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Journal de Théorie des Nombres

de Bordeaux 21 (2009), 535-557

Lamination et antilamination des réseaux
euclidiens

par MArRC GINDRAUX

RESUME. Dans cet article, nous étudions certains invariants liés a
la réduction de Hermite-Korkine-Zolotareff des réseaux euclidens
(ou des formes quadratiques définies positives).

ABSTRACT. Lamination and antilamination of Euclidean lattices.
In this paper, we study some invariants related to the Hermite-
Korkine-Zolotareff reduction of Euclidean lattices (or of positive
definite quadratic forms).

Introduction

Une forme quadratique réelle, définie positive, est dite laminée si sa dé-
composition en somme de carrés

t$A$ = A1 (1‘1 + a9 + -+ Oélnl'n)2+

Ag(w2 + o323 + -+ + Oz2n33n)2 + -+ Aniﬁi
est obtenue par minimisation successive des coefficients Ay, As, ..., An_1.
L’invariant 4" (A) = min /A1 /A,, qui s’ajoute & la constante historique
74 (A) = max /A /A, introduite par Korkine et Zolotareff, s’obtient en
considérant toutes les laminations possibles. Ces invariants sont introduits
pour majorer la fonction 7/(A4) = /v(A)v(A~1) de Bergé et Martinet et
minorer (encore conjecturalement) I'invariant d’Hermite ~y(A).

Cet article introduit les antilaminations, consistant & maximiser succes-
sivement A, A,_1,...,As, et les invariants correspondants 7{'(A). Nous
étudierons les liens entre ces deux invariants et les utiliserons pour calculer
la valeur de ces constantes pour la famille des réseaux laminés définis par
Conway et Sloane.

Une liste de propriétés (e.g. comportement de récurrence de v, ;. et vy’ 1)
et d’inégalités sera établie. Nous énongons la conjecture 73’7_ = /2 et étu-
dierons ses conséquences (e.g. 73 = 2). Au cours de 1'étude, nous mettons
en évidence un phénomene inattendu : la discontinuité des ces invariants a
partir de la dimension 3.

Manuscrit regu le 22 juin 2007, révisé le 17 aout 2008.
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De nombreux calculs sur la famille des réseaux de Blichfeldt (infirmant
I’égalité 7%/, L= V2 que Korkine et Zolotareff ont vraisemblablement cherché
a démontrer) et sur celle des réseaux de racines sont inclus dans cet article.

1. Réduction de Hermite-Korkine-Zolotareff
et lamination

1.1. Notations et rappels.
Soit E un espace euclidien de dimension n. On note z -y le produit scalaire
usuel de z,y appartenant & E, et ||z|| = (z - £)/? la norme du vecteur z.
Un réseau A de E est un sous-groupe discret de rang n de E. La norme
du réseau A est ||A|| = inf,cp\foy [|7| et Pensemble des vecteurs minimaux
est S(A) = {z € A | ||z| = ||A]|}. Au couple (A, B) formé d’un réseau A
et d’'une base B = (ej,...,e,) de A, on associe la forme quadratique sur
R™ qui, & z € R", associe Q(z) = ||z1e1 + -+ + zpen||? = trAx, ot A est
la matrice de Gram de la base (e;)i1<i<n. On a ainsi une bijection entre
classes d’isométrie de réseaux de E et classes modulo GL,(Z) de formes
quadratiques définies positives sur R".

Soit A un réseau de E, soit (ey,...,e,) une base de A. Le discriminant
du réseau A est la valeur absolue du déterminant d’une base de A. Le
carré du discriminant est appelé le déterminant de A, noté det(A) ou en-

core det(ey,...,e,). L'invariant d’Hermite v du réseau A et la constante
d’Hermite 7y, sont définis comme suit [4, 9] :
sy = A ).
det(A)/n A

Commencons par rappeler le procédé de réduction d’Hermite (en abrégé
HKZ) des formes quadratiques définies positives (respectivement des ré-
seaux euclidiens). Ce procédé a été introduit par Hermite [6] en 1850 et
précisé par Korkine et Zolotareff en 1873 [7]; voir également [2, 8, 9, 10].
Il généralise la notion de réduction des formes quadratiques en dimension
deux, due & Lagrange ; voir aussi Gauss [5].

Soit A un réseau de E. Choisissons un vecteur minimal e; = egl) de
A. Projetons orthogonalement le réseau A = A(Y) sur le sous-espace Fy =
Rei. Le projeté, qu’on notera AP est alors un réseau de Fj. On répéte
le procédé avec le réseau A?) et le sous-espace Fy = ReéQ)J' avec 6;2) un
vecteur minimal de A?). On obtient ainsi une suite de réseaux relatifs
AV A@ A0 de rang n,n—1,...,1 et une suite de vecteurs ez(»i) e A,

On releve ensuite les egl), cen e%n) en une base (eq,...,e,) de A de sorte que

pour ¢ < j, on ait ]el(-i) ej| < %Hegi)HQ.
Dans le langage des formes quadratiques, soit Q(z) = 'z Az la forme
quadratique associée au réseau A. Quitte a remplacer () par une forme
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équivalente @)1, on suppose que (1,0, ...,0) est un vecteur minimal de Q.
La projection utilisée dans le cas des réseaux se traduit ici par un début de
réduction de Gauss-Lagrange (décomposition en carrés)

Qi(x1,..., 1) = Ai(x1 + appxo + -+ a1nxn)? + Q) (T2, . . ., )

dans laquelle la forme @) correspond au réseau projeté A®) . En continuant
le procédé avec la forme @, on obtient au bout de n — 1 étapes une dé-
composition en carrés d’'une forme équivalente a @ :

Q ~ Ai(x1+apzrat-- -+041n$n)2+z42(932+0423$3+' . ~+02n$n)2+- : '+An$i-

Les coefficients a;; peuvent encore étre réduits de fagon a étre dans 'inter-
valle [—%, %] Ceci se fait de droite a gauche par un changement de base
triangulaire laissant les coefficients A; inchangés.

Les coefficients externes Ay, ..., A, correspondent au carré des normes

minimales des projetés successifs du réseau associé a la forme ). Rappe-
n

lons que ] A; = det(A). Les coefficients «;; sont appelés les coefficients
i=1

internes.

Remarque.

i) Vu qu’a chaque étape, il n’y a qu’un nombre fini de vecteurs
minimaux, il n’existe qu’un nombre fini de réductions d’Hermite
d’un réseau.

ii) Nous appellerons réduction HKZ faible une réduction d’Hermite
sans conditions sur les coefficients internes.

1.2. Lamination.

Nous allons définir une notion de réduction des formes quadratiques qui
reprend dans son principe la notion de réseau (fortement) laminé due a
Conway et Sloane ; voir le chapitre 6 de leur livre [4].

Définition. Soit A un réseau de E, on appelle lamination de A le procédé
récursif de réduction de la forme quadratique associée suivant :

On choisit comme premier vecteur de base de A un vecteur minimal,
c’est-a-dire un vecteur engendrant la section unidimensionnelle, notée A,
de déterminant le plus petit parmi toutes les sections de dimension 1. On
obtient ensuite une base de A en adjoignant a la i-eme étape un vecteur
e; qui fournit avec (eq,...,e;—1) une base d’une section A; de rang i et de
déterminant minimal parmi toutes les sections de dimension i contenant
A1 =(e1,...,ei1).

Proposition 1. La lamination n’est autre qu’une réduction HKZ faible.

Preuve. Les deux procédés coincident & la premiére étape. Supposons
qu’ils coincident jusqu’a ’étape i — 1. Soit A;_1 la section obtenue a cette
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étape. Pour déterminer une section A; = (eq,...,e;) de déterminant mini-
mal contenant A; 1, il suffit de projeter orthogonalement le réseau A sur le
sous-espace F' = (RA;_1). On obtient alors le réseau A de la réduction
d’Hermite. On finit en choisissant un vecteur e; dont la projection sur F
réalise un minimum de A®. Par orthogonalité, on a

det(el, e ,e,-) = det(el, ey 61‘,1) . ||PF(61)||2

ou Pp(e;) est la projection du vecteur e; sur le sous-espace F. Ainsi, mi-
nimiser le déterminant par rapport a e; revient a prendre e; tel que son
projeté appartienne & S(A®). O

1.3. Fonction ~”.

Au méme titre que la fonction v d’Hermite [9], on définit deux invariants
par isométrie des réseaux. Reprenons les idées de Korkine et Zolotareff [7]
et les notations introduites par Bergé et Martinet [2].

Définition. Soit A un réseau de E de rang n et soit A une matrice de
Gram HKZ-réduite de A. Considérons alors la décomposition en somme de
carrés de la forme quadratique associée

trAx = Ay (21 + nome + -+ - + arpzn) 4

Az + aosms + -+ + a2nmn)’ + - + Apal
On définit les deux invariants " :
A A
Y(A) = max [+ v/ (A) = min />

ukza) \| A ukza) || A ’
n ( n

oll max et min portent sur ’ensemble des réductions HKZ du réseau A.

Nous montrerons plus loin que les fonctions ~/f (A) sont bornées. Ainsi,
par analogie avec la constante d’Hermite, on définit les constantes 7,’1’7 i
et 7, _ comme étant les bornes supérieures des fonctions v/ (A) et 7" (A)
parmi tous les réseaux A de E :

T+ = Slip(vl(/\)) T, = Slip(vﬁ(/\)) :

Remarque. Il suffit de prendre une réduction faible de la matrice A, car
on ne s’intéresse qu’aux coefficients externes.

Lemme 1. On suppose que (e1,...,e,) est une base HKZ de A. Alors pour
tout 1 < k < n,

i) les bases (e1,...,ex) de la section Ay et (e,(c]f:rll), R egfﬂ)) du pro-

jeté A6+ sont des bases HKZ,
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si de plus la base (e1,...,e,) de A réalise la valeur de ~'[(A)
(respectivement v (A)), alors (e,gf:rll), e e,(lkﬂ)) réalise v (AF+1))
(respectivement v" (A1),

Preuve.

i)

ii)

i)

Pour 1 < i < k, le projeté A( du réseau Ay, est une section de A,

()

Comme e, est un vecteur minimal de A ¢’est aussi un minimum
de A,(;), ce qui montre que (eg,...,er) est une base HKZ de Ay.

Par définition méme de la réduction d’Hermite, le réseau A1) est
réduit.
(k+1) (k+1)

Considérons une nouvelle base HKZ, (e, Y1 s €n ), du réseau
A®+D En relevant les vecteurs e( ) e ,gk) &?,(C]fll), . ,a%n) en une
base (e1,...,€k, Ekr1,.--,6n) de A, nous obtenons une base HKZ

de A satisfaisant ||61H/||5(">|| < lleall /eS| = 47 (A). On en déduit
que

+1 (k+1) n
e 01/ < eVl 1lel| -

La démonstration est la méme pour 7" (A). O

Il a été démontré par Hermite que v, < (%)("*1)/2; il en est de méme
pour la fonction ~"”.

Proposition 2. Les fonctions v, . sont majorées par (%)(”_1)/2.

Preuve. On montre par récurrence que, quel que soit le réseau A de E,
YL (A) < (3)™V/2. Regardons le cas n = 2.
Soit A un réseau de R?. On a A; Ay = det(A), ainsi

A () ()P
As N A - Ay - det(A)

=7*(A) .

Comme y(A) < (%)1/2, on a v} (A) < (%)1/2. Pour n > 3, on conclut par
récurrence via 1'égalité

qui entraine v/ (A) < (4, )Y = (3)(=D/2, ]
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1.4. Exemples.

La famille des réseaux de Blichfeldt (1935).

La famille des réseaux de Blichfeldt [3] joue un réle important dans I’étude
de la fonction 4”. Korkine et Zolotareff ont calculé les valeurs de la fonction
7;{7 4 pour n < 4. Il semble vraisemblable qu’ils aient cherché a prouver que
fyg, 4 = V2. La famille des réseaux de Blichfeldt infirme cependant cette
égalité. Elle est en fait 'unique chemin a isométrie pres de ’algorithme de
Voronoi reliant les formes parfaites D5 et As. Pour 0 < r < 2, les formes
quadratiques associées sont

2 2
1 3 1
2 $1—§($2+x3+x4+x5) +§ x2—§($3+x4—x5) +

2 2
g (.753 — %m — lexg)) +(1+7) <x4 — ;xg)) +(1- ir)x% )

Pour 0 <r < %, on obtient des valeurs différentes pour v” et 4. Pour les
autres valeurs du parametre r, les deux fonctions sont confondues. Remar-
quons que " est toujours inférieure & /2. Par contre pour des valeurs du
parametre r comprises entre 0 et (3 —v/2)/2, la fonction 77/ est strictement
supérieure a v/2 (cf. Fig. 1). En particulier, le cas r = i est intéressant.
C’est, & I'heure actuelle, le record pour la fonction 4/ en dimension 5. En
choisissant les bonnes réductions d’Hermite, on obtient pour ce réseau

2 -1 -1 -1 -1
-1 2 0
A= —1
-1
-1

@)
—_

32
15’

[\)

qui fournit la valeur v/ =

_ o O
Do ol— O

O NN O =N RO O

2
-1
Ay =| -1
7

— o N =M= OO
|

19
qui fournit la valeur 7 = 0

— = =N

0]

N O = ==

Chemin de Voronoi entre D5 et Ds.

Il y a, a équivalence pres, deux chemins de Voronoi différents reliant la
forme parfaite D5 & une forme équivalente [9]. Nous ne considérerons ici
que le chemin paramétré comme suit

2 1 1 1+» 1-—7r
1 2 1 1+» 1-—7r
A(r) = 1 1 2 1+r 1-—r

1+ 1+7r 14+7r 242r —r
l1—» 1—r 1—7r —r 2
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2.297

S (e

F1c. 1. De haut en bas 72, (7/)?, et (v”)? des réseaux de Blichfeldt

ou 0 < 7 < 1. (Cest le chemin de Voronoi D5 — D5 qui conserve une
section Dy.) Les matrices de Gram A(r) et A(1 — r) sont équivalentes par
A(r) =tSA(1 —r)S, avec

-1 -1 0 -1 0
-1 0 -1 -1 0
S = 0 -1 -1 -1 0
1 1 1 2 0
1 1 1 1 1

A Dexception de r = 0,% et 1 ou 7| = V2, la fonction Y| est strictement

supérieure & /2 (cf. Fig. 2) avec un maximum de /45/22 atteint aux points

r:%etr:%surlabase

SN~ N
WO DN = DN -
— W DN ==
N O W N
NN —wo O

La fonction 7" est, & exception des deux extrémités, inférieure & v/2 avec

un minimum sur le réseau eutactique obtenu avec le parametre r = %

Remarque. Ces deux chemins de Voronoi sont les seuls en dimension 5
pour lesquels la fonction 4/ prend des valeurs supérieures & V2.
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2.297

wr|oo

N[ =

FI1G. 2. De haut en bas 2, (v/)?, et (v”)?

2. Antilamination

2.1. Notations et rappels.
Soient A un réseau de F, (e, ..., e,) une base de A et A la matrice de Gram

associée. On note A* son dual et (e],...,e}) la base duale, de matrice de

_ rn
Gram A~'. On désigne par A la matrice de Gram du réseau A ou l'on
prend les coordonnées dans l'ordre inverse. Matriciellement, elle s’obtient
par A =tsAs, avec

@) 1

1 @)

Commengons par deux lemmes (cf. [9]; 3.4 et 3.5).

Lemme 2. Soient A un réseau de E et F' un sous-espace de F. Pour que
AN F soit un réseau de F, il faut et il suffit que A* N F+ soit un réseau
de F*.

En outre si ces conditions sont vérifiées, le dual de ANF est la projection
sur F' du dual de A, c’est-a-dire

(ANFE)* =pp(A7).

Lemme 3. Soit r < n un entier et soit (e1, ..., e,) une base du réseau A de
lespace vectoriel E. Notons F' le sous-espace de E engendré par (eq, ..., e;.).
On a l’égalité :

det(A N F) = det(A) - det(A* N FL).

2.2. Antilamination.
On définit un procédé de réduction des formes quadratiques qui reprend
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les idées de la lamination. Soit A un réseau de E et soit A une matrice de
Gram du réseau A.

Définition. On appelle antilamination de A (en abrégé Agnii) le procédé
récursif de réduction de la forme quadratique suivant :

On prend comme dernier vecteur de base e, un vecteur tel que le sous-
réseau A,_1 = (e1,...,e,—1) engendré par les n — 1 premiers vecteurs de
base de A soit de déterminant det(ey, ..., e,—1) minimal. On applique alors
le méme procédé au sous réseau A,_1, et ainsi de suite, pour obtenir une
antilamination de A.

Par le lemme 3, il convient de prendre comme dernier vecteur de base du
réseau A un vecteur minimal du dual A*. En effet, afin que det(eq, ..., e,-1)
soit minimal, il faut et il suffit que e} soit un vecteur minimal de A*, car

det(er,...,en—1) = det(eq,...,e,) - det(e)) .

Ainsi, on observe qu’opérer une antilamination d’un réseau A revient a faire
une lamination de son dual. Plus précisément :

Proposition 3. La base (e1, ..., e,) du réseau A est antilaminée si et seule-
ment si la base (e}, ...,e}) du dual A* est laminée. En d’autres termes,

Aanti = (A D grez) L

Preuve. Notons (eq,...,e,) une base antilaminée de A, A sa matrice de
Gram et (e],...,e}) sa base duale. Soit F' = L(ey,...,en—1) le sous-espace
de codimension 1. Comme A est antilaminée, par le lemme 3, e} est un
vecteur minimal de A=L. Soit § = (ey,...,e,_1) C F une base de A,_;.
Par le lemme 2, la base duale de 3 dans F est 8* = (pp(e3),...,pr(ei_1)).
Comme F' est orthogonal a e}, cela revient a projeter orthogonalement A*
par rapport a e. Comme A est antilaminée, pp(e}_;) est un minimum du
réseau pr(A*). Ceci correspond a la seconde étape de la réduction d’Hermite
de A=L. En itérant le procédé, on obtient une réduction d’Hermite (faible)
de A1,

Soit (e1,...,en) une base de A telle que A=! = Gram(ej,...,e}) soit
réduite au sens d’Hermite faible. Alors e} est un vecteur minimal du dual
de A. Ceci correspond a la premiere étape de ’antilamination de A. Comme
la base duale de (ey,...,e,) dans F = L(e,...,e,—1) est la projection
orthogonale de A* sur F' par rapport a e}, on obtient que pp(e’_;) est
un vecteur minimal du projeté pp(A*) (car Gram(A*) est réduite au sens
HKZ). Ainsi, par récurrence sur le rang n du réseau, on vérifie que la base

(e1,...,en) est antilaminée. O
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2.3. Fonction ~'”.

Définition. Soit A un réseau de E et soit A une matrice de Gram antila-
minée de A. Considérons alors la décomposition en somme de carrés de la
forme quadratique associée

e Ax = Bl(-%'l + Growo + -+ - + ﬁlnxn)Q‘i‘
Bo(xy + oz + -+ - + Ponxn)® 4 - + Bpa?

Pour le réseau A, on définit les invariants :

B1 Bl
"(A) = max | — "(A) = min | — ,
fY—‘r( ) anti(/)\() B’I’L "Y—( ) anti(A) BTL

ol max et min portent sur toutes les antilaminations du réseau A.

A Tinstar de v/ (A), les fonctions /'(A) sont bornées. Par définition, les

" »'_ sont les bornes supérieures des fonctions +//(A) et

constantes 7y, . et v, _
" (A) prises sur tous les réseaux A de E :

"

e = () o = (L)

Lemme 4.
V() = max VB AT et 77(8)= min VB -[A"] .

Preuve. Par le lemme 3, nous avons
det(ey,...,en1) =det(er,...,en) - |leX|*.
D’autre part, nous avons
det(eq,...,e,) = det(er,...,en—1) Bn ,
d’ou B, = ||A*]|72. O
2.4. Relation entre v" et 4.

Proposition 4. Soit A un réseau de E et soit A* son dual. On a
%Zi(/\) = ’Yg,i(A*)-

Preuve. Nous avons vu que toute matrice de Gram antilaminée A du
réseau A est telle que la matrice A~1 est une matrice de Gram réduite
au sens d’Hermite de A*, et vice-versa. Notons encore (e, ..., e,) la base
antilaminée associée a la matrice de Gram A et (e, ..., e}) celle attachée
& la matrice A—1. Les décompositions de Gauss-Lagrange respectives sont

tx Az = By(x1 + Braxa + -+ + Binan)? + - + Bua? |

byA=Ty = Ay (y1 + araya + - + Q1nn)? + -+ Apy?
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Montrons alors que
|1 1 1
An7An_1?"'7A1 Y

ce qui entraine en particulier que % = %, prouvant la proposition.
n n

Par le lemme 3,

det(er,...,e;) = det(er,...,e,) - det(en,... €5, 1)

[B1, Ba, ..., By]

entrainant
Byy1...B A A =1
pour tout r avec 1 <r < n—1. [l
Conséquences.
i) La transcription du lemme 1 aux antilaminations montre que si la
base (e1,...,ey,) réalise la valeur de ~, il en est alors de méme
de (e1,...,ex) pour k = 1,...,n. En revanche, la projection sur

Iorthogonal, quoique fournissant aussi une antilamination, ne réa-

lise pas toujours la valeur de ~//’.

n

4
i) Ona s < (5)072,

2.5. Constantes v” et 4"/ des réseaux Eg, E7 et Eg.
Appliquons les résultats précédents aux réseaux fortement laminés de
dimension inférieure & 8 [4], qui sont

Al = \/§Za AQ? A37 ]D)4, ]D)5, ]Eﬁa E'? et ES-

Comme ces réseaux sont absolument extrémes, on obtient une lamination
du réseau Eg en considérant la base provenant directement de cette famille.
Les coefficients externes de cette lamination de Eg

3 4 321
9 51 §7 5 L Za §7 5
sont obtenus par comparaison des déterminants de ces réseaux, & savoir

2,3,4,4,4,3,2,1. Comme [Eg est unimodulaire et que les coefficients ex-
ternes satisfont la symétrie A; = ﬁ, cette lamination est également une

2

antilamination de Eg. Vu que le groupe des automorphismes de chacun de
ces réseaux agit transitivement sur I’ensemble des vecteurs minimaux de
son dual, chacun posséde une unique section de codimension 1 de déter-
minant minimal. Il n’existe donc, a isométrie pres, qu’'une lamination ou
antilamination de Eg. On a en outre :

8
VL(Be) = 2(Ee) =[5 . AL(ED) =B = V3

et YL (Eg) = 7Y (Eg) = v(Eg) = 2.
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Un calcul similaire peut étre fait pour le réseau de Leech Agy, mais celui-
ci ne fournit que la valeur des fonctions

Y (A2a) =" (A2a) = 4 = y(A2a).

La valeur de 7/ est inconnue et pourrait dépasser 4.
3. Quelques propriétés
Propriété 1. Pour 1 <k <n, ona

7n,+ S 'Yk,+ : 'Yn—k:+1,+ et 7;{,— < Vg,+ '%,z/—kﬂ,— .
Preuve. Quel que soit le réseau A de 'espace euclidien F, montrons que
YL(A) < fyk,+ - s Soit (e1,...,€k,...,€n) une base du réseau réali-
sant la valeur de ~// (A) (respectivement 7" (A)), notons Ay le sous-réseau
engendré par (eq,...,ex) et A% le k-iéme projeté de A. D’apres le lemme 1,
(e1,...,ex) est une lamination de Ay et (e,(ck), . .,e%k)) une lamination de
A®) réalisant la valeur de 7/ (A®)) (resp. 4" (A(R)). Alors,
1) 1
”ﬁwyﬁ B |;ﬁ<k>||’r | Hﬁ H\ <A@ EAD) <9 -

O

VA =

Conséquence. En appliquant la propriété précédente a n = 2k — 1, on
obtient
Vak-1 T < (e +)

Rappel. L’invariant d’'Hermite dual v’ d’'un réseau A de E et la constante
d’Hermite duale, introduits par Bergé et Martinet [2, 9], sont définis par

VA = AIATE, v = Sup(’y’(A)) :

Propriété 2. Pour tout n > 1, on a l’inégalité

’Y,(A) <YL(A)

et donc
!

Preuve. On fait appel a Iantilamination du réseau A. Comme ~//(A) =

V/B1||A*||, on a alors
Y(A) = VBiA*] = A AT =A(A) -
Pour v”; on conclut par 7' (A) = v/ (A*). O
Propriété 3. Pour tout nombre entier n supérieur a 2, on a
Tn

/!
’YTZ,:E > n—1 °
n—1
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Preuve. C’est une conséquence de la propriété 2 et de I'inégalité analogue
pour 7 (cf. [2]; 2.6(i) avec k = 1). O

Propriété 4. pour tout entier n > 1, nous avons

n/2

1! 1
Yo' TS Vot Tnt -

Preuve. Itérer sur le rang n du réseau A I'inégalité de la propriété 3. [
Propriété 5. La fonction fyj{Hr est croissante en n :
vn, ’Y;:+1,+ > ’YZ,+ .

Preuve. Soit A un réseau de R”. Construisons un réseau A de Rt tel que
Y/ (A) = ~/(A). Notons (e1,...,e,) la base orthonormée standard de R"
et (e1,...,eny1) celle de R™*1. Quitte & user d’une homothétie, supposons
que le réseau A soit de minimum 1. Considérons alors le réseau A somme
directe orthogonale du réseau A et de Zepi1. Alors Y (A) = 47(A). En
effet, e,11 est un vecteur minimal de A au méme titre que ceux de A. On
peut donc choisir e, 1 comme premier vecteur de base lors de la réduction
d’Hermite de A. En projetant sur le plan orthogonal & e, 11, on obtient le
réseau A. En continuant le procédé de réduction par le choix des vecteurs
minimaux de A qui mene a v/ (A), on obtient :

A
" > Hen-&-l” _ H — A (A
MO = o) = amg =Y

ott A désigne le n-itme projeté du réseau A. O

Remarque. Pour des réseaux dont la constante 7/ est supérieure ou égale
a 1, cette construction n’augmente pas la valeur de +/}. Seuls ceux dont ~//
est inférieure & 1 passent a la valeur 1.

Propriété 6. La fonction 'yjl”_ est croissante en n :
v, gl- 2 Yo, -

Preuve. La preuve de la propriété 5 ne s’applique pas sans modification.
En effet, pour le réseau A, on a 7’ (A) = min(1,+” (A)). On construit alors
une suite de réseaux ;A de R"*! indexée par j € N, telle que la suite v (jA)
converge vers 7" (A). Reprenons les notations de la preuve précédente et
considérons la famille jA = (1 — %)Z@n_t,_l @ A. Toute lamination du réseau
doit débuter par le choix du vecteur minimal (1 — %)€n+1. On obtient ainsi :

~ 1-1 1

ou A,, est le dernier coefficient externe de la réduction HKZ de A. O
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Remarque. La constante d’Hermite ~,, n’est probablement pas croissante
en n (on s’attend qu’en dimension 25, elle soit atteinte sur les réseaux
laminés).

Propriété 7.

n/2 n—1
n .

< ()
Preuve. Combiner les propriétés 4 et 6. O

Propriété 8. Pour tout entier naturel n pair, on a

n—2

I 4\ “8
Tnt S 3 T -

, 4\ Tt
Tt S 3 Tn -

Preuve. Soit ;A une famille de réseaux de E dont la suite de constantes
74 (;A) tendent vers la valeur v, ,. Alors, & la limite, le coefficient ex-
terne A; est supérieur ou égal aux autres coefficients externes. Sinon, cela
contredirait la croissance de la fonction 7”. Rappelons encore que, lors d’une
réduction d’Hermite, les relevés des projetés satisfont

k- 4 (k
eVl < /21

Soit (eq, ..., e,) une base réduite au sens d’Hermite. Par les deux remarques
précédentes, on peut écrire, pour n pair,

Pour n impair, on a

4 E(E_l)l
dot(8) = e ef? .. < e /2 e (5) 77
D’ou B
1 3\ 5 1
el e > (3) T - detta)
Ainsi
n—2
H61 | _ HAIP AR s
Tt = (n) det(A)/» \3 ’
lef 1 fef - llet™]
Pour n impair, on procéde de méme en écrivant
1 n—1)/2) n+1)/2) n+1)/2)
det(A) = [lef |-+ lef 7 1 - lefrst 2 M2 Nlel S 2 - e

Propriété 9. On a l’inégalité asymptotique

1,1
,yg:t < n§+§lnn ]
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Preuve. En traduisant dans nos notations la proposition 4.2 de [8], on

obtient : soit (eq,...,e,) une base réduite au sens d’Hermite du réseau A
de E. Notons Aq,..., A, les coefficients externes associés. On a alors
A; > ||A[? - i) pouri=1,...,n.

Ce qui montre que

A All?
’Yiz(A) = Ai,ll < ;A”Q .pltinn pour tout réseau A de rang n.

O

Remarque. Contrairement a la constante v pour laquelle on connait une
inégalité asymptotique linéaire en n, on doit ici se satisfaire d’une inégalité
exponentielle. Cela découle du fait que nous ne sommes pas encore capables
de prouver que 'Y;zl,i < 7Yn, bien que nous en soyons intimement convaincus.
En effet, il existe des réseaux A pour lesquels les constantes 77 (A) sont
supérieures a la constante y(A), comme le montre le réseau Ef étudié dans
la section 3.5, pour lequel y(E) = 4 -37%/6 < \/8/3 = y/L(E¥).

4. Discontinuité

Il est bien connu que les fonctions v et 7/ sont continues. Ceci permet,
par un argument standard de compacité, de montrer que les bornes sont
atteintes. Ce phénomeéne ne se produit pas pour les fonctions 7| et v/'. En
effet, on verra que ces fonctions sont discontinues des la dimension 3. Une
étude locale est donc sans objet.

4.1. Cas des dimensions un et deux.

Proposition 5. Pour n = 1 et 2, les fonctions | (respectivement ~''

sont continues et coincident avec les fonctions vy et 7.

Preuve. Le cas n = 1 est trivial. Pour tout réseau A de dimension 2, on a

LAY = A2(A) = \/fT v w!eAt‘(' = =100 =)

qui sont continues. Il

Corollaire. On a vy, = 75’y = \/g = 72, valeur atteinte sur le réseau

hezagonal As.
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4.2. Dimensions trois et plus.

Reprenons la famille de réseaux de la propriété 6. La famille de réseaux j]X
converge vers le réseau Z @ A lorsque j tend vers Uinfini. On a vu que la
fonction 7;(]-[\) converge vers 7/ (A). Par contre on montre aisément que
Y'(Z & A) = 1, qui est en général différent de v” (A). Ceci démontre la
discontinuité de la fonction 7.

Regardons plus en détail, le cas de la famille A(e) = Ay @ (V2 +¢)Z,
—2 < g, de forme quadratique 2(z; + %.’132)2 + %x% + (2 + ¢)x3. On observe
que pour & négatif, le minimum du réseau est (2 + ¢), tandis que pour &
positif, il vaut 2. Ainsi suivant la valeur du parameétre €, on est obligé de
choisir le minimum dans la composante orthogonale de (/24 ¢)Z ou de
As. On obtient

442 2
YL(A(e)) = \/T poure <0 et ~{(A(e)) = ”27—% pour € > 0.

Pour ¢ = 0, nous avons 7" (A(0)) = 1 et 7} (A(0)) = \/g. On observe un
saut au point € = 0, comme l'illustre la figure 3.

4

3

wWIiN

—1 0 1

F1G. 3. Discontinuité pour la famille A(e)

Remarque. Notons que pour € négatif, les fonctions 7/ sont supérieures
a la fonction d’Hermite -, et que les roles s’inversent pour ¢ positif. Enfin
pour € €] — 2, —%] et pour ¢ positif, les fonctions 7/ et 4 sont confondues.
Par contre pour ¢ €]—3, 0[, 7/ vaut 1 et est donc inférieure aux fonctions 7.

Les discontinuités des fonctions +/{ se produisent au moment précis ou
le kissing number de la famille de réseaux A(e) admet son maximum. Ce
phénomene se reproduit aussi en des dimensions supérieures. Notons tou-
tefois que cette discontinuité peut ne prendre source qu’a partir d’un des
projetés du réseau, comme le montre I’exemple suivant :
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Plongeons le réseau A(0) dans R*, et notons e1, ez, e3 I'image de la base
de A(0), et e4 un vecteur normé orthogonal & A(0). Considérons le réseau

Z(e1 + aneq) + Z(ea + ageq) + Z(es + ageq) + Zey .

ou aq, ag, ag sont réels. En prenant a; et s non nuls, on obtient un réseau
indécomposable dont ’ensemble des vecteurs minimaux est restreint a tey.
En projetant sur le plan perpendiculaire a e4, on retombe sur le réseau
A(0). Ainsi, la discontinuité se produit au moment ou le kissing number du
second projeté atteint son maximum.

Certes, ces différents exemples proviennent de réseaux décomposables ou
tout a été fait pour produire cette discontinuité. Il est donc utile de savoir
que méme dans des situations rigides comme un chemin de Voronoi entre
deux formes parfaites des discontinuités apparaissent.

Les chemins de Voronoi entre les formes D, et A, pour n > 6.
Considérons la paramétrisation de l'unique chemin de Voronoi entre les
formes parfaites D, et A,,, pour n > 6, donnée par

21 0 O 0

12 1 1 oo 1

01 2 1 1

Ary=] 0 1 1

2 1 1

1 2 r

0 1 1 ro 2
avec r compris entre 0 et 1. Pour r > 2(7;__41), cette matrice est une lamina-
tion de la famille réalisant la valeur de v (A(r)). On peut montrer que la
fonction ’y’+’2 admet un maximum de 8(27:1) au point r = 2(’1”7__41) (ce résultat
est aussi valable pour la dimension 5). Dés la dimension n > 6, on observe

une discontinuité pour 7/} en r = 2(7;7__52), qui est exactement ’endroit ou

est atteint le maximum en dimension n — 1. Par contre, la fonction v” coin-
cide avec 7' et est donc continue sur le chemin de Voronoi. Comme nous
le montre la figure 4, 7// (A(r)) est inférieure & y(A(r)). Dans tous les cas,
la réduction d’Hermite peut débuter par les trois premiers vecteurs de la
base ci-dessus. Ceci montre que la discontinuité de /] est la conséquence
du choix d’un vecteur minimal dans le quatriéme projeté du réseau.
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2.520

wlot

N[

F1G. 4. Discontinuité sur le chemin de Voronoi entre Dg et Ag.
De haut en bas, 72, (v/)?, et ()% = (v')?

5. Résultats numériques et conjecture

Les valeurs de la fonction 7;{, 4 ne sont actuellement connues que pour
les dimensions n inférieures ou égales a 4. Dés la dimension 5, nous ne
connaissons pas la valeur de cette fonction. Nous disposons par contre de
quelques inégalités. Dans cette section, nous rappelons les résultats obtenus
par Korkine et Zolotareff et les généralisons pour la fonction '/’,,. Ces
résultats s’appliquent évidemment aux fonctions ’y{{fi en considérant les
réseaux duaux. Le cas des dimensions n = 1 et n = 2 a déja été traité dans
la section 4. Nous avons établi que :

Théoréme 1. Pour n = 1, on a 74 = "y = 1, valeur atteinte sur le

réseau 7.
Pour n = 2, on a vy = V9'y = \/g, valeur atteinte sur le réseau

hexagonal As.

5.1. Dimensions 3 et 4.
En 1873, Korkine et Zolotareff ont établi I'inégalité difficile v5 , = \/g (3]

inégalité 3.5, [7, 10]). Ils ont également établi que cette valeur n’est atteinte
que sur le réseau cubique a faces centrées D3 ~ Ag et son dual, le réseau

cubique centré Dj. Notons que la valeur 75 , = \/g coincide avec la valeur

de la constante 4. Elle est cependant strictement inférieure a 3 = 2.
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Théoréme 2 (Korkine et Zolotareff [7]). Les coefficients externes d’une ré-
duction d’Hermite (ou lamination) d’une forme quadratique définie positive
de rang n satisfont

pourt=1,2,....n—1,

i pourt=1,2,....n—2.

En reprenant ce résultat et en observant que le groupe des automor-
phismes de D3 agit transitivement sur les vecteurs minimaux, on obtient :

Théoréme 3. Pourn =3, on a3, =73y = \/g, valeur atteinte sur le
réseau D3 ~ A3 et son dual D3.

On se propose de donner une démonstration indépendante de celle de
Korkine et Zolotareff pour la constante ’yé",. Celle-ci se base sur la classi-
fication duale des réseaux de dimension 3 due a Bergé [1]. Pour un réseau
A, notons S I'ensemble des vecteurs minimaux et s = |S|/2 le demi kissing
number, S* et s* les analogues pour le dual A* de A.

L’invariant 4" d’une lamination du réseau A de rang 3 ne dépend que du
premier vecteur minimal z € S de départ. Notons le alors 7", :

v, = \/minA ~min(A* Nat);

x étant fixé, ¢’est une fonction continue sur 'ensemble des réseaux A C R3
admettant x comme vecteur minimal.

Proposition 6. On a [’équivalence
V.= = FyeStlquey L x.

Mieuz, il existe au plus un vecteur minimal x € S tel que ~", > +'. Cela
se produit lorsque S* = {£e;} (et donc s* =1) pour x = te;, 1 <i < 3.

Preuve. L’équivalence est triviale par 7", = \/ min A - min(A* N zt). On
acheéve la preuve en passant au crible toutes les classes duales de dimension 3

([1)- O

Ainsi la fonction 4", prend exactement deux valeurs (v et 7” = +') dans
quatre classes duales correspondant a s* = 1; a savoir (1,1), (2,1), (3,1) et
(4,1). Dans les 11 autres classes (dont trois avec s* = 1), 4" et 4// coincident
avec 7'. Ce qui implique que, dans ce cas, 7" et 4’ sont confondues.

Bergé et Martinet ont établi que la constante v5 = \/g est atteinte sur

les réseaux D3 et D3, de maniére indépendante des travaux de Korkine et
Zolotareff. Ceci fournit une démonstration pour la constante v” .
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L’étude de v, dans les quatre classes duales ci-dessus permet d’obtenir
le théoreme de Korkine et Zolotareff sans étre toutefois significativement
plus simple.

Le cas de la dimension 4 se déduit du cas précédent, en utilisant la
propriété 1 avec n =4 et k = 3.

Théoréme 4. Pour la dimension 4, nous avons v . = v{'y = /2. Cette

valeur est atteinte uniquement sur le réseau Dy (qui est semblable a son
dual).

Preuve. Le résultat a été démontré par Korkine et Zolotareff pour la fonc-
tion 7//. On vérifie aisément que le groupe des automorphismes de Dy agit
transitivement sur ’ensemble des vecteurs minimaux. En effectuant la pre-
miere projection de la réduction d’Hermite, on arrive sur un réseau isomé-
trique au dual de Ag. O

5.2. Dimension 5, une conjecture.

Le cas de la dimension 5 n’est actuellement pas résolu. 1l est fort probable
que Korkine et Zolotareff aient tenté de prouver que ,yg’ L= V2. Comme
nous avons vu dans la premiére partie, les contre-exemples de Blichfeldt
infirment ce résultat. C’est dans cette famille de réseaux que l'on trouve,
aujourd’hui encore, le réseau de dimension 5 réalisant la valeur record de
la fonction +//. En utilisant la propriété 1 avec n = 5 et k = 3, ainsi que
la valeur de ~4 ,, on aboutit a I'inégalité 7% , < 3. Korkine et Zolotareff
ont prouvé que l'inégalité est stricte [7]. Depuis, aucune amélioration de
ce résultat n’a été publiée. Certes une étude approfondie, s’inspirant de la
méthode de Korkine et Zolotareff en dimension 3, devrait nous permettre
d’obtenir la valeur de la constante 75’7 1. Malheureusement, la complexité
et la taille du systeme d’inégalités rendent sa résolution illusoire. D’un
autre coté, une étude locale, comme pour les invariants v et 4/, n’est pas
envisageable, vu le caractére discontinu de la fonction 7. Remarquons
cependant que la valeur de 4" reste strictement inférieure & /2 pour tous
les exemples dans lesquels /] dépasse V2, ce qui suggere la conjecture :

Conjecture. La valeur de la constante 'yg”, est \/2, valeur atteinte uni-

quement sur les réseauz parfaits Dy et Hs = Ag et leurs duauz.

En utilisant la propriété 1 avec le couple (n, k) = (6,2) (respectivement
(7,3) et (8,4)), et sous I’hypothése que la conjecture ci-dessus soit vraie, on
obtient les inégalités

Y6, < \/§ W_<V3, W_<2.

Or, comme nous avons vu au paragraphe 2.5, ces valeurs sont atteintes sur
les réseaux Eg respectivement E; et Eg.
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Conséquence. 5i la conjecture précédente est vraie, on a

8
Y6 = \/; . V= V3, et Y5 =2,

valeurs atteintes sur les réseaux parfaits Eg et son dual, respectivement E~;
et son dual, et Eg.

Des valeurs conjecturales des constantes 'y,’{,_ pour n = 5,6,7,8, on dé-
duit tout de suite que v, = v, _ pour n = 5,6,7,8, ainsi que la liste des
réseaux sur lesquels 1'égalité a lieu'.

Revenons a la constante d’Hermite. Les valeurs de cette derniére sont
établies jusqu’a la dimension 82 et résulteraient immédiatement de la con-
jecture précédente, en partant de I’égalité 74 = /2, et en raisonnant par
récurrence a ’aide de la propriété 3.

Les conséquences de la conjecture laissent penser que sa démonstration
sera ardue. A cause de la discontinuité de +” les méthodes utilisées pour
les constantes 7 et 4/ ne peuvent pas s’appliquer. Une caractérisation ou au
moins une étude des points de discontinuité serait certainement profitable
dans D’espoir de mener une analyse locale. Comme nous l’avons vu plus
haut, il ne suffit pas de connaitre la géométrie du réseau pour caractériser
les discontinuités; il faut connaltre celle de tous ses projetés.

5.3. Les réseaux de racines.

Dans cette partie, nous énoncons les résultats concernant les réseaux de
racines irréductibles. Comme le cas des réseaux Eg, E; et Eg a déja été traité
au paragraphe 2.5, il nous suffit de considérer les deux familles infinies A,,
pour n = 2 et D, pour n > 4. Les démonstrations sont laissées aux soins
du lecteur.

Théoréme 5. Pour tout entier n > 2, il existe, a isométrie pres, une
unique lamination et une unique antilamination du réseau A,, et elles coin-
cident. La décomposition en somme de carrés de la réduction d’Hermite
est

1 1 3 1 1
w1+ gwat ot pan)? 4 S(w+ gy o )’ ot
k+1 1 ) n+1 ,
O g e e ) e

1Cela a été démontré, par Poor et Yuen, qui ont obtenu les constantes «y/, pour n = 5,6,7 (et
8) ; voir C. Poor, D.S. Yuen, The Bergé-Martinet constant and slopes of Siegel cusp forms, Bull.
London Math. Soc. 38 (2006), 913-924.

2La dimension 24 est maintenant connue ; voir H. Cohn, A. Kumar, Optimality and uniqueness
of the Leech lattice among lattices, preprint, arXiv :math.MG /0403263 (2004).
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Les constantes v et v{' du réseau A, sont

2n
n+1"

’V;/:(An) = 'Yg:/(An) =

[A isométrie pres signifie & isométrie prés de chacune des projections ou de chacune des

sections.]

Théoréme 6. Pour tout entier n > 4, il existe, a isométrie prés, deux
laminations des réseaux Dy, (sauf pour le réseau Dy qui n’en admet qu’une
seule) et une seule antilamination. Les deuz laminations, bien que diffé-
rentes, sont toutes deux également l’antilamination dont voici la décompo-
sition en somme de carrés :

ey + oy + 3 + = ! L)
I 2$2 I3 21’4 21’5 213”
COME S W Loy
—(xo+ a3+ 04— 5 — - — X
R R S R 3
4 1 1 1 n
g(a;3+§a:4—53;5—‘--—537”)2—1—;37?.

On obtient la seconde lamination du réseau en échangeant le troisiéme
et le quatriéme vecteur de base. Sa décomposition de Gauss-Lagrange est

2 RS S 1 )2+3( PRI 1 2
I 2.7,'2 2333 Ty 2$5 21‘” 5 xI9 3.7}3 31‘4 3.7}5 3l‘n
4 1 1 1 1 1 "
+§(x3 + 5%4 = g% = an)Q + (24 — 3% = gxn)z + i:Ezez.

Les constantes v et v'' des réseaux de racines D,, sont

YE(Dy) =+ (Dy) = V2.

On remarque que les invariants v/ (Dy,) et 4 coincident sur les réseaux de
racines, que ceux de ID,, ne dépendent pas de n et que ceux de A,, tendent
vers cette derniére valeur pour n — oo.
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Nombres de Bordeaux, a la demande du comité éditorial du journal, afin
que soit mise a la disposition de la communauté mathématique la contri-
bution de I'auteur a la réduction des formes quadratiques selon Hermite et
Korkine-Zolotareff. Nous avons publié ici une version remaniée et notable-
ment raccourcie du texte de 2002.

A propos de la réduction « HKZ », signalons l'article récent de R.A.
Pendavigh et S.H.M. van Zam, New Korkin-Zolotarev inequaliies, STAM J.
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