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Lamination et antilamination des réseaux
euclidiens

par Marc GINDRAUX

Résumé. Dans cet article, nous étudions certains invariants liés à
la réduction de Hermite-Korkine-Zolotareff des réseaux euclidens
(ou des formes quadratiques définies positives).

Abstract. Lamination and antilamination of Euclidean lattices.
In this paper, we study some invariants related to the Hermite-
Korkine-Zolotareff reduction of Euclidean lattices (or of positive
definite quadratic forms).

Introduction
Une forme quadratique réelle, définie positive, est dite laminée si sa dé-

composition en somme de carrés
txAx = A1(x1 + α12x2 + · · ·+ α1nxn)2+

A2(x2 + α23x3 + · · ·+ α2nxn)2 + · · ·+Anx
2
n

est obtenue par minimisation successive des coefficients A1, A2, . . . , An−1.
L’invariant γ′′−(A) = min

√
A1/An, qui s’ajoute à la constante historique

γ′′+(A) = max
√
A1/An introduite par Korkine et Zolotareff, s’obtient en

considérant toutes les laminations possibles. Ces invariants sont introduits
pour majorer la fonction γ′(A) =

√
γ(A)γ(A−1) de Bergé et Martinet et

minorer (encore conjecturalement) l’invariant d’Hermite γ(A).
Cet article introduit les antilaminations, consistant à maximiser succes-

sivement An, An−1, . . . , A2, et les invariants correspondants γ′′′± (A). Nous
étudierons les liens entre ces deux invariants et les utiliserons pour calculer
la valeur de ces constantes pour la famille des réseaux laminés définis par
Conway et Sloane.

Une liste de propriétés (e.g. comportement de récurrence de γ′′n,± et γ′′′n,±)
et d’inégalités sera établie. Nous énonçons la conjecture γ′′5,− =

√
2 et étu-

dierons ses conséquences (e.g. γ8 = 2). Au cours de l’étude, nous mettons
en évidence un phénomène inattendu : la discontinuité des ces invariants à
partir de la dimension 3.

Manuscrit reçu le 22 juin 2007, révisé le 17 août 2008.
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De nombreux calculs sur la famille des réseaux de Blichfeldt (infirmant
l’égalité γ′′5,+ =

√
2 que Korkine et Zolotareff ont vraisemblablement cherché

à démontrer) et sur celle des réseaux de racines sont inclus dans cet article.

1. Réduction de Hermite-Korkine-Zolotareff
et lamination

1.1. Notations et rappels.
Soit E un espace euclidien de dimension n. On note x · y le produit scalaire
usuel de x, y appartenant à E, et ‖x‖ = (x · x)1/2 la norme du vecteur x.
Un réseau Λ de E est un sous-groupe discret de rang n de E. La norme
du réseau Λ est ‖Λ‖ = infx∈Λ\{0} ‖x‖ et l’ensemble des vecteurs minimaux
est S(Λ) = {x ∈ Λ | ‖x‖ = ‖Λ‖}. Au couple (Λ,B) formé d’un réseau Λ
et d’une base B = (e1, . . . , en) de Λ, on associe la forme quadratique sur
Rn qui, à x ∈ Rn, associe Q(x) = ‖x1e1 + · · · + xnen‖2 = txAx, où A est
la matrice de Gram de la base (ei)16i6n. On a ainsi une bĳection entre
classes d’isométrie de réseaux de E et classes modulo GLn(Z) de formes
quadratiques définies positives sur Rn.

Soit Λ un réseau de E, soit (e1, . . . , en) une base de Λ. Le discriminant
du réseau Λ est la valeur absolue du déterminant d’une base de Λ. Le
carré du discriminant est appelé le déterminant de Λ, noté det(Λ) ou en-
core det(e1, . . . , en). L’invariant d’Hermite γ du réseau Λ et la constante
d’Hermite γn sont définis comme suit [4, 9] :

γ(Λ) =
‖Λ‖2

det(Λ)1/n
, γn = sup

Λ
(γ(Λ)) .

Commençons par rappeler le procédé de réduction d’Hermite (en abrégé
HKZ) des formes quadratiques définies positives (respectivement des ré-
seaux euclidiens). Ce procédé a été introduit par Hermite [6] en 1850 et
précisé par Korkine et Zolotareff en 1873 [7] ; voir également [2, 8, 9, 10].
Il généralise la notion de réduction des formes quadratiques en dimension
deux, due à Lagrange ; voir aussi Gauss [5].

Soit Λ un réseau de E. Choisissons un vecteur minimal e1 = e
(1)
1 de

Λ. Projetons orthogonalement le réseau Λ = Λ(1) sur le sous-espace F1 =
Re⊥1 . Le projeté, qu’on notera Λ(2), est alors un réseau de F1. On répète
le procédé avec le réseau Λ(2) et le sous-espace F2 = Re(2)⊥

2 avec e(2)
2 un

vecteur minimal de Λ(2). On obtient ainsi une suite de réseaux relatifs
Λ(1),Λ(2), . . . ,Λ(n) de rang n, n−1, . . . , 1 et une suite de vecteurs e(i)

i ∈ Λ(i).
On relève ensuite les e(1)

1 , . . . , e
(n)
n en une base (e1, . . . , en) de Λ de sorte que

pour i < j, on ait |e(i)
i · ej | ≤ 1

2‖e
(i)
i ‖2.

Dans le langage des formes quadratiques, soit Q(x) = txAx la forme
quadratique associée au réseau Λ. Quitte à remplacer Q par une forme
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équivalente Q1, on suppose que (1, 0, . . . , 0) est un vecteur minimal de Q1.
La projection utilisée dans le cas des réseaux se traduit ici par un début de
réduction de Gauss-Lagrange (décomposition en carrés)

Q1(x1, . . . , xn) = A1(x1 + α12x2 + · · ·+ α1nxn)2 +Q′1(x2, . . . , xn)

dans laquelle la forme Q′1 correspond au réseau projeté Λ(2). En continuant
le procédé avec la forme Q′1, on obtient au bout de n − 1 étapes une dé-
composition en carrés d’une forme équivalente à Q :
Q ∼ A1(x1+α12x2+· · ·+α1nxn)2+A2(x2+α23x3+· · ·+α2nxn)2+· · ·+Anx2

n.

Les coefficients αij peuvent encore être réduits de façon à être dans l’inter-
valle [−1

2 ,
1
2 ]. Ceci se fait de droite à gauche par un changement de base

triangulaire laissant les coefficients Ai inchangés.
Les coefficients externes A1, . . . , An correspondent au carré des normes

minimales des projetés successifs du réseau associé à la forme Q. Rappe-
lons que

n∏
i=1

Ai = det(Λ). Les coefficients αij sont appelés les coefficients
internes.

Remarque.
i) Vu qu’à chaque étape, il n’y a qu’un nombre fini de vecteurs

minimaux, il n’existe qu’un nombre fini de réductions d’Hermite
d’un réseau.

ii) Nous appellerons réduction HKZ faible une réduction d’Hermite
sans conditions sur les coefficients internes.

1.2. Lamination.
Nous allons définir une notion de réduction des formes quadratiques qui
reprend dans son principe la notion de réseau (fortement) laminé due à
Conway et Sloane ; voir le chapitre 6 de leur livre [4].

Définition. Soit Λ un réseau de E, on appelle lamination de Λ le procédé
récursif de réduction de la forme quadratique associée suivant :

On choisit comme premier vecteur de base de Λ un vecteur minimal,
c’est-à-dire un vecteur engendrant la section unidimensionnelle, notée Λ1,
de déterminant le plus petit parmi toutes les sections de dimension 1. On
obtient ensuite une base de Λ en adjoignant à la i-ème étape un vecteur
ei qui fournit avec (e1, . . . , ei−1) une base d’une section Λi de rang i et de
déterminant minimal parmi toutes les sections de dimension i contenant
Λi−1 = 〈e1, . . . , ei−1〉.

Proposition 1. La lamination n’est autre qu’une réduction HKZ faible.

Preuve. Les deux procédés coïncident à la première étape. Supposons
qu’ils coïncident jusqu’à l’étape i− 1. Soit Λi−1 la section obtenue à cette
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étape. Pour déterminer une section Λi = 〈e1, . . . , ei〉 de déterminant mini-
mal contenant Λi−1, il suffit de projeter orthogonalement le réseau Λ sur le
sous-espace F = (RΛi−1)⊥. On obtient alors le réseau Λ(i) de la réduction
d’Hermite. On finit en choisissant un vecteur ei dont la projection sur F
réalise un minimum de Λ(i). Par orthogonalité, on a

det(e1, . . . , ei) = det(e1, . . . , ei−1) · ‖PF (ei)‖2

où PF (ei) est la projection du vecteur ei sur le sous-espace F . Ainsi, mi-
nimiser le déterminant par rapport à ei revient à prendre ei tel que son
projeté appartienne à S(Λ(i)). �

1.3. Fonction γ′′.
Au même titre que la fonction γ d’Hermite [9], on définit deux invariants
par isométrie des réseaux. Reprenons les idées de Korkine et Zolotareff [7]
et les notations introduites par Bergé et Martinet [2].

Définition. Soit Λ un réseau de E de rang n et soit A une matrice de
Gram HKZ-réduite de Λ. Considérons alors la décomposition en somme de
carrés de la forme quadratique associée

txAx = A1(x1 + α12x2 + · · ·+ α1nxn)2+

A2(x2 + α23x3 + · · ·+ α2nxn)2 + · · ·+Anx
2
n

On définit les deux invariants γ′′ :

γ′′+(Λ) = max
HKZ(Λ)

√
A1

An
γ′′−(Λ) = min

HKZ(Λ)

√
A1

An
,

où max et min portent sur l’ensemble des réductions HKZ du réseau Λ.

Nous montrerons plus loin que les fonctions γ′′±(Λ) sont bornées. Ainsi,
par analogie avec la constante d’Hermite, on définit les constantes γ′′n,+
et γ′′n,− comme étant les bornes supérieures des fonctions γ′′+(Λ) et γ′′−(Λ)
parmi tous les réseaux Λ de E :

γ′′n,+ = sup
Λ

(γ′′+(Λ)) γ′′n,− = sup
Λ

(γ′′−(Λ)) .

Remarque. Il suffit de prendre une réduction faible de la matrice A, car
on ne s’intéresse qu’aux coefficients externes.

Lemme 1. On suppose que (e1, . . . , en) est une base HKZ de Λ. Alors pour
tout 1 6 k 6 n,

i) les bases (e1, . . . , ek) de la section Λk et (e(k+1)
k+1 , . . . , e

(k+1)
n ) du pro-

jeté Λ(k+1) sont des bases HKZ,
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ii) si de plus la base (e1, . . . , en) de Λ réalise la valeur de γ′′+(Λ)
(respectivement γ′′−(Λ)), alors (e(k+1)

k+1 , . . . , e
(k+1)
n ) réalise γ′′+(Λ(k+1))

(respectivement γ′′−(Λ(k+1))).

Preuve.

i) Pour 1 6 i 6 k, le projeté Λ(i)
k du réseau Λk est une section de Λ(i).

Comme e(i)
i est un vecteur minimal de Λ(i), c’est aussi un minimum

de Λ(i)
k , ce qui montre que (e1, . . . , ek) est une base HKZ de Λk.

Par définition même de la réduction d’Hermite, le réseau Λ(k+1) est
réduit.

ii) Considérons une nouvelle base HKZ, (ε(k+1)
k+1 , . . . , ε

(k+1)
n ), du réseau

Λ(k+1). En relevant les vecteurs e(1)
1 , . . . , e

(k)
k , ε

(k+1)
k+1 , . . . , ε

(n)
n en une

base (e1, . . . , ek, εk+1, . . . , εn) de Λ, nous obtenons une base HKZ
de Λ satisfaisant ‖e1‖/‖ε(n)

n ‖ 6 ‖e1‖/‖e(n)
n ‖ = γ′′+(Λ). On en déduit

que

‖ε(k+1)
k+1 ‖/‖ε

(n)
n ‖ 6 ‖e

(k+1)
k+1 ‖/‖e

(n)
n ‖ .

La démonstration est la même pour γ′′−(Λ). �

Il a été démontré par Hermite que γn 6 (4
3)(n−1)/2 ; il en est de même

pour la fonction γ′′.

Proposition 2. Les fonctions γ′′n,± sont majorées par (4
3)(n−1)/2.

Preuve. On montre par récurrence que, quel que soit le réseau Λ de E,
γ′′+(Λ) 6 (4

3)(n−1)/2. Regardons le cas n = 2.
Soit Λ un réseau de R2. On a A1A2 = det(Λ), ainsi

A1

A2
=

(A1)2

A1 ·A2
=

(A1)2

det(Λ)
= γ2(Λ) .

Comme γ(Λ) 6 (4
3)1/2, on a γ′′+(Λ) 6 (4

3)1/2. Pour n > 3, on conclut par
récurrence via l’égalité

A1

An
=
A1

A2
·
(
A2

A3
· · · · · An−1

An

)
,

qui entraîne γ′′+(Λ) 6 (γ′′2,+)(n−1) = (4
3)(n−1)/2. �
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1.4. Exemples.
La famille des réseaux de Blichfeldt (1935).
La famille des réseaux de Blichfeldt [3] joue un rôle important dans l’étude
de la fonction γ′′. Korkine et Zolotareff ont calculé les valeurs de la fonction
γ′′n,+ pour n 6 4. Il semble vraisemblable qu’ils aient cherché à prouver que
γ′′5,+ =

√
2. La famille des réseaux de Blichfeldt infirme cependant cette

égalité. Elle est en fait l’unique chemin à isométrie près de l’algorithme de
Voronoï reliant les formes parfaites D5 et A5. Pour 0 6 r 6 2, les formes
quadratiques associées sont

2
(
x1 −

1
2

(x2 + x3 + x4 + x5)
)2

+
3
2

(
x2 −

1
3

(x3 + x4 − x5)
)2

+

4
3

(
x3 −

1
2
x4 −

1
4
x5

)2

+ (1 + r)
(
x4 −

1
2
x5

)2

+ (1− 1
4
r)x2

5 .

Pour 0 < r < 2
3 , on obtient des valeurs différentes pour γ′′− et γ′′+. Pour les

autres valeurs du paramètre r, les deux fonctions sont confondues. Remar-
quons que γ′′− est toujours inférieure à

√
2. Par contre pour des valeurs du

paramètre r comprises entre 0 et (3−
√

2)/2, la fonction γ′′+ est strictement
supérieure à

√
2 (cf. Fig. 1). En particulier, le cas r = 1

4 est intéressant.
C’est, à l’heure actuelle, le record pour la fonction γ′′+ en dimension 5. En
choisissant les bonnes réductions d’Hermite, on obtient pour ce réseau

A1 =


2 −1 −1 −1 −1
−1 2 0 0 1
−1 0 2 0 0
−1 0 0 9

4 −1
8

−1 1 0 −1
8 2

 qui fournit la valeur γ′′+ =
√

32
15

,

A2 =


2 −1 −1 7

8 −1
−1 2 1 −1 1
−1 1 2 0 1

7
8 −1 0 2 0
−1 1 1 0 2

 qui fournit la valeur γ′′− =
√

19
10

.

Chemin de Voronoï entre D5 et D5.
Il y a, à équivalence près, deux chemins de Voronoï différents reliant la
forme parfaite D5 à une forme équivalente [9]. Nous ne considérerons ici
que le chemin paramétré comme suit

A(r) =


2 1 1 1 + r 1− r
1 2 1 1 + r 1− r
1 1 2 1 + r 1− r

1 + r 1 + r 1 + r 2 + 2r −r
1− r 1− r 1− r −r 2


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    2.297

    1.600

    0.000     1.000

85
2

2:297

0 2
Fig. 1. De haut en bas γ2, (γ′′+)2, et (γ′′−)2 des réseaux de Blichfeldt

où 0 6 r 6 1. (C’est le chemin de Voronoï D5 — D5 qui conserve une
section D4.) Les matrices de Gram A(r) et A(1 − r) sont équivalentes par
A(r) = tSA(1− r)S, avec

S =


−1 −1 0 −1 0
−1 0 −1 −1 0
0 −1 −1 −1 0
1 1 1 2 0
1 1 1 1 1

 .

A l’exception de r = 0, 1
2 et 1 où γ′′+ =

√
2, la fonction γ′′+ est strictement

supérieure à
√

2 (cf. Fig. 2) avec un maximum de
√

45/22 atteint aux points
r = 1

3 et r = 2
3 sur la base

2 1 1 2 0
1 2 1 2 2

3
1 1 2 3 1
2 2 3 6 2
0 2

3 1 2 2

 .

La fonction γ′′− est, à l’exception des deux extrémités, inférieure à
√

2 avec
un minimum sur le réseau eutactique obtenu avec le paramètre r = 1

2 .

Remarque. Ces deux chemins de Voronoï sont les seuls en dimension 5
pour lesquels la fonction γ′′+ prend des valeurs supérieures à

√
2.
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    2.297

    1.600

    0.000     1.000

85
2

2:297

0 12 1
Fig. 2. De haut en bas γ2, (γ′′+)2, et (γ′′−)2

2. Antilamination
2.1. Notations et rappels.
Soient Λ un réseau de E, (e1, . . . , en) une base de Λ et A la matrice de Gram
associée. On note Λ∗ son dual et (e∗1, . . . , e

∗
n) la base duale, de matrice de

Gram A−1. On désigne par A la matrice de Gram du réseau Λ où l’on
prend les coordonnées dans l’ordre inverse. Matriciellement, elle s’obtient
par A = tsAs, avec

s = ts =

 O 1

. .
.

1 O

 .

Commençons par deux lemmes (cf. [9] ; 3.4 et 3.5).

Lemme 2. Soient Λ un réseau de E et F un sous-espace de E. Pour que
Λ ∩ F soit un réseau de F , il faut et il suffit que Λ∗ ∩ F⊥ soit un réseau
de F⊥.

En outre si ces conditions sont vérifiées, le dual de Λ∩F est la projection
sur F du dual de Λ, c’est-à-dire

(Λ ∩ F )∗ = pF (Λ∗).

Lemme 3. Soit r 6 n un entier et soit (e1, . . . , en) une base du réseau Λ de
l’espace vectoriel E. Notons F le sous-espace de E engendré par (e1, . . . , er).
On a l’égalité :

det(Λ ∩ F ) = det(Λ) · det(Λ∗ ∩ F⊥).

2.2. Antilamination.
On définit un procédé de réduction des formes quadratiques qui reprend
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les idées de la lamination. Soit Λ un réseau de E et soit A une matrice de
Gram du réseau Λ.

Définition. On appelle antilamination de A (en abrégé Aanti) le procédé
récursif de réduction de la forme quadratique suivant :
On prend comme dernier vecteur de base en un vecteur tel que le sous-
réseau Λn−1 = 〈e1, . . . , en−1〉 engendré par les n − 1 premiers vecteurs de
base de Λ soit de déterminant det(e1, . . . , en−1) minimal. On applique alors
le même procédé au sous réseau Λn−1, et ainsi de suite, pour obtenir une
antilamination de Λ.

Par le lemme 3, il convient de prendre comme dernier vecteur de base du
réseau Λ un vecteur minimal du dual Λ∗. En effet, afin que det(e1, . . . , en−1)
soit minimal, il faut et il suffit que e∗n soit un vecteur minimal de Λ∗, car

det(e1, . . . , en−1) = det(e1, . . . , en) · det(e∗n) .

Ainsi, on observe qu’opérer une antilamination d’un réseau Λ revient à faire
une lamination de son dual. Plus précisément :

Proposition 3. La base (e1, . . . , en) du réseau Λ est antilaminée si et seule-
ment si la base (e∗n, . . . , e

∗
1) du dual Λ∗ est laminée. En d’autres termes,

Aanti = ((A−1)HKZ)−1.

Preuve. Notons (e1, . . . , en) une base antilaminée de Λ, A sa matrice de
Gram et (e∗1, . . . , e

∗
n) sa base duale. Soit F = L(e1, . . . , en−1) le sous-espace

de codimension 1. Comme A est antilaminée, par le lemme 3, e∗n est un
vecteur minimal de A−1. Soit β = (e1, . . . , en−1) ⊂ F une base de Λn−1.
Par le lemme 2, la base duale de β dans F est β∗ = (pF (e∗1), . . . , pF (e∗n−1)).
Comme F est orthogonal à e∗n, cela revient à projeter orthogonalement Λ∗

par rapport à e∗n. Comme A est antilaminée, pF (e∗n−1) est un minimum du
réseau pF (Λ∗). Ceci correspond à la seconde étape de la réduction d’Hermite
de A−1. En itérant le procédé, on obtient une réduction d’Hermite (faible)
de A−1.

Soit (e1, . . . , en) une base de Λ telle que A−1 = Gram(e∗1, . . . , e∗n) soit
réduite au sens d’Hermite faible. Alors e∗n est un vecteur minimal du dual
de Λ. Ceci correspond à la première étape de l’antilamination de Λ. Comme
la base duale de (e1, . . . , en) dans F = L(e1, . . . , en−1) est la projection
orthogonale de Λ∗ sur F par rapport à e∗n, on obtient que pF (e∗n−1) est
un vecteur minimal du projeté pF (Λ∗) (car Gram(Λ∗) est réduite au sens
HKZ). Ainsi, par récurrence sur le rang n du réseau, on vérifie que la base
(e1, . . . , en) est antilaminée. �
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2.3. Fonction γ′′′.

Définition. Soit Λ un réseau de E et soit A une matrice de Gram antila-
minée de Λ. Considérons alors la décomposition en somme de carrés de la
forme quadratique associée

txAx = B1(x1 + β12x2 + · · ·+ β1nxn)2+

B2(x2 + β23x3 + · · ·+ β2nxn)2 + · · ·+Bnx
2
n

Pour le réseau Λ, on définit les invariants :

γ′′′+ (Λ) = max
anti(Λ)

√
B1

Bn
γ′′′− (Λ) = min

anti(Λ)

√
B1

Bn
,

où max et min portent sur toutes les antilaminations du réseau Λ.

A l’instar de γ′′±(Λ), les fonctions γ′′′± (Λ) sont bornées. Par définition, les
constantes γ′′′n,+ et γ′′′n,− sont les bornes supérieures des fonctions γ′′′+ (Λ) et
γ′′′− (Λ) prises sur tous les réseaux Λ de E :

γ′′′n,+ = sup
Λ

(γ′′′+ (Λ)) γ′′′n,− = sup
Λ

(γ′′′− (Λ)) .

Lemme 4.
γ′′′+ (Λ) = max

anti(Λ)

√
B1 · ‖Λ∗‖ et γ′′′− (Λ) = min

anti(Λ)

√
B1 · ‖Λ∗‖ .

Preuve. Par le lemme 3, nous avons

det(e1, . . . , en−1) = det(e1, . . . , en) · ‖e∗n‖2 .

D’autre part, nous avons

det(e1, . . . , en) = det(e1, . . . , en−1) ·Bn ,

d’où Bn = ‖Λ∗‖−2. �

2.4. Relation entre γ′′ et γ′′′.

Proposition 4. Soit Λ un réseau de E et soit Λ∗ son dual. On a

γ′′′n,±(Λ) = γ′′n,±(Λ∗).

Preuve. Nous avons vu que toute matrice de Gram antilaminée A du
réseau Λ est telle que la matrice A−1 est une matrice de Gram réduite
au sens d’Hermite de Λ∗, et vice-versa. Notons encore (e1, . . . , en) la base
antilaminée associée à la matrice de Gram A et (e∗n, . . . , e

∗
1) celle attachée

à la matrice A−1. Les décompositions de Gauss-Lagrange respectives sont
txAx = B1(x1 + β12x2 + · · ·+ β1nxn)2 + · · ·+Bnx

2
n ,

tyA−1y = A1(y1 + α12y2 + · · ·+ α1nyn)2 + · · ·+Any
2
n .
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Montrons alors que

[B1, B2, . . . , Bn] =
[

1
An

,
1

An−1
, . . . ,

1
A1

]
,

ce qui entraîne en particulier que B1
Bn

= A1
An

, prouvant la proposition.
Par le lemme 3,

det(e1, . . . , er) = det(e1, . . . , en) · det(e∗n, . . . , e
∗
r+1)

entraînant
Br+1 . . . BnA1 . . . An−r = 1

pour tout r avec 1 6 r 6 n− 1. �

Conséquences.
i) La transcription du lemme 1 aux antilaminations montre que si la

base (e1, . . . , en) réalise la valeur de γ′′′± , il en est alors de même
de (e1, . . . , ek) pour k = 1, . . . , n. En revanche, la projection sur
l’orthogonal, quoique fournissant aussi une antilamination, ne réa-
lise pas toujours la valeur de γ′′′± .

ii) On a γ′′′n,± 6 (
4
3

)(n−1)/2.

2.5. Constantes γ′′ et γ′′′ des réseaux E6, E7 et E8.
Appliquons les résultats précédents aux réseaux fortement laminés de

dimension inférieure à 8 [4], qui sont

A1 =
√

2Z, A2, A3, D4, D5, E6, E7 et E8.

Comme ces réseaux sont absolument extrêmes, on obtient une lamination
du réseau E8 en considérant la base provenant directement de cette famille.
Les coefficients externes de cette lamination de E8[

2,
3
2
,
4
3
, 1, 1,

3
4
,
2
3
,
1
2

]
sont obtenus par comparaison des déterminants de ces réseaux, à savoir
2, 3, 4, 4, 4, 3, 2, 1. Comme E8 est unimodulaire et que les coefficients ex-
ternes satisfont la symétrie Ai = 1

A9−i
, cette lamination est également une

antilamination de E8. Vu que le groupe des automorphismes de chacun de
ces réseaux agit transitivement sur l’ensemble des vecteurs minimaux de
son dual, chacun possède une unique section de codimension 1 de déter-
minant minimal. Il n’existe donc, à isométrie près, qu’une lamination ou
antilamination de E8. On a en outre :

γ′′±(E6) = γ′′′± (E6) =
√

8
3
, γ′′±(E7) = γ′′′± (E7) =

√
3

et γ′′±(E8) = γ′′′± (E8) = γ(E8) = 2.
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Un calcul similaire peut être fait pour le réseau de Leech Λ24, mais celui-
ci ne fournit que la valeur des fonctions

γ′′−(Λ24) = γ′′′− (Λ24) = 4 = γ(Λ24).

La valeur de γ′′+ est inconnue et pourrait dépasser 4.

3. Quelques propriétés
Propriété 1. Pour 1 6 k 6 n, on a

γ′′n,+ 6 γ
′′
k,+ · γ′′n−k+1,+ et γ′′n,− 6 γ

′′
k,+ · γ′′n−k+1,− .

Preuve. Quel que soit le réseau Λ de l’espace euclidien E, montrons que
γ′′±(Λ) 6 γ′′k,+ · γ′′n−k+1,±. Soit (e1, . . . , ek, . . . , en) une base du réseau réali-
sant la valeur de γ′′+(Λ) (respectivement γ′′−(Λ)), notons Λk le sous-réseau
engendré par (e1, . . . , ek) et Λ(k) le k-ième projeté de Λ. D’après le lemme 1,
(e1, . . . , ek) est une lamination de Λk et (e(k)

k , . . . , e
(k)
n ) une lamination de

Λ(k) réalisant la valeur de γ′′+(Λ(k)) (resp. γ′′−(Λ(k))). Alors,

γ′′±Λ =
‖Λ(1)‖
‖Λ(n)‖

=
‖Λ(1)‖
‖Λ(k)‖

· ‖Λ
(k)‖

‖Λ(n)‖
6 γ′′+(Λk) γ′′±(Λ(k)) 6 γ′′k,+ γ

′′
n−k+1,± .

�

Conséquence. En appliquant la propriété précédente à n = 2k − 1, on
obtient

γ′′2k−1,± 6 (γ′′k,+)2 .

Rappel. L’invariant d’Hermite dual γ′ d’un réseau Λ de E et la constante
d’Hermite duale, introduits par Bergé et Martinet [2, 9], sont définis par

γ′(Λ) = ‖Λ‖ ‖Λ∗‖ , γ′n = sup
Λ

(γ′(Λ)) .

Propriété 2. Pour tout n > 1, on a l’inégalité
γ′(Λ) 6 γ′′±(Λ) ,

et donc
γ′n 6 γ

′′
n,± .

Preuve. On fait appel à l’antilamination du réseau Λ. Comme γ′′′± (Λ) =√
B1‖Λ∗‖, on a alors

γ′′′± (Λ) =
√
B1‖Λ∗‖ > ‖Λ‖ ‖Λ∗‖ = γ′(Λ) .

Pour γ′′, on conclut par γ′(Λ) = γ′(Λ∗). �

Propriété 3. Pour tout nombre entier n supérieur à 2, on a

γ′′n,± >

√
γnn
γn−1
n−1

.
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Preuve. C’est une conséquence de la propriété 2 et de l’inégalité analogue
pour γ′ (cf. [2] ; 2.6(i) avec k = 1). �

Propriété 4. pour tout entier n > 1, nous avons

γn/2n 6 γ′′2,± . . . γ
′′
n,± .

Preuve. Itérer sur le rang n du réseau Λ l’inégalité de la propriété 3. �

Propriété 5. La fonction γ′′n,+ est croissante en n :

∀n, γ′′n+1,+ > γ
′′
n,+ .

Preuve. Soit Λ un réseau de Rn. Construisons un réseau Λ̃ de Rn+1 tel que
γ′′+(Λ̃) > γ′′+(Λ). Notons (e1, . . . , en) la base orthonormée standard de Rn

et (e1, . . . , en+1) celle de Rn+1. Quitte à user d’une homothétie, supposons
que le réseau Λ soit de minimum 1. Considérons alors le réseau Λ̃ somme
directe orthogonale du réseau Λ et de Zen+1. Alors γ′′+(Λ̃) > γ′′+(Λ). En
effet, en+1 est un vecteur minimal de Λ̃ au même titre que ceux de Λ. On
peut donc choisir en+1 comme premier vecteur de base lors de la réduction
d’Hermite de Λ̃. En projetant sur le plan orthogonal à en+1, on obtient le
réseau Λ. En continuant le procédé de réduction par le choix des vecteurs
minimaux de Λ qui mène à γ′′+(Λ), on obtient :

γ′′+(Λ̃) >
‖en+1‖
‖Λ(n)‖

=
‖Λ‖
‖Λ(n)‖

= γ′′+(Λ) ,

où Λ(n) désigne le n-ième projeté du réseau Λ. �

Remarque. Pour des réseaux dont la constante γ′′+ est supérieure ou égale
à 1, cette construction n’augmente pas la valeur de γ′′+. Seuls ceux dont γ′′+
est inférieure à 1 passent à la valeur 1.

Propriété 6. La fonction γ′′n,− est croissante en n :

∀n, γ′′n+1,− > γ
′′
n,− .

Preuve. La preuve de la propriété 5 ne s’applique pas sans modification.
En effet, pour le réseau Λ̃, on a γ′′−(Λ̃) = min(1, γ′′−(Λ)). On construit alors
une suite de réseaux jΛ̃ de Rn+1, indexée par j ∈ N, telle que la suite γ′′−(jΛ̃)
converge vers γ′′−(Λ). Reprenons les notations de la preuve précédente et
considérons la famille jΛ̃ = (1− 1

j )Zen+1 ⊕ Λ. Toute lamination du réseau
doit débuter par le choix du vecteur minimal (1− 1

j )en+1. On obtient ainsi :

γ′′−(jΛ̃) =
1− 1

j√
An

−−−−→
j →∞

1√
An

= γ′′−(Λ)

où An est le dernier coefficient externe de la réduction HKZ de Λ. �
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Remarque. La constante d’Hermite γn n’est probablement pas croissante
en n (on s’attend qu’en dimension 25, elle soit atteinte sur les réseaux
laminés).

Propriété 7.
γn/2n 6 (γ′′n,−)n−1 .

Preuve. Combiner les propriétés 4 et 6. �

Propriété 8. Pour tout entier naturel n pair, on a

γ′′n,± 6
(

4
3

)n−2
8

γn .

Pour n impair, on a

γ′′n,± 6
(

4
3

)n−2
8

+ 1
8n

γn .

Preuve. Soit jΛ une famille de réseaux de E dont la suite de constantes
γ′′+(jΛ) tendent vers la valeur γ′′n,+. Alors, à la limite, le coefficient ex-
terne A1 est supérieur ou égal aux autres coefficients externes. Sinon, cela
contredirait la croissance de la fonction γ′′. Rappelons encore que, lors d’une
réduction d’Hermite, les relevés des projetés satisfont

‖e(k−1)
k ‖ 6

√
4
3
‖e(k)
k ‖ .

Soit (e1, . . . , en) une base réduite au sens d’Hermite. Par les deux remarques
précédentes, on peut écrire, pour n pair,√

det(Λ) = ‖e(1)
1 ‖ · ‖e

(2)
2 ‖ . . . ‖e

(n)
n ‖ 6 ‖e

(1)
1 ‖

n/2 · ‖e(n)
n ‖n/2 ·

(
4
3

)n
2

( n
2
−1) 1

4

.

D’où

‖e(1)
1 ‖ · ‖e

(n)
n ‖ >

(
3
4

)n−2
8

· det(Λ)
1
n .

Ainsi

γ′′n,+ =
‖e(1)

1 ‖
‖e(n)
n ‖

=
‖Λ‖2

‖e(1)
1 ‖ · ‖e

(n)
n ‖

6
‖Λ‖2

det(Λ)1/n
·
(

4
3

)n−2
8

.

Pour n impair, on procède de même en écrivant√
det(Λ) = ‖e(1)

1 ‖ · · · ‖e
((n−1)/2)
(n−1)/2 ‖ · ‖e

((n+1)/2)
(n+1)/2 ‖

1/2 · ‖e((n+1)/2)
(n+1)/2 ‖

1/2 · · · ‖e(n)
n ‖ .

�

Propriété 9. On a l’inégalité asymptotique

γ′′n,± 6 n
1
2

+ 1
2

lnn .
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Preuve. En traduisant dans nos notations la proposition 4.2 de [8], on
obtient : soit (e1, . . . , en) une base réduite au sens d’Hermite du réseau Λ
de E. Notons A1, . . . , An les coefficients externes associés. On a alors

Ai > ‖Λ‖2 · i−(i+ln i) pour i = 1, . . . , n .

Ce qui montre que

γ′′+
2(Λ) =

A1

An
6
‖Λ‖2

‖Λ‖2
· n1+lnn pour tout réseau Λ de rang n.

�

Remarque. Contrairement à la constante γ pour laquelle on connaît une
inégalité asymptotique linéaire en n, on doit ici se satisfaire d’une inégalité
exponentielle. Cela découle du fait que nous ne sommes pas encore capables
de prouver que γ′′n,± 6 γn, bien que nous en soyons intimement convaincus.
En effet, il existe des réseaux Λ pour lesquels les constantes γ′′±(Λ) sont
supérieures à la constante γ(Λ), comme le montre le réseau E∗6 étudié dans
la section 3.5, pour lequel γ(E∗6) = 4 · 3−5/6 <

√
8/3 = γ′′±(E∗6).

4. Discontinuité
Il est bien connu que les fonctions γ et γ′ sont continues. Ceci permet,

par un argument standard de compacité, de montrer que les bornes sont
atteintes. Ce phénomène ne se produit pas pour les fonctions γ′′± et γ′′′± . En
effet, on verra que ces fonctions sont discontinues dès la dimension 3. Une
étude locale est donc sans objet.

4.1. Cas des dimensions un et deux.

Proposition 5. Pour n = 1 et 2, les fonctions γ′′± (respectivement γ′′′± )
sont continues et coïncident avec les fonctions γ et γ′.

Preuve. Le cas n = 1 est trivial. Pour tout réseau Λ de dimension 2, on a

γ′′±(Λ) = γ′′′± (Λ) =

√
A1

A2
=
‖Λ‖√
A1A2

=
‖Λ‖√
det(Λ)

= γ(Λ) = γ′(Λ)

qui sont continues. �

Corollaire. On a γ′′2,± = γ′′′2,± =
√

4
3 = γ2, valeur atteinte sur le réseau

hexagonal A2.
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4.2. Dimensions trois et plus.
Reprenons la famille de réseaux de la propriété 6. La famille de réseaux jΛ̃
converge vers le réseau Z ⊕ Λ lorsque j tend vers l’infini. On a vu que la
fonction γ′′±(jΛ̃) converge vers γ′′±(Λ). Par contre on montre aisément que
γ′′−(Z ⊕ Λ) = 1, qui est en général différent de γ′′−(Λ). Ceci démontre la
discontinuité de la fonction γ′′±.

Regardons plus en détail, le cas de la famille Λ(ε) = A2 ⊕ (
√

2 + ε)Z,
−2 < ε, de forme quadratique 2(x1 + 1

2x2)2 + 3
2x

2
2 + (2 + ε)x2

3. On observe
que pour ε négatif, le minimum du réseau est (2 + ε), tandis que pour ε
positif, il vaut 2. Ainsi suivant la valeur du paramètre ε, on est obligé de
choisir le minimum dans la composante orthogonale de (

√
2 + ε)Z ou de

A2. On obtient

γ′′±(Λ(ε)) =
√

4 + 2ε
3

pour ε < 0 et γ′′±(Λ(ε)) =

√
2

2 + ε
pour ε > 0.

Pour ε = 0, nous avons γ′′−(Λ(0)) = 1 et γ′′+(Λ(0)) =
√

4
3 . On observe un

saut au point ε = 0, comme l’illustre la figure 3.

    1.333

    0.667

23
1
43

�1 0 1
Fig. 3. Discontinuité pour la famille Λ(ε)

Remarque. Notons que pour ε négatif, les fonctions γ′′± sont supérieures
à la fonction d’Hermite γ, et que les rôles s’inversent pour ε positif. Enfin
pour ε ∈]− 2,−1

2 ] et pour ε positif, les fonctions γ′′± et γ′ sont confondues.
Par contre pour ε ∈]− 1

2 , 0[, γ′ vaut 1 et est donc inférieure aux fonctions γ′′±.
Les discontinuités des fonctions γ′′± se produisent au moment précis où

le kissing number de la famille de réseaux Λ(ε) admet son maximum. Ce
phénomène se reproduit aussi en des dimensions supérieures. Notons tou-
tefois que cette discontinuité peut ne prendre source qu’à partir d’un des
projetés du réseau, comme le montre l’exemple suivant :
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Plongeons le réseau Λ(0) dans R4, et notons e1, e2, e3 l’image de la base
de Λ(0), et e4 un vecteur normé orthogonal à Λ(0). Considérons le réseau

Z(e1 + α1e4) + Z(e2 + α2e4) + Z(e3 + α3e4) + Ze4 .

où α1, α2, α3 sont réels. En prenant α1 et α3 non nuls, on obtient un réseau
indécomposable dont l’ensemble des vecteurs minimaux est restreint à ±e4.
En projetant sur le plan perpendiculaire à e4, on retombe sur le réseau
Λ(0). Ainsi, la discontinuité se produit au moment ou le kissing number du
second projeté atteint son maximum.

Certes, ces différents exemples proviennent de réseaux décomposables où
tout à été fait pour produire cette discontinuité. Il est donc utile de savoir
que même dans des situations rigides comme un chemin de Voronoï entre
deux formes parfaites des discontinuités apparaissent.

Les chemins de Voronoï entre les formes Dn et An pour n > 6.
Considérons la paramétrisation de l’unique chemin de Voronoï entre les
formes parfaites Dn et An, pour n > 6, donnée par

Λ(r) =



2 1 0 0 . . . . . . 0
1 2 1 1 . . . . . . 1
0 1 2 1 1

0 1 1
. . . . . . ...

...
... . . . 2 1 1

...
... 1 2 r

0 1 . . . . . . 1 r 2



avec r compris entre 0 et 1. Pour r > n−4
2(n−1) , cette matrice est une lamina-

tion de la famille réalisant la valeur de γ′′+(Λ(r)). On peut montrer que la
fonction γ′′+

2 admet un maximum de 8(n−1)
3n au point r = n−4

2(n−1) (ce résultat
est aussi valable pour la dimension 5). Dès la dimension n > 6, on observe
une discontinuité pour γ′′+ en r = n−5

2(n−2) , qui est exactement l’endroit où
est atteint le maximum en dimension n−1. Par contre, la fonction γ′′− coïn-
cide avec γ′ et est donc continue sur le chemin de Voronoï. Comme nous
le montre la figure 4, γ′′±(Λ(r)) est inférieure à γ(Λ(r)). Dans tous les cas,
la réduction d’Hermite peut débuter par les trois premiers vecteurs de la
base ci-dessus. Ceci montre que la discontinuité de γ′′+ est la conséquence
du choix d’un vecteur minimal dans le quatrième projeté du réseau.
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    2.520

    1.667

53
2

2:520

0 12 1
Fig. 4. Discontinuité sur le chemin de Voronoï entre D6 et A6.
De haut en bas, γ2, (γ′′+)2, et (γ′′−)2 = (γ′)2

5. Résultats numériques et conjecture
Les valeurs de la fonction γ′′n,+ ne sont actuellement connues que pour

les dimensions n inférieures ou égales à 4. Dès la dimension 5, nous ne
connaissons pas la valeur de cette fonction. Nous disposons par contre de
quelques inégalités. Dans cette section, nous rappelons les résultats obtenus
par Korkine et Zolotareff et les généralisons pour la fonction γ′′n,−. Ces
résultats s’appliquent évidemment aux fonctions γ′′′n,± en considérant les
réseaux duaux. Le cas des dimensions n = 1 et n = 2 a déjà été traité dans
la section 4. Nous avons établi que :

Théorème 1. Pour n = 1, on a γ′′1,± = γ′′′1,± = 1, valeur atteinte sur le
réseau Z.

Pour n = 2, on a γ′′2,± = γ′′′2,± =
√

4
3 , valeur atteinte sur le réseau

hexagonal A2.

5.1. Dimensions 3 et 4.
En 1873, Korkine et Zolotareff ont établi l’inégalité difficile γ′′3,+ =

√
3
2 ([3]

inégalité 3.5, [7, 10]). Ils ont également établi que cette valeur n’est atteinte
que sur le réseau cubique à faces centrées D3 ∼ A3 et son dual, le réseau
cubique centré D∗3. Notons que la valeur γ′′3,+ =

√
3
2 coïncide avec la valeur

de la constante γ′3. Elle est cependant strictement inférieure à γ3 = 3
√

2.
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Théorème 2 (Korkine et Zolotareff [7]). Les coefficients externes d’une ré-
duction d’Hermite (ou lamination) d’une forme quadratique définie positive
de rang n satisfont

Ai+1 > 3
4 Ai pour i = 1, 2, . . . , n− 1,

Ai+2 > 2
3 Ai pour i = 1, 2, . . . , n− 2.

En reprenant ce résultat et en observant que le groupe des automor-
phismes de D3 agit transitivement sur les vecteurs minimaux, on obtient :

Théorème 3. Pour n = 3, on a γ′′3,± = γ′′′3,± =
√

3
2 , valeur atteinte sur le

réseau D3 ∼ A3 et son dual D∗3.

On se propose de donner une démonstration indépendante de celle de
Korkine et Zolotareff pour la constante γ′′3,−. Celle-ci se base sur la classi-
fication duale des réseaux de dimension 3 due à Bergé [1]. Pour un réseau
Λ, notons S l’ensemble des vecteurs minimaux et s = |S|/2 le demi kissing
number, S∗ et s∗ les analogues pour le dual Λ∗ de Λ.

L’invariant γ′′ d’une lamination du réseau Λ de rang 3 ne dépend que du
premier vecteur minimal x ∈ S de départ. Notons le alors γ′′x :

γ′′x =
√

min Λ ·min(Λ∗ ∩ x⊥) ;

x étant fixé, c’est une fonction continue sur l’ensemble des réseaux Λ ⊂ R3

admettant x comme vecteur minimal.

Proposition 6. On a l’équivalence

γ′′x = γ′ ⇐⇒ ∃ y ∈ S∗ tel que y ⊥ x .

Mieux, il existe au plus un vecteur minimal x ∈ S tel que γ′′x > γ′. Cela
se produit lorsque S∗ = {±e∗i } (et donc s∗ = 1) pour x = ±ei, 1 6 i 6 3.

Preuve. L’équivalence est triviale par γ′′x =
√

min Λ ·min(Λ∗ ∩ x⊥). On
achève la preuve en passant au crible toutes les classes duales de dimension 3
([1]). �

Ainsi la fonction γ′′x prend exactement deux valeurs (γ′′+ et γ′′− = γ′) dans
quatre classes duales correspondant à s∗ = 1 ; à savoir (1, 1), (2, 1), (3, 1) et
(4, 1). Dans les 11 autres classes (dont trois avec s∗ = 1), γ′′− et γ′′+ coïncident
avec γ′. Ce qui implique que, dans ce cas, γ′′− et γ′ sont confondues.

Bergé et Martinet ont établi que la constante γ′3 =
√

3
2 est atteinte sur

les réseaux D3 et D∗3, de manière indépendante des travaux de Korkine et
Zolotareff. Ceci fournit une démonstration pour la constante γ′′−.
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L’étude de γ′′x dans les quatre classes duales ci-dessus permet d’obtenir
le théorème de Korkine et Zolotareff sans être toutefois significativement
plus simple.

Le cas de la dimension 4 se déduit du cas précédent, en utilisant la
propriété 1 avec n = 4 et k = 3.
Théorème 4. Pour la dimension 4, nous avons γ′′4,± = γ′′′4,± =

√
2. Cette

valeur est atteinte uniquement sur le réseau D4 (qui est semblable à son
dual).
Preuve. Le résultat a été démontré par Korkine et Zolotareff pour la fonc-
tion γ′′+. On vérifie aisément que le groupe des automorphismes de D4 agit
transitivement sur l’ensemble des vecteurs minimaux. En effectuant la pre-
mière projection de la réduction d’Hermite, on arrive sur un réseau isomé-
trique au dual de A3. �

5.2. Dimension 5, une conjecture.
Le cas de la dimension 5 n’est actuellement pas résolu. Il est fort probable
que Korkine et Zolotareff aient tenté de prouver que γ′′5,+ =

√
2. Comme

nous avons vu dans la première partie, les contre-exemples de Blichfeldt
infirment ce résultat. C’est dans cette famille de réseaux que l’on trouve,
aujourd’hui encore, le réseau de dimension 5 réalisant la valeur record de
la fonction γ′′+. En utilisant la propriété 1 avec n = 5 et k = 3, ainsi que
la valeur de γ′′3,+, on aboutit à l’inégalité γ′′5,+ 6 3

2 . Korkine et Zolotareff
ont prouvé que l’inégalité est stricte [7]. Depuis, aucune amélioration de
ce résultat n’a été publiée. Certes une étude approfondie, s’inspirant de la
méthode de Korkine et Zolotareff en dimension 3, devrait nous permettre
d’obtenir la valeur de la constante γ′′5,+. Malheureusement, la complexité
et la taille du système d’inégalités rendent sa résolution illusoire. D’un
autre côté, une étude locale, comme pour les invariants γ et γ′, n’est pas
envisageable, vu le caractère discontinu de la fonction γ′′+. Remarquons
cependant que la valeur de γ′′− reste strictement inférieure à

√
2 pour tous

les exemples dans lesquels γ′′+ dépasse
√

2, ce qui suggère la conjecture :

Conjecture. La valeur de la constante γ′′5,− est
√

2, valeur atteinte uni-
quement sur les réseaux parfaits D5 et H5 = A3

5 et leurs duaux.

En utilisant la propriété 1 avec le couple (n, k) = (6, 2) (respectivement
(7, 3) et (8, 4)), et sous l’hypothèse que la conjecture ci-dessus soit vraie, on
obtient les inégalités

γ′′6,− 6

√
8
3
, γ′′7,− 6

√
3 , γ′′8,− 6 2 .

Or, comme nous avons vu au paragraphe 2.5, ces valeurs sont atteintes sur
les réseaux E6 respectivement E7 et E8.
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Conséquence. Si la conjecture précédente est vraie, on a

γ′′6,− =
√

8
3
, γ′′7,− =

√
3 , et γ′′8,− = 2 ,

valeurs atteintes sur les réseaux parfaits E6 et son dual, respectivement E7

et son dual, et E8.

Des valeurs conjecturales des constantes γ′′n,− pour n = 5, 6, 7, 8, on dé-
duit tout de suite que γ′n = γ′′n,− pour n = 5, 6, 7, 8, ainsi que la liste des
réseaux sur lesquels l’égalité a lieu1.

Revenons à la constante d’Hermite. Les valeurs de cette dernière sont
établies jusqu’à la dimension 82 et résulteraient immédiatement de la con-
jecture précédente, en partant de l’égalité γ4 =

√
2, et en raisonnant par

récurrence à l’aide de la propriété 3.
Les conséquences de la conjecture laissent penser que sa démonstration

sera ardue. A cause de la discontinuité de γ′′ les méthodes utilisées pour
les constantes γ et γ′ ne peuvent pas s’appliquer. Une caractérisation ou au
moins une étude des points de discontinuité serait certainement profitable
dans l’espoir de mener une analyse locale. Comme nous l’avons vu plus
haut, il ne suffit pas de connaître la géométrie du réseau pour caractériser
les discontinuités ; il faut connaître celle de tous ses projetés.

5.3. Les réseaux de racines.
Dans cette partie, nous énonçons les résultats concernant les réseaux de
racines irréductibles. Comme le cas des réseaux E6, E7 et E8 a déjà été traité
au paragraphe 2.5, il nous suffit de considérer les deux familles infinies An

pour n > 2 et Dn pour n > 4. Les démonstrations sont laissées aux soins
du lecteur.

Théorème 5. Pour tout entier n > 2, il existe, à isométrie près, une
unique lamination et une unique antilamination du réseau An et elles coïn-
cident. La décomposition en somme de carrés de la réduction d’Hermite
est

2(x1 +
1
2
x2 + · · ·+ 1

2
xn)2 +

3
2

(x2 +
1
3
x3 + · · ·+ 1

3
xn)2 + · · ·+

k + 1
k

(xk +
1

k + 1
xk+1 + · · ·+ 1

k + 1
xn)2 + · · ·+ n+ 1

n
x2
n .

1Cela a été démontré, par Poor et Yuen, qui ont obtenu les constantes γ′n pour n = 5, 6, 7 (et
8) ; voir C. Poor, D.S. Yuen, The Bergé-Martinet constant and slopes of Siegel cusp forms, Bull.
London Math. Soc. 38 (2006), 913–924.

2La dimension 24 est maintenant connue ; voir H. Cohn, A. Kumar, Optimality and uniqueness
of the Leech lattice among lattices, preprint, arXiv :math.MG/0403263 (2004).
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Les constantes γ′′± et γ′′′± du réseau An sont

γ′′±(An) = γ′′′± (An) =

√
2n
n+ 1

.

[A isométrie près signifie à isométrie près de chacune des projections ou de chacune des
sections.]

Théorème 6. Pour tout entier n > 4, il existe, à isométrie près, deux
laminations des réseaux Dn (sauf pour le réseau D4 qui n’en admet qu’une
seule) et une seule antilamination. Les deux laminations, bien que diffé-
rentes, sont toutes deux également l’antilamination dont voici la décompo-
sition en somme de carrés :

2(x1 +
1
2
x2 + x3 +

1
2
x4 −

1
2
x5 − · · · −

1
2
xn)2+

3
2

(x2 +
2
3
x3 +

1
3
x4 −

1
3
x5 − · · · −

1
3
xn)2+

4
3

(x3 +
1
2
x4 −

1
2
x5 − · · · −

1
2
xn)2 +

n∑
i=5

x2
i .

On obtient la seconde lamination du réseau en échangeant le troisième
et le quatrième vecteur de base. Sa décomposition de Gauss-Lagrange est

2(x1+
1
2
x2+

1
2
x3+x4−

1
2
x5−· · ·−

1
2
xn)2+

3
2

(x2+
1
3
x3+

2
3
x4−

1
3
x5−· · ·−

1
3
xn)2

+
4
3

(x3 +
1
2
x4 −

1
4
x5 − · · · −

1
4
xn)2 + (x4 −

1
2
x5 − · · · −

1
5
xn)2 +

n∑
i=6

x2
i .

Les constantes γ′′± et γ′′′± des réseaux de racines Dn sont

γ′′±(Dn) = γ′′′± (Dn) =
√

2.

On remarque que les invariants γ′′±(Dn) et γ′ coïncident sur les réseaux de
racines, que ceux de Dn ne dépendent pas de n et que ceux de An tendent
vers cette dernière valeur pour n→∞.
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Note De La Rédaction
Le sujet de cet article a été proposé à l’auteur par François Sigrist comme

sujet de thèse dans le cadre de l’Université de Neuchâtel. Il a fait l’objet
d’une première rédaction en 1999, exposée à Bordeaux le 1er décembre 2000
au Séminaire de Théorie des Nombres. Cette rédaction a été ensuite rema-
niée en 2002, avec la collaboration d’Anne-Marie Bergé. C’est à quelques
détails près ce texte de 2002 qui a été soumis au Journal de Théorie des
Nombres de Bordeaux, à la demande du comité éditorial du journal, afin
que soit mise à la disposition de la communauté mathématique la contri-
bution de l’auteur à la réduction des formes quadratiques selon Hermite et
Korkine-Zolotareff. Nous avons publié ici une version remaniée et notable-
ment raccourcie du texte de 2002.

À propos de la réduction « HKZ », signalons l’article récent de R.A.
Pendavigh et S.H.M. van Zam, New Korkin-Zolotarev inequaliies, SIAM J.
Optim. 18,1 (2007), 363–378.
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