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Comments on the PhD theses of
J.-L. Baril, M. Läıhem and H.Napias

Here are some comments on the three Bordeaux Theses of Mohamed
Läıhem (December 4th, 1992), Jean-Luc Baril and Huguette Napias
(January 25th, 1996), that can be downloaded from my homepage,
under the link publications by various authors; the thesis advisers where
A.-M. Bergé for the first two and myself for the third one. All three
theses are dedicated to the study of perfect (Euclidean) lattices and
related notions.
The references are those of my homepage, cited [homeMar] and those to be

found on the link recent publications of [homeMar], Corrected and extended

reference list of the book ”Perfect Lattices in Euclidean Spaces”, quoted here

[Mar]. The theses referred to in the title are [Lah], [Bari], and [Nap2].

1. M. L. The aim of Läıhem’s thesis was to construct all perfect
lattices having a perfect hyperplane section with the same minimum.
There are 33 perfect, 7-dimensional lattices, among which the three
root lattice A7, D7, E7. Läıem classified those which contain one of
the remaining 30 lattices, producing a list of 1171 perfect lattices, and
quoted 4 more lattices, but did not prove that these four lattices where
the only perfect lattices having a hyperplane section isometric to a root
lattice.

This last result was proved by Baril in the first chapter of his thesis.
This proved that there are exactly 1175 perfect, 8-dimensional lattices
having a hyperplane section with the same minimum.

The list can be read in [homeMar] (Catalogue of Perfect Lattices)
under the name Läıhem lattices lh(i), 1 ≤ i ≤ 1175, the last four being
the root lattices E8, D8, A8 and Barnes’s lattice A2

8 = 〈A8,A2
7〉 where

A2
7 ' E7 is a Coxeter lattice.
Basically, classifying perfect, n-dimensional lattices having a cross-

section by a hyperplane section H which is perfect with the same min-
imum is done using the following steps. One completes an integral,
primitive (symmetric) Gram matrix for the section by a last column
[a1, ..., an] where an = m, the minimum of the section, and the other
ai are rational numbers having small denominators, with |ai| ≤ m

2
.

One can guess this way a perfect extension of the section, which we
use to perform a Voronoi-like neighbouring algorithm as described in
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[Mar], Section 13.6. This algorithm produces all perfect lattices hav-
ing the given hyperplane section, up to H-isometries, i.e. isometries
preserving H. There remains then to test for general isometry lattices
which have the same standard invariants (minimum, determinant, kiss-
ing number,... A few example of isometric, not H-isometric lattices
occur in Läıhem’s thesis). To get the exact list of Läıhem lattices,
there of course remains to to test for isometry lattices with the same
invariants found above distinct cross-sections.

2. J.-L. B. Baril’s thesis consists of three chapters. In the first
one he classifies some perfect lattices having a given section, first in
dimension 8 (see above) then in dimensions 9, 10, and 11.

The second chapter is devoted to patchwork constructions (see [Mar],
Section 13.6), and in particular to lattices which are direct sum of per-
fect lattices of dimension 6 (7 lattices) and 2 (the hexagonal lattice A2).
He proves that (always up to similarity) there are exactly 53 such lat-
tices off Läıhem’s list, the Baril lattices, denoted by bari(i), 1 ≤ i ≤ 53.

The third and last chapter is devoted to the dual Hermite invari-
ant γ′ (alias Bergé-Martinet invariant), the geometric mean of the
Hermite invariants of a lattice and its dual. He finds lattices hav-
ing a large invariant γ′ on some conveniently chosen Voronoi paths.
In particular, he constructs an 9-dimensional, dual-extreme lattice L
for which γ′(L)2 = 16

5
, the maximal known value, also attained on the

Coxeter lattice A2
9. More information on this Baril lattice can be read

in [homeMar], recent publications, after Proposition 3.8.C2.

3. H. N. Napias’s thesis consists of four chapters. In the first
one she describes some lattices contained either in the Leech lattice
or in the Bachoc lattice of dimension 32 constructed over the Hurwitz
quaternionic maximal order M.

The second chapter deals with Voronoi’s neighbouring procedure, in
two situations. In the first (theoretical) one she considers the lattices
contiguous to Coxeter lattices Ar

n, r | n + 1, both in the special case
r = n+1

2
and in the “generic” case n ≥ 9, 3r ≤ n + 1. In the latter

case the Voronoi paths start like those of An but the critical value
is smaller than that of An (for which the contiguous lattice is Dn).
She then considers the previously known 8-dimensional, perfect lattices
(essentially, those of Läıhem and Baril), extracts from the list those for
which s = n+1

2
= 36, performs for them the Voronoi algorithm, add

the new founded lattices to the previous list, then performs again the
Voronoi algorithm for those with s = 36, etc. She finally produced a list
of 9542 new perfect Napias lattices, denoted by nap(i), 1 ≤ i ≤ 9542,
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so that the number of known 8-dimensional, perfect lattices became
1175 + 53 + 9542 = 10770.

The third chapter is devoted to an analogue of the LLL-algorithm for
lattices constructed over various Euclidean rings, namely the rings of
integers of the five first imaginary quadratic and maximal orders in the
two skew-fields of quaternions over Q ramified at 2 and 3, respectively.
This proved useful to reduce bases of lattices (e.g., the Bachoc lattice
referred to above). A joint text with Henri Cohen can be downloaded;
see the link.

In the fourth and last chapter, she considers questions related to
algebraic number fields K, equipped with the Euclidean structure as-
sociated with the trace form TrK/Q(xy), namely:
(a) does the successive Minkowski minima produce an integral basis ?
(b) In the case when K is cyclic of prime degree ` ≥ 3, does the Gauss
sum represents the second minimum ? (The first minimum, equal to
[K : Q], is attained exactly on±1.) We return below to these questions.

4. Varia.
1 a. Läıhem considered off his thesis the structures of modules over

the orders O = Z[1, i, j, k] and M = 〈O, 1+i+j+k
2
〉 (the (maximal) Hur-

witz order) inside the field of “usual” quaternions over Q. He noticed
that E8 can be realized as a free module over both O and M whereas D8

needs the mixed structure O⊕M. It was proved later (Plesken, then
Coulangeon, unpublished) that torsion free O-modules of rank m are
isomorphic to a direct sum Or ⊕Mm−r. Lattices over O are G-lattices
(in the sense of [Mar], Section 13.3) for G the quaternion group H8 and
that over M are G-lattices for G the double cover 2 · A4 = Ã4, which
contains H8 to index 3. Classification over M is known for m = 2, 3
(Sigrist, Schürmann), and implies (Stephanie Vance, [Van1]) that the
Barnes-Wall lattice BW16 is the densest M-lattice for m = 4. Classifi-
cation over O is not known beyond m = 2.

3 a. The list of known 8-dimensional, perfect lattices was extended
some months after Napias’s work by Batut, who ran the Voronoi algo-
rtithm for lattices with kissing numbers s = 37 and s = 38, obtaining
146 new lattices, denoted by batu(i), 1 ≤ i ≤ 146, obtaining a list of
10816 lattices. Dutour Sikirić, Schürmann and Vallentin constructed
in 2005 ([D-S-V1]) the Voronoi graph for dimension 8, proving this way
that the list above is complete.

It has been checked that all 8-dimensional, perfect lattices possess
a hexagonal section with the same minimum, so that the minimum
dimension r for which such a lattice has a perfect section with the
same minimum belongs to the range 2 – 7. One has r = 7 for the
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1175 lattices, and r = 6 holds on 54 lattices, the 53 Baril lattices and
one Napias lattice. The lists of lattices for all values of r can now be
downloaded from the “catalogue” of my homepage.

3 b. Any lattice of dimension n ≤ 4 has a basis made of representa-
tive of successive minima, so that the problem for number fields occurs
only in degrees n ≥ 5. In the range of Napias’s experiments all the
fields she considered had integral bases generated by representatives
of successive minima. However this is not general, as shown by Bart
de Smit who constructed 6-dimensional counter-examples; see Vari-
ous publications, On Successive Minima of Rings of Algebraic Integers.
The problem for degree 5 is still open.

3 c. In the range of Napias’s experiments, the second minimum
for cyclic fields of odd prime degree ` is afforded by the Gauss sum.
This is true for ` = 3 (two different proofs where given by Napias and
by myself). Whether this is general is an open problem from ` = 5
onwards.

More generally the minimum (equal to n) is attained exactly on roots
of unity. When the roots of unity do not constitute an integral basis,
the problem of the comparison between the next minimum and the
Gauss sum is open.


