmi les réseaux isoduaux. Il est de type orthogonal, bien
que la transformation ¢ définie ci-dessus par la matrice P ne sqit pas uhe symétrie. Or,
le sous-groupe des transformations changeant L1 en son dual est 0.G = {og, g € G} ol



56

G est le groupe d’automorphismes du réseau L%. La transformation ¢’ € 0.G représentée
dans les bases f et §* par la matrice

10 0 111
01 0 1 001
00 1 -100 1

P=}11-1 1 00 0]/,
10 0 0 011
10 0 0 101
11 1 0 111

vérifie la relation d’orthogonalité : o' = Id.
(A 71+ P'Y? = I = Mat(id, B, B)-

On vérifie alors la o'-extrémalité et notamment la ¢'-eutaxie : on trouve des coefficients
égaux (tout le long du chemin le groupe d’automorphismes est d’ordre g = 28345, d’indice
28 dans celui du réseau Ey). D’aprés la proposition I11.2.1.2, ce réseau réalise un minimum
de la constante 4" sur le chemin (v = v = 5/3). Il n’est donc pas dual-parfait (la
dual-perfection, notion introduite dans [B-M2], siginfie que les projections sur les vecteurs
minimaux du réseau et ceux de son dual engendrent I'espace Endy(E)) : tout le long du
chemin, les projections sur les vecteurs minimaux du réseau L, engendrent un hyperplan
de 'espace, de méme que celles relatives & son dual, et ces deux hyperplans viennent se
confondre lorsque L; est isodual. Clest le seul réseau non dual-parfait du chemin. On
retrouve le méme phénoméne pour le réseau isodual de rang 6.

II1.3. Etude de la dimension 5.

Dans ce paragraphe, le probleéme est différent de celui des dimensions 6 et 7. En effet,
on vérifie qu’il n’existe pas de chemin de Voronoi reliant un réseau parfait & son dual.
Cependant, en considérant un “raccourci” de deux chemins Voronoi consécutifs, on obtient
un chemin & un paramétre stable par dualité.

Donnons ci-dessous la construction d’un tel chemin.

Soit

4 2 0 2 0
2 4 -2 2 0
A=|0 -2 4 -2 -2
2 2 -2 4 2
0 0 -2 2 4

une matrice de Gram du réseau Ds, renormalisé & la norme 4. Le domaine de Voronoi de
A posséde exactement 4 classes d’équivalences de faces. (Deux classes différentes (I’'une &
14 vecteurs minimaux, l’autre & 16) conduisent & une matrice de Gram de Ds, et les deux
autres classes & des matrices de Gram de AJ et As.)

Comme dans les exemples précédents, on obtient une paramétrisation du chemin reliant
D5 & A} en appliquant ’algorithme de Varonoi & la matrice de Gram A du réseau Ds, et
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on stoppe la recherche des faces lorsque 'on a trouvé un représentant de I'unique orbite
de face conduisant & A? (soit B la matrice de Gram obtenue).

On considére maintenant le chemin de Voronoi reliant la matrice de Gram A avec une
autre matrice de Gram C du réseau )5 par une face & 16 vecteurs minimaux (cf. 11.6.1).

Ces deux chemins de Voronoi ne sont pas stables par dualité. Par contre, si ’on considére
le “raccourci” reliant les deux matrices B et C, on obtient un chemin & un paramétre qui
n’est pas un chemin de Voronoi, mais qui est stable par dualité.

Donuons ci-dessous une paramétrisation de ce chemin :

4 2t —t4+2 2t t—2
2t 4 t—2 —t+2 -2
Ai=C+t*x(B-C)=| —-t+2 t-2 4 t—2 t—2
2t —t+2 t-2 4 —~t42
t—2 —2t t—2 —t42 4

On a alors A9 = C, A; = B. Le déterminant de cette matrice est —2(3t — 4)(t + 2)* ; la
matrice A; est définie positive lorsque t €] — 2,4/3[, et on vérifie que 'on a :

Tt —10

'P(A) ' P = — Al
(A)7P 8(3t2+2t—8)A7-—‘o

ol P est la matrice de GL5(Z) définie par

0 0 -1 1 1
0 -1 0 0 1
P=}-1 0 -1 0 0
1 0 0 1 0
1 1 0 0 —1

Un réseau L, défini par la matrice A, (t €] — 2,4/3[) posséde donc un dual semblable

au réseau L, avec t* = =12 Oy obtient alors un réseau semblable & son dual pour la
) 7110

racine de 'équation ¢ = ¢* appartenant & | — 2,4/3[ : t; = £. La matrice de Gram rendue
entiére est .

7 3 2 3 -2
. 3 7 -2 2 -3
Tag=|2 =2 7 —2 -2
4 3 2 -2 7 2
2 -3 -2 2 7

Le réseau isodual correspondant est de norme 4/5. Il est de type o-orthogonal pour
Pendomorphisme o associé & P, et réalise un maximum local de densité parmi les réseaux
o-isoduaux. Ici encore, les coefficients de o-eutaxie sont tous égaux.

La dualité ¢ « ¢* échange les intervalles {—2,6/7} et {4/3,6/7}. Le dual de D5 corre-
spond & t = 6/5, ce qui place sa matrice & 'exterieur du chemin de Voronoi (sur lequel
s = 5). Par contre le dual A? de A} est semblable & la matrice Ag /3 qui appartient au
chemin proprement dit.



Les matrices A; pour t €]0,1[ ont le méme ensemble S de vecteurs minimaux & 10
éléments. Elles ont aussi le méme groupe d’automorphismes d’ordre 240. En particulier,
elles sont invariantes sous ’action d’une matrice @ d’ordre 5. L’ensemble de matrices M
telles que QM@ = M dépend linéairement de trois paramétres. A.M. Bergé, J. Martinet
et F. Sigrist ont mis au point un algorithme a groupe d’automorphismes G donné (cf.
[B-M-S]). Dans le cas d’un groupe d’ordre 5, ils ont montré que la matrice C de D5 a 3 G-
contigués dont deux sont des matrices de Gram de As, et la troisiéme représente le réseau
A}. Le chemin de G-contiguité reliant les matrices de D5 et A2 est précisément le segment
{A¢,t €]0,1[} que nous avons pris comme “raccourci”’entre B et C'. Clest cette méthode &
groupe d’automorphismes imposé que nous allons utiliser dans les exemples suivants.

IIL.4. Etude de la dimension 3.

Soient G un groupe cyclique d’ordre 4, o un de ses générateurs et soit la représentation
p de rang 3 définie par

00 -1
plo)=Q=1[1 0 -1
01 -1

On considére ’ensemble des matrices symétriques définies positives dérdre 3 7 =
{M,'QMQ = M}. C'est espace vectoriel des matrices

z y —a—2y
y x y , TER,yeR.
—x -2y y T

Lorsqu’elle sont définies positives, elles représentent les G-réseaux, c’est-a-dire les réseaux
de E stables sous l’action du groupe G C O(E), et qui sont des Z[G]-modules libres.
Lorsque I’on impose un minimum 2 & ces matrices, on obtient la famille

2 t —2t—2
A= t 2 ¢
—2t—2 ¢ 2

, te[-1,-1/2],

ot A_; représente le réseau parfait Ag et A_,/ le réseau le moins dense de la classe fragile
4 5 vecteurs minimaux cité dans [C-S1]. Lorsque I'on applique 1'algorithme de G-Voronoi
& partir de la matrice A_;, on obtient dans ’espace 7 un domaine & deux faces dont 'une
est une impasse (le vecteur de face est une matrice positive), et 'autre face conduit au
chemin ci-dessus.

Dans l'intervalle ouvert | — 1, —1/2[, les matrices ont le méme ensemble de vecteurs min-
imaux constituant une orbite & 4 éléments sous ’action de Q. Les matrices correspondant
4t=—1out=—1/2 ont une deuxiéme orbite de vecteurs minimaux. Il s’agit donc d'un
chemin de G-Voronoi au sens de [B-M-S). En fait, les matrices A; sont définies positives
pour ¢ €] — 2,0, et on constate que l’on a la relation

'PATP = k(t)Ae,
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100
avec k(t) = 24048l e ¢* =2 ot P= |1 1 0.
1 1 1

Cette dualité échange la matrice parfaite A_; avec la matrice A_, /3 €t conserve glob-
alement le segment correspondant a l'intervalle [—1,—2/3] (elle échange les intervalles
] —2/3,0[ et ] —2,—1]). Sur Vintervalle [—1,—2/3], ’équation ¢ = ¢* a une unique so-
lution ¢ = 2 — 2v/2 qui correspond (aprés normalisation) 4 un réseau isodual de norme
2(y/k(to) = 1/2 + % On reconnait le réseau ccc de Conway et Sloane qui réalise le
maximum absolu de la constante d’Hermite des réseaux isoduaux de dimension 3.

1IL.5. Etude de la dimension 9.

I11.5.1. Un chemin intéressant du point de vue de la dualité.

Le réseau extréme Aj de Coxeter est intéressant du point de vue de la dualité. Il a
45 vecteurs minimaux ainsi que son dual ~ A2, et il réalise le maximum de la constante
d’Hermite duale ¥’ = 1/16/5. A isométrie prés, il a un seul contigu dont les caractéristiques
sont : p = 10, s = 45, s* = 16, v = 1.779, 4’ = 1.755. Son groupe d’automorphismes est
d’indice 45 dans celui de A§. Le chemin les joignant ne peut pas &tre stable par dualité
puisqu'il ne contient pas le réseau A2 (en effet, ce réseau est parfait et il serait donc le
contigu de A§). D’aillleurs, tout le long du chemin ouvert, on a s = 44 # s* = 16, ce qui
exclut la présence d’un réseau isodual. Par contre, nous allons trouver un chemin joignant
Aj a un autre réseau parfait, et tout le long duquel on aura s = s* = 40. Pour cela,
on utilise I'algorithme de Voronoi pour le groupe cyclique d’ordre 10 et sa représentation
d’augmentation de degré 9.

Soit
000O0OOO0OUO0 -1
1000 0O0O0O0C -1
01 000O0O0CO0 -1
00100000 -1
P=|0 00100 0 0 -1]¢eGL(2Z)
000010O0O0C —1
00 0O0O0C11O0O0 -1
000O0OOO0T11O0 -1
0000O0OO0OODT1 -1
I'image d’un générateur par la représentation d’augmentation, et soit

a b ¢ d e z e d ¢

b a b ¢ d e z e d

c b a b c d e z e

d ¢ b abc dez

T= e d ¢ b a b c d e , avec & = —a — 2b— 2¢ — 2d — 2¢

z e d ¢ b ab ¢ d

e e d ¢c b a b ¢

d e z e d c b a b

c de 2 e d c b a
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I'espace des matrices invariantes par P.

Si Pon applique 'algorithme de G-Voronol a partir d’une représentation dans 7 du
réseau Aj (@ = 8,b =d = e = 2 = —2,¢c = 3) on obtient, & équivalence prés, trois
contigués parfaites. Les deux premiéres, & 70 couples de vecteurs minimaux, sont peu
intéressantes du point de vue de la dualité et sont comparables & celles que nous avons
construites dans les deux premiers chapitres. Le long du troisiéme chemin de contiguité,

8 —20-2 —143 20—2 —20—2 61—2 —2—2 2A—2 —t43

—20—2 8  —2U—2 —t+3 20-2 —2U—-2 6t—2 —2—2 2—2

—43 —2t—=2 8  —2—2 —t43 2t-2 —20—2 61—2 —2(-2

20-2 —t+3 —2t—-2 8 —2U—2 —t+3 20—2 —2t—2 6t-2

A= | —2t-2 2t-2 —t43 —2t-2 8 —2(—2 —t43 2(-2 —-2t-2 t €]0,1/3],

61—2 —20—2 24—2 —t4+3 —20—2 8 —20—-2 —t43 2t—2

—20—2 6(—2 —20—2 24—2 —t43 —20—2 8 —2t-2 —t43

202 —20—2 61-2 —2t—2 20—2 —t+3 —20—2 8 —2t—-2

—143 20—2 —2t—2 6t—2 —20—2 2t—2 —t+3 —2(-2 8
on a constamment s = s* = 40 (plus précisément, ’ensemble S des vecteurs minimaux
des matrices est constant, et constitué de 4 orbites a 10 éléments, de méme que ’ensemble
S5* des vecteurs minimaux des matrices inverses). Malgré les apparences, ce chemin n’est
pas stable par dualité. De plus, nous avons montré qu'’il n’existe pas, sur ce chemin, de
matrice ayant la méme densité que son inverse.

Cependant, la contigué G-parfaite A;/3 correspondante présente une propriété remar-
quable : elle réalise, ez-aequo avec lautre extrémité du chemin, la meilleure valeur connue
¢ ce jour (\/16/5) de linvariant d’Hermite dual. Plus généralement, on a, le long du
chemin,
t+5

(t+1)(5 - 31)’

qui atteint son minimum (3.149) pour ¢ = ﬁs&@, valeur supérieure & toutes celles
que nous avons trouvées dans les chapitres précédents. La contigué 4,/3, de norme 6,
est extréme au sens classique ; son inverse qui a 40 vecteurs minimaux ne peut pas étre
parfaite (n(n + 1)/2 = 45), elle n’est pas non plus eutactique. Nous avons toutefois vérifié
la dual-eutaxie de ce couple de matrices (comme nous l’avons fait pour K’y au premier
chapitre), qui sont donc dual-extrémes. Les G-contigués de la matrice A3 sont presque
parfaites (le défaut de perfection est égal a 1, bien qu’elles aient 45 couples de vecteurs
minimaux) et ne présentent pas d’intérét particulier vis-a-vis de la dualité.

+?=16/5

IT1.5.2. Réseaux isoduaux.

Conway et Sloane, {dans [C-S1}), contruisent par “collage” un réseau isodual de rang 9.
Il posséde 21 couples de vecteurs minimaux et sa constante d’Hermite leur semble faible
(“probably weak”) (y = 1.7142). Nous construisons, dans ce paragraphe, une matrice
de Gram de ce réseau, et nous montrons qu’il ne réalise pas un maximum local de la
constante d’Hermite parmi les isoduaux orthogonaux. Enfin, & partir de ce réseau isodual,
on construit un chemin (non linéaire) de réseaux isoduaux tous plus denses.

Conway et Sloane considérent le sous-réseau du réseau cubique de rang 4 orthogonal au
vecteur (2,1,1,... ,1), dont une matrice de Gram est :
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En “collant” ce réseau au réseau Ag, on obtient un réseau isodual ayant la matrice de
Gram suivante :

2 -5 -5 -5 4 5 -5 -5 -5
-5 12 -2 -2 -4 2 -2 -2 -2
-5 -2 12 5 3 -5 5 b5 b
-5 -2 & 12 -4 -5 5 5 b
A=]14 -4 3 -4 13 -3 -4 —4 —4
5 2 -6 -5 -3 12 -5 -5 -5
-5 -2 6 & -4 -5 12 &5 5
-5 -2 5 &5 -4 -5 5 12 b
-5 -2 5 &6 -4 -5 5 5 12

Soit une base 8 de E telle que Gram(f) = A, alors on vérifie facilement la ¢-isodualité
ol ¢ a pour matrice dans les bases (8, §*) :

01 -1 -1 0 1 -1 -1 -1
1 0 0 0 O O 0 0 O
-1 0 1 1 -1 0 1 1 1
-10 1 0 0 -1 1 1 1
P=10 0 -1 0 -1 1 0 0 0
T 0 0 -1 1 1 -1 -1 -1
-10 1 1 0 -1 0 1 1
-1 0 1 1 0 -1 1 0 1
-1 0 1 1 0 -1 1 1 0

Dans [B-M1], on paramétre les réseaux o-isoduaux grice au sous-espace
A ={v € Endy(E), vosg = —cov}

des endomorphismes anticommutant avec o.
La composante connexe des réseaux o-isoduaux correspondant & CS9 est alors :

{e"(CS9), v e A}.

Ici, les valeurs propres +1 et —1 de o étant d’ordres respectifs 4 et 5, ’espace A est de
dimension 20 ; sa traduction matricielle est :

T ={M, 'PAT'MA™'P =-M]}.

La matrice A n’est pas T -parfaite (son défaut de perfection est de 4). Ceci confirme
la remarque dans Conway et Sloane (“probably weak”) : le réseau CS9 n’est donc pas
extréme parmi les réseaux o-isoduaux. '



11 est alors aisé de construire des familles (non linéaires) de réseaux o-isoduaux & un
parameétre dans lesquelles CS9 soit le moins dense : par exemple, prenons v tel que :

v =v;
on obtient alors :

e = Id+ sh(t).v + (ch(t) — 1).0°
2—1 §2—_9 avec § = e'.
v+ + 102
26 26

S1, de plus, on choisit v tel que

=Id+

Tr(vop;)=0Vz e S(CS9)
Tr(v? op,) >0 Vz € 5(CS9)’

alors la constante d'Hermite du réseau isodual e!V(CS9) croit lorsque ¢ est assez petit.
Prenons par exemple v ayant pour matrice V dans les bases (3, 8*) :
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On obtient alors un chemin de réseaux isoduaux L, (¢ € [—to, fo]) tous plus denses que le
réseau C'S9. Le réseau le plus dense, Ly,, est défini sur Q(+/3823), ne posséde que 4 couples
de vecteurs minimaux mais sa constante d’Hermite vaut 1.714343 > v(CS9) = 1.714285.



Les 52 réseauz de tang 8 sans section hyperplane perfaite de méme norme.

Annexe 1

det N |(s,s*) | |Aut| |y ¥? | Bxtr
20412 6 |(51,2) |144 |1.735{2.142|E
20736 6 [(51,3) |96 1.732|2.250 |E
223488 |8 |(42,1)[8  [1.715|2.597|E
228352 |8 |(41,2) |48 1.711|2.345 | E
232128 |8 |(41,2)(32 |1.707|2.511|E
5996025 (12(39,2) {32 - |1.705|2.617|E
620038812 ((37,1) |8 1.698 [ 2.556 | N-E
243984 |8 |(41,2) |4 1.696 [ 2.433 | N-E
244608 |8 [(39,1) (4 1.696 | 2.467 | N-E
250752 |8 |(40,1) 14 1.6912.367 | N-E
250896 |8 [(39,1) |4 1.691(2.323 | B
251136 |8 |(40,2) |8 1.690 [ 2.363 | N-E
251472 |8 |(39,4) |16 1.690 | 2.620 | N-E
254736 |8 |(40,1) (2 1.687|2.330 | N-E
255248 |8 |(39,2) |2 1.687{2.438 | E
255744 |8 |(38,1) |8 1.687|2.270 [ N-E
257472 (8 |(39,1) |4 1.685(2.305 [ N-E
257808 |8 {(39,1)|2 1.685(2.302 [ N-E
6648480112 1(37,4) | 16 1.684 | 2.451 |N-E
259776 |8 [(39,2) 18 1.683|2.484 |N-E
259776 |8 |(39,2) [4 1.683|2.444 |E
262848 (8 |(39,1) (4 1.681[2.258 | N-E
262976 (8 [(38,2) |4 1.681|2.536 | E
6810804 {12 1(36,1) |4 1.678{2.562 | N-E
267792 {8 |(38,1)12 1.67712.435 | N-E
267648 |8 |(38,1)2 1.6772.257 |[N-E
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det N |(s,s%) | |Aut]| | ¥ 5 Extr
267024 |8 [(38,1) |2 1.677{2.395 |E

267648 8 |(38,2) |4 1.677|2.462 | E

6858432 |12 |(37,3) |12 1.677(2.507 | E

269136 |8 [(37,1) {2 1.676 | 2.443 | N-E
268944 |8 [(87,1)(2 1.676|2.467 | E

269568 |8 |(38,1) ]2 1.675]2.241 | N-E
271872 |8 |(39,1) |32 1.674(2.135|E

272016 |8 [(38,1) ]2 1.674|2.182 | N-E
272784 |8 |{(38,1)|2 1.673|2.176 |N-E
272384 |8 |(37,2) |4 1.67312.486 |N-E
273408 |8 |(37,1) |2 1.87212.209 |N-E
275520 |8 |(37,1)|2 1.671(2.342|N-E
275520 |8 '(37,1)(2 1.671|2.342|N-E
275968 |8 |(37,2) |4 1.6712.500 | N-E
275072 |8 |(36,1) |4 1.671|2.462 | N-E
276240 |8 |(38,1)|2 1.670|2.149 | N-E
281424 |8 |(37,2) |4 1.666 | 2.293 | N-E
281424 (8 |(37,1)|2 1.666 [ 2.293 | N-E
282384 |8 [(36,1)]2 1.666 | 2.351 | N-E
284480 |8 |(36,1) {4 1.664 | 2.381 |N-E
285696 |8 |(36,1) |2 1.663|2.328 |N-E
289536 |8 |(36,2) |2 1.661{2.316 | N-E
289296 |8 |(36,1) (2 1.661|2.231 | N-E
289296 {8 [(36,1)2 1.66112.231 |N-E
299136 |8 |(36,1)]2 1.654 | 2.157 | N-E
299136 |8 [(36,1) 2 1.654 | 2.157 |N-E




] Annexe 11
Echantillon des temps de calculs.
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Nbre vm | Nbre auto | Nbre face | CPU Nbl'le7vm NbreSauto Nbr;‘ofaﬁ Cil;;]
12 2 10 ! 18 1 17 397
12 4 5 0.9 18 2 27 1072
12 8 3 0.6 19 1 43 3378
12 96 1 0.6 0 ) T 790
13 1 24 6 21 1 140 6610
13 2 12 3 21 2 16 4090
14 1 32 48 22 1 44 23986
14 2 13 6 22 2 64 17043
15 1 15 33 22 4 24 2603
15 2 19 91 24 1 145 | 115674
16 1 17 76 24 4 24 8717
16 2 19 262 24 8 46 23182
16 4 15 127 25 1 86 171616
16 32 9 33 27 1 64 176753
17 1 16 461 27 2 65 262879
17 2 13 168 30 4 70 290560
17 4 16 188 30 2 217 | 1134635
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RESUME

Dans Pétude de la densité des empilements réguliers de sphéres se dégage la
rotion de réseaux extrémes, pour lesquels Voronoi a donné un algorithme d’énumération,
inabordable dans la pratique au-deld de la dimension 7. Dans les premiers chapitres de
cette these, nous élaborons de nouveaux algorithmes sélectionnant les réseaux extrémes
(laminés, en patchwork,...), et qui, implantés sur ordinateur, fournissent de nombreux
réseaux nouveaux en dimensions moyennes. Au dernier chapitre, ol I'on privilégie les ques-
tions de dualité, les algorithmes précédents sont plutét utilisés & Pexploration de I’espace
des réseaux. On y découvre par exemple un réseau qui réalise, en moyenne avec son dual,
la densité record pour la dimension 9. On construit également en dimension 9 un chemin
de réseaux isoduaux sur lequel il existe un réseau qui réalise actuellement le record de
densité parmi les isoduaux. -

ABSTRACT

In study of the density of regular sphere packing raises the notion of extremal lattices,
for which Voronoi gave an enumeration algorithm unatainable in practice for dimension
over 7. In the first chapters of this thesis, we create new algorithms selecting the extremal
lattices (laminated, in patchwork, ....), and that, once settled on the computer, provide
numerous new lattices in averages dimensions. In the last chapter, where question of
duality are considered, we previous algorithms are rather used to explorate the space of
lattices. We discover for exemple a lattice which achieve, in average with its dual, the
record density for the dimension 9. As well, we build a path of isodual lattices on wich
there exist a lattice achieving the record of density among the isodual.

MOTS-CLEFS

Réseaux, perfection, extrémalité, algorithme de Voronoi, isodualité, réseau symplec-
tique, réseau en patchwork, lamination.
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