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Abstract. We present here some questions on lattice theory,
mainly related to my book Perfect Lattices in Euclidean Spaces,
cited [M]. These concern kissing numbers, extremality properties,
eutaxy, Watson’s theory of the index, connections with algebraic
number theory and complex analysis, traditional geometry of num-
bers and diophantine approximations.
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2 J. MARTINET

this reference list are those of the book, references from page 16 on-
wards are complementary references.
Special references for Sections 10 and 11 are [Cas2], [Cas1], and

[C-SwD] and [SwD] below:

[C-SwD] J.W.S. Cassels, H.P.F. Swinnerton-Dyer, On the product of three

homogeneous linear forms and the indefinite ternary quadratic forms, Philos.
Trans. Roy. Soc. London, Series A, 248 (1955), 73–96.

[SwD] H.P.F. Swinnerton-Dyer, On the product of three homogeneous linear

forms, Acta Arith. 18 (1971), 371–385.

We denote by E a Euclidean space of dimension n (with n ≥ 2 to
avoid trivial situations). For a lattice Λ in E, the notation S = S(Λ)
(the set of minimal vectors of Λ), s = 1

2
|S| (the (half-)kissing number,

minΛ (= inf x · x, x ∈ Λr{0}), det(Λ) (the determinant), . . . is the
traditional notation; see [M], Chapter 1.
Given x ∈ Er{0}, we denote by px ∈ Ends(E) the orthogonal pro-

jection to the line Rx. The perfection rank of Λ, denoted by r(Λ) or r,
is the dimension of the span in Ends(E) of the px, x ∈ S(Λ). We have

1 ≤ r ≤ dimEnds(E) = n(n+1)
2

, and call perfection co-rank the differ-

ence n(n+1)
2

− r. Lattices of perfection co-rank zero are called perfect;
see [M], Chapter 3.
The dual lattice to Λ is

Λ∗ = {x ∈ E | ∀ y ∈ Λ, x · y ∈ Z} .
We shall often write s∗ for s(Λ∗).
The Hermite invariant of Λ is γ(Λ) = min Λ/ det(Λ)1/n, and the

Hermite constant for dimension n is γn = maxdimΛ=n γ(Λ) ; note that
the density of (the sphere packing attached to) Λ is proportional to
γ(Λ)n/2.

Unless otherwise stated, we systematically restrict ourselves in
Sections 2 to 6 to well rounded lattices, those which contain n inde-
pendent minimal vectors. This generally suffices for the applications
we are going to consider. Moreover, most of the questions we study
(though not all) reduce to lower dimensions when lattices which are not
well rounded are involved. Note that perfect lattices, weakly eutactic
lattices (see Section 5), . . . are well-rounded.

2. Kissing Numbers and Minima

2.1. Kissing numbers in low dimensions. For a given dimension,
the maximum of the kissing number is attained on a perfect lattice
(0-dimensional cell), among non-perfect lattices on a Voronoi path
(1-dimensional cell), then on a 2-dimensional cell, . . . ; see Section 3
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for the definitions. In his 1971 paper [Wat5], Watson, using the know-
ledge of the Voronoi graphs for n ≤ 6 (Voronoi for n ≤ 5, Barnes for
n = 6), was able to find the maximal value of the kissing number up to
dimension 9, and to prove various complements which properly belong
to the theory of Voronoi graphs in dimensions 7 and 8; for instance, he
showed that for n = 8, we have s = 120 if Λ ∼ E8, s = 75 on a well-
defined Voronoi path connecting two copies of E8 (along hyperplane
sections E7 and D7), and s < 75 otherwise.
In his 1991 thesis [Ja2], Jaquet, revisiting earlier work of Kaye Stacey,

determined the Voronoi graph in dimension 7, and in 2005, Dutour,
Schürmann and Vallentin announced the computation of the 8-dimen-
sional Voronoi graph ([D-S-V]).

Problem 2.1. Using the results above, extend Watson’s methods to
obtain new information on the kissing number in dimensions n = 9
to 11, maybe even n = 12.

Experimental data suggest some precise conjectures. One can show
(see [Bari]) that there are two 9-dimensional, perfect lattices having
an E8 section with the same minimum, namely Λ9, with s = 136, and
Barnes’s A3

9 = 〈E8,A9〉, with s = 129 (a result from which one could
deduce all kissing numbers for lattices as above).

Conjecture 2.2. Let Λ be a (well-rounded) 9-dimensional lattice.
Then either s(Λ) ≥ 121, and Λ has an E8 section with the same mini-
mum, or s(Λ) ≤ 99, with equality only on the perfect lattice denoted by
L99 in [K-M-S].

It is generally believed 1 that the maximal kissing numbers up to
dimension 25 are attained on laminated lattices, except s(Λmax

12 ) =
324 < s(K12) = 378 and s(Λmax

13 ) = 453 < s(K13) = 459. 2

Indeed, in dimension 10, the largest known values of s is s(Λ10) =
168. For the Barnes lattice 〈E8,D10 〉 one has s = 154, and among
perfect lattices contained in the Leech lattice Λ24, one finds the values
s = 138 (K10) and s = 135 (K ′

10); see the catalogue of lattices on my
home page.

Question 2.3. Do there exist other perfect, 10-dimensional lattices
with s ≥ 135 ?

We have only considered the kissing number problem for lattices. For the

general kissing number problem, the maximum values of s is known only in

1 and proved for n ≤ 8 and n = 24
2Note that s(Λmax

11
)=219 > s(K11)=216 (=s(Λmin

11
)), though γ(K11) is (slightly)

larger than γ(Λmax

11 ) = γ(Λmin

11 )
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dimensions 2, 3, 4, 8 and 24. For n = 2, 8, 24, there is a unique solution,

namely the configuration of minimal vectors of the lattices A2, E8 and Λ24

(the Leech lattice), respectively. The highest known values are obtained

with sphere packings (most of the time, lattice packings), but uniqueness is

often expected to fail, as in dimension 3, where the icosahedral configuration

produces 12 spheres, as S(A3). In dimension 4 it is not known whether

configurations with s = 24 which are not similar to S(D4) exist.

2.2. Integral lattices having a small minimum. The kissing num-
ber problem may be posed for integral primitive lattices having a given
minimum m in any dimension n ≥ 2. The case when m = 1 is trivial
(smax = n, attained uniquely on Zn) and for m = 2, the classification of
root systems provides a complete description (in particular, for n ≥ 17,
one has smax = n(n− 1), attained uniquely on the Dn lattice). No gen-
eral result is known for m ≥ 3. The odd minima, which scarcely occur
among perfect lattices, are especially fascinating.
In [Mar-V2], lattices of minimum 3 having a somewhat large kissing

number are classified up to dimension 9. Also, smax is determined for
n ≤ 7 and all odd m, and for n = 16, 22, 23 and m = 3.

Problem 2.4. To push further the results of [Mar-V2] for minimum
m = 3. Does smax = 40, 52, 68, for n = 10, 11, 12, respectively?
Also, for n = 16 and m = 3, where smax = 256 is attained only on the
strongly perfect lattice O16, is it true that s ≤ 190 if Λ is not isometric
to O16 ? What about dimensions 22 and 23, for which smax is again
attained only on the strongly perfect lattices O22 and O23 ?
[For the notion of a strongly perfect lattice, see Subsection 4.7.]

2.3. Perfect integral lattices having an odd minimum. We scale
perfect lattices to the minimum m which makes them integral and
primitive (perfect lattices are rational), and again focus on those for
which m is odd. Note that such a lattice has no A2-section with the
same minimum. For n ≤ 7,m is even except for Z (m = 1) and P 2

7 ∼ E∗
7

(m = 3). In [Wat7], Watson considered the more general question of
classifying lattices (with n ≥ 2) having no hexagonal section with the

same minimum and such that s ≥ n(n+1)
2

(the “perfection bound”),
and proved that there exists a unique such lattice in the range [2, 7],

for which m = 3 and s = n(n+1)
2

(= 28) (actually, a scaled copy of E∗
7).

In [B-M7], A.-M. Bergé and myself constructed perfect lattices with
odd m in all dimensions n ≥ 10, which left open only the cases n = 8
and n = 9. We knew that for n = 8, the 10916 perfect lattices quoted
in [M] all have a hexagonal section with the same minimum, so that
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the proof in [D-S-V] that the list above is indeed complete settled the
case of dimension 8.
Moreover, these authors produced for n = 9 a list of more than

500 000 perfect lattices, and Cordian Riener 3 has checked that no lat-
tice of this list has an odd minimum.

Conjecture 2.5. Every perfect, 9-dimensional lattice has a hexagonal
section having the same minimum.

A solution to the following problem could prove useful to handle
Conjecture 2.5.

Problem 2.6. Extend Watson’s methods of [Wat7] to prove a priori
that every perfect, 8-dimensional lattice has a hexagonal section having
the same minimum.

3. Minimal Classes

Given E of dimension n ≥ 2, we consider on the set of lattices in E
the equivalence relation

Λ ∼ Λ′ ⇐⇒ ∃u ∈ GL(E) | u(Λ) = Λ′ and u(S(Λ))) = S(Λ′) ;

classes for this relation are called minimal classes.
We also define dual-minimal classes by adjoining the third condition

u(S(Λ∗)) = S(Λ′∗) .

A detailed study of these two notions can be read in [M], Chapter 9.
In particular, it is proved that there are only finitely many minimal
classes in each given dimension, and moreover that every minimal class
is the (disjoint) union of finitely many many dual-minimal classes, so
that there also are only finitely many dual-minimal classes.

An important invariant of a minimal class C is the common perfection

rank r ∈ [1, n(n+1)
2

] of the lattices belonging to C, and we indeed have
r ≥ n since we restrict ourselves to well rounded lattices.

The set of (positive, definite, having a prescribed minimum) qua-
dratic forms carries a canonical structure of cell complex, the cells of
which up to equivalence are in one-to-one correspondence with mini-
mal classes; this complex plays a crucial rôle in the calculation of the
cohomology of SLn(Z) and of higher K-groups; see [E-G-S2]. In this
correspondence, the dimension of a cell is the co-rank of the correspond-
ing minimal class. I do not know any cohomological interpretation of
dual-minimal classes.

3 e-mail, March 9th, 2006
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3.1. Minimal classes. The classification for n ≤ 4 (Štogrin, Bergé-
Martinet) can be read in [M]; for n = 5 (Batut) and n = 6, 7 (Elbaz-
Vincent, Gangl, Soulé), see [Bt] and [E-G-S2]. The number of cells
is a quickly increasing (doubly exponential?) function of the dimen-
sion, from 18 for n = 4 to more than 10 000 000 for n = 7, so that a
classification in larger dimensions is not feasible.
However a look at dimensions 5, 6, 7 shows that classes of a given

perfection rank r are numerous when the value of r is far from its mini-

mal and maximal values (n and n(n+1)
2

). Indeed classes of co-rank 0 are
similarity classes of perfect lattices, thus correspond to perfect forms,
and classes of co-rank 1 correspond to edges of the Voronoi graph. Thus
even for n = 8 where this graph has more than eighty thousand edges,
it is possible to list classes of small co-rank.
In the other direction, an explicit determination of classes with small

r− n (or small s− n, this essentially amounts to the same) is possible
up to n = 9, using Watson’s index theory; see Section 6 below. After
Elbaz-Vincent, classification of minimal classes having a small kissing
number could have applications to the cohomology of SLn(Z). For this
reason A.-M. Bergé and myself made some explorations in 2006, on
which I intend to return. This is the origin of the following problem 4.

Problem 3.1. List all minimal classes for n ≤ 9 and s = n, n+1, n+2,
maybe also s = n + 3.

3.2. Dual-minimal classes. In dimension 2, every lattice is similar
to its dual by a similarity of symplectic type, of angle π

2
, so that dual-

minimal classes coincide with ordinary minimal classes, classified by
the value of s (1, 2, or 3).
The classification for n = 3 was done by A.-M. Bergé in her 1995

paper [Ber1], in full generality. (In contrast with ordinary classes, the
classification for non-well-rounded classes does not trivially results from
classifications in lower dimensions.) In [M], Section 9.2, I only gave the
proofs for well-rounded classes. Here I restrict myself to pairs (C, C∗)
with well-rounded C, which suffices for the applications that we shall
consider in the next sections; see in particular Subsections 4.3 and 5.3.
Note that, since one may exchange a lattice with its dual, it suffices to
consider minimal classes with s ≥ s∗.

Problem 3.2. (1) Classify dual-minimal classes (C, C∗) of dimen-
sion 4 such that C is well-rounded.

(2) Classify dual-minimal classes (C, C∗) of dimension 5 such that
C and C∗ are well-rounded and s(C) ≥ 8.

4on which there seems to be some work in progress around Dutour-Sikirić
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[The two parts of the problem above are related to Questions 5.3 and 4.6

below, respectively.]

Extensions to dimensions 6 and 7 of Problem 3.2 look intractable.
However non-classical dual-extreme lattices in these dimensions are
likely to exist, and it would be interesting to construct new examples.
(I remember having constructed with A.-M. Bergé a 7-dimensional analogue

of her 5-dimensional example of [Ber4], using the regular representation of

the cyclic group of order 7.)

4. Extremality Properties

The problems we are concerned with in this section belong to the
following type: given a parametric family F of n-dimensional lattices,
find the local maxima of density on F (extreme F-lattices) and the
absolute maxima (absolutely extreme or critical F-lattices). The family
F may consist of all lattices, or of isodual lattices (lattices isometric
to their dual; maybe only up to scale), or more specifically orthogonal
(resp. symplectic lattices), those for which the isoduality σ : Λ → Λ∗

satisfies σ2 = Id, σ 6= ± Id (resp. σ2 = − Id). Also the classification of
local maxima of the Bergé-Martinet invariant γ′(Λ) = (γ(Λ) ·γ(Λ∗))1/2

(equal to the usual Hermite invariant for isodual lattices) belongs to this
type of problems; see [M], Section 10.5. The Bergé-Martinet constant
is γ′

n = supdimΛ=n γ′(Λ).
[We shall often consider γ′2, which takes rational values on rational lattices

(i.e., proportional to integral lattices), rather than γ′ itself. However we

cannot exclude that some γ′n be attained on irrational lattices — it is only

known that such lattices are algebraic, i.e., proportional to lattices having

Gram matrices with coefficients in a number field.]

Scale an algebraic lattice Λ to a rational minimum m, say, m = 1.
Since the base changes are defined over Z, the number field defined by
the coefficients of a Gram matrix for Λ does not depend on the chosen
basis. Hence an algebraic lattice has a well-defined field of definition.

4.1. Critical lattices. Critical lattices (for the family of all lattices)
are known in dimensions 1 to 8 (this dates back to Blichfeldt’s 1935
paper [Bl2]) and in dimension 24, thanks to the recent work [Cn-Km1]
of Cohn and Kumar. To try to fill the gap is a natural problem. The
first case is dimension 9. It is known — this is what Chaundy proved
in 1946 — that the laminated lattice Λ9 is optimal among those which
have an E8 cross-section with the same minimum. Due to various
recent progress in mathematics and in computer science, the following
problem, that we quote for the sake of completeness, despite its lack
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of originality, is perhaps no longer completely intractable. The ideas
described in Subsection 6.3 could be helpful.

Problem 4.1. Prove that the laminated lattice Λ9 is the only (up to
similarity) 9-dimensional critical lattice.
[Besides their work [D-S-V] in dimension 8, Dutour, Schürmann and Val-

lentin also ran the Voronoi algorithm for n = 9 during several months, pro-

ducing more that 500 000 perfect lattices. A few years computation could

well solve the question, but this is not what is really wanted!]

When γn is not known, the best known upper bounds for γn come
from upper bounds of the density of any sphere packing.
[At the time I am writing this note,5 the best estimates in the range [4, 36]

are those proved by Cohn and Elkies in [Cn-El].]

Problem 4.2. Find specific sharper bounds for lattice packings. In
particular, improve on the Cohn-Elkies bound for dimension 9.

One expects the maxima of γn to be attained on the laminated lat-
tices up to n = 25, except for n = 11, 12, 13 where the candidates are
the Kn. For n = 26, there exist laminated and non-laminated lattices
with the same Hermite invariant, and for n = 27, 28, 29, Bacher ([Bc1])
has found examples showing that the laminated lattices are no longer
optimal.

Question 4.3. Do there exist for n ∈ [26, 31] better examples than
Bacher’s or those obtained as cross-sections of the known extremal sym-
plectic lattices of dimension 32 ? (See [M] and [M’], Chapter 14, and
Subsection 4.2 below.)

4.2. The Bergé-Martinet constant. One has γ′
n ≤ γn, and equality

holds if and only if the dual of some critical lattice in dimension n is also
critical. This applies to dimensions n = 2, 4, 8, 24, and conjecturally to
n = 12 and 16, since (putative) critical lattices in these dimensions are
isodual (and more precisely, symplectic).

Problem 4.4. Find bounds for γ′
n which are sharper than those pro-

vided by the inequality γ′
n ≤ γn; prove an inequality of the form

γ′
9 ≤ a < 2.

[Strict inequalities γ′n < γn have been proved for n = 3, 5, 6 and 7; see

below, and the strict inequality γ′9 < 2, which implies γ′9 < γ9, can be

proved using Theorem 2.8.7 (2) of [M] and the now known exact value of

γ′5, observing that equality may not hold in Theorem 2.8.7 (2). In general,

5(April 5th, 2016.) Optimal bounds have been found for n = 8 and n = 24;
see [Viaz] and [C-K-V-al]
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it would be interesting to find analogues of the techniques (going back to

Minkowski) making use of measure theory. One could perhaps make use of

the interpretation of γ′(Λ) in the setting of Lie groups (see [M], Chapter 10).]

Problem 4.4 is certainly difficult. In the other direction, it is also
interesting to construct examples in low dimensions for which the
duals to the putative critical lattices have a bad Hermite invariant.
The results displayed in [M], Chapter 14; see also [M’] (which owe
much to Conway-Sloane’s paper [C-S9]) could perhaps be improved,
and it would also be interesting to go beyond dimension 24, up to
dimension 32, where nice, symplectic lattices, with γ2 = γ′2 = 18 are
known.

Problem 4.5. Construct lattices having a high Bergé-Martinet invari-
ant in dimensions 9 – 23 and 25 – 31. In particular, if n = 9, are there
lattices having γ′2 > 16

5
? Find an explicit a such that γ′

9 ≤ a < 2.
[The largest known value for n = 9 is attained on (A2

9, A
5
9) and on another

pair (L,L∗) found by Baril in [Bari]; see [M’], Section 3.8C.]

A neighbour problem is that of the Rankin constants and their dual
forms γn,k and γ′

n,k, that need be considered only for k ≤ n
2
by symmetry

and for k > 1 since γn,1 = γn and γ′
n,1 = γn. After work of Poor and

Yuen ([P-Y4]) and Watanabe et al. ([S-Wt-O]) these constants are
known in low dimensions n ≤ 8 except if (n, k) = (5, 2), (6, 3), (7, 2)
and (7, 3), where they are expected to be attained uniquely on the root
lattices D5, E6, E7 (and their duals for γ′

n,k).

4.3. Dual-extreme lattices. I: low dimensions. These are the
lattices (always considered up to similarity) on which γ′ attains a local
maximum. They are called dual-critical if this is an absolute maximum.
These notions were introduced in the 1989 paper [B-M1], in which
dual-extreme lattices in dimensions n ≤ 4 were classified (these are Z,
A2, A3, A3*, D4, A4, A4*, the extreme lattices and their duals). The
constant γ′

n and the corresponding dual-critical lattices are also known
in dimensions 8 and 24 (see above), and thanks to recent work by Poor
and Yuen ([P-Y4]), in dimensions 5, 6, 7 (these are the extreme lattices
P 1
5 ≃ D5, Coxeter’s P

2
5 ∼ A3

5, P
1
6 ≃ E6, P

1
7 ≃ E7 and their four duals).

In dimension 5, there are 8 known dual-extreme lattices: the three
extreme lattices, their three duals, and an irrational pair (L, L∗) defined
on Q(

√
13), found by A.-M. Bergé ([Ber4]).

Question 4.6. Are the eight lattices above the only dual-extreme,
5-dimensional lattices?
[Since we must have s(Λ)+ s(Λ)∗ ≥ n(n+1)

2 +1 = 16 (see next subsection) it
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suffices to consider lattices with s ≥ 8. Unpublished (and lost) calculations

done by A.-M. Bergé have probably shown that the only examples for s ≥ 11

are the three extreme lattices. (She actually solved problem 3.2 for s ≥ 11.)

There remains to consider the minimal classes having s = 10 (where three

dual-extreme are known), 9 and 8, a more and more complicated task, since

the number of parameters is then 15 − r = 15− s. We shall return later to

this classification problem in relation with (dual-)minimal classes.]

4.4. Dual-extreme lattices. II: theoretical questions. For a dual-

extreme lattice Λ, we have s(Λ) + s(Λ∗) ≥ n(n+1)
2

+ 1. In [B-M6],
dual-extreme lattices meeting this bound were constructed in all even
dimensions n ≥ 8, whereas for n = 2, 3, 4, the lower bound of s+ s∗ is

equal to n(n+1)
2

+ (n+ 1) (= 6, 10, 15, respectively).

Problem 4.7. Do dual-extreme lattices with s(Λ)+ s(Λ∗) = n(n+1)
2

+1
exist in all large enough odd dimensions? What is the precise lower
bound of s+ s∗ (among dual-extreme lattices) for n = 5, 6, 7 ?

4.5. HKZ reduction. For the notation I refer to [B-M1] and [M], Sec-
tion 2.9. I consider the external (or outer) coefficients Ai which occur
in decompositions into squares of positive, definite quadratic forms,
and in particular inf A1/Ai for 1 ≤ i ≤ n (= inf Ak+1/Ak+i for any
k ∈ [0, n− i]), the square of 1

γ′′
in the notation of [B-M1]), and the up-

per bound γ′′
n of γ′′ on the set of n-dimensional lattices. Hermite found

the exact bound A1/A2 ≥ 3
4
, and used it to deduce the lower bound

A1/An ≥ (3
4
)n−1, thus A1/A3 ≥ 9

16
. Korkine and Zolotareff proved

in [K-Z2] the subtle lower bound A1/A3 ≥ 2
3
, which may be attained

only on lattices for which 3
4
≤ A2/A3 ≤ 8

9
, and is indeed attained ex-

actly on the similarity classes of A3 (with A2/A3 = 3
4
) and A∗

3 (with

A2/A3 = 8
9
). This then shows the lower bound A1/A4 ≥ 2

3
· 3
4
= 1

2
,

which is indeed exact. In [Bl2] Blichfeld gives an example which shows
that “the expected bound A1/A5 ≥ 1

2
” is not correct, an example which

suggests the conjectural exact bound A1/A5 ≥ 15
32
. This conjecture has

been “almost” proved by Pendavingh and van Zam ([Pe-vZ], 2007),
who showed that we have A1/A5 ≥ 15

32
− 2 · 10−5.

Problem 4.8. Prove that the lower bound 15
32

is exact and characterize
the forms which on which equality holds. Find good lower bounds for
A1/An, n = 6 to 9.

The invariant γ′′ is not a continuous function on the set of lattices.
This lead Gindraux ([Gi’]) to introduce two invariants γ′′+ and γ′′−. It
would be interesting to study more closely these invariants.
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4.6. Isodual lattices. In his paper [Bav5], Bavard obtained impor-
tant classification results for isodual lattices Λ of orthogonal type and
signature (n− 1, 1) (“Lorenzian orthogonal lattices”), and he recently
extended these results to other signatures in [Bav6], obtaining in par-
ticular almost complete results in dimensions n ≤ 5.
[In the notation above, the signature (p, q) is that of the quadratic form

x ·σx; we may assume that p ≥ q, and disregard the case when q = 0, where

Λ is unimodular; moreover, there is an extra invariant (the parity) when

p ≡ q mod 8.]

Note that the weaker notion of a normal lattice ([M], Def. 11.5.4 and
Section 11.6) could be useful when dealing with isodual lattices.
An important, still opened question is:

Problem 4.9. Classify extreme-symplectic 6-dimensional lattices; in
particular, prove that the densest lattice is the lattice over Q(

√
3) con-

structed in [C-S9] with glue vectors and viewed in [M] as the isodual
lattice lying on the Voronoi path E6—E∗

6.

4.7. Strongly eutactic and strongly perfect lattices. These no-
tions were introduced by Boris Venkov 6 in [Ven3]. A lattice Λ is
strongly eutactic (resp. strongly perfect) if its set of minimal vectors is
a 3- (resp. a 5-spherical design). Strongly eutactic lattices are simply
those which have a eutaxy relation with equal coefficients; see Section 5
below. We now restrict ourselves to strong perfection. It is proved in
[Ven3] that strongly perfect lattices are indeed extreme, but for n ≥ 3,
strong perfection is a much more restrictive notion than the mere ex-
tremality. The classification of strongly perfect lattices is known up
to n = 12 ([Ven3], [Ne-V1], [Ne-V2]). Work in progress in Aachen in
Gabriele Nebe’s team is expected to extend the known classification
results, maybe under additional hypotheses; see in particular [Ne-V6]
and [Nos2].
Also, strongly perfect integral lattices with minimum m ≤ 3 have

been classified in [Ven3].

Problem 4.10. (1) Are there strongly perfect lattices in dimen-
sions n ≤ 23 other than those (found by Batut and Venkov)
which are listed in [Ven3], Section 19? 7

(2) Describe integral strongly perfect lattices with minimum 4 or 5.

6Boris B. Venkov passed away on November 10th, 2011
7(August 25th, 2018.) Some extist in dimension 16; see [Hu-Ne].



12 J. MARTINET

[(1)& (2) For 7-designs, see [Ne-V5] and [Mar7].

(2) Their dimensions are bounded from above, but I do not ask for a clas-

sification because unimodular lattices of minimum 4 and dimension 32 are

strongly perfect but have not been classified.]

As for designs of higher level I state here as a conjecture the three
questions I asked at the end of [Mar7].

Conjecture 4.11. The highest level of a spherical design afforded by
the minimal vectors of a lattice Λ of dimension n ≥ 2 is equal to 1, 3,
5, 7 or 11, and the level is equal to 11 if and only if Λ is a unimodular
lattice of dimension n ≡ 0 mod 24.
[Note. Level 7 is known to occur only for even unimodular lattices of di-

mension n ≡ 8 mod 24, for even 2-modular lattices of dimension n ≡ 0

mod 16, and for the (odd) shorter Leech lattice O23.]

There is a curious example in dimension 21, namely the lattice K ′
21:

it is strongly perfect, but its dual is not (it is only strongly eutactic).
No other example is known, but one cannot reasonably expect K ′

21 to
be the only one.
[As was pointed out to me by Venkov, most of the strongly perfect perfect

lattices have been constructed using techniques (invariants of groups, modu-

lar forms) which apply to all levels of a lattice and of its dual; this is perhaps

the main reason for which K ′
21 appears to be an isolated example.]

The question I want now to discuss concerns the construction of
infinite series of strongly perfect lattices. For the while the only known
infinite series is that of the Barnes-Wall lattices BWn for n = 2k ≥ 4
(D4,E8,Λ16, . . . ), which are even 7-designs for n ≥ 8. I explain below a
construction of these lattices which could be applied in other situations.

Let L be an integral lattice, of dimension n, equipped with a “symplectic”

automorphism σ (i.e., we have σ2 = − Id ; in other words, L is a Hermitian

Z[i]-lattice, a Gaussian lattice). View L × L as the orthogonal sum L ⊥ L

inside E×E, then consider the sublattice of L ⊥ L defined by the congruence

x ≡ y mod (1+σ)L, and go on. One can rescale every two steps the lattices

to half their norms, obtaining this way a series L0 ⊂ L1 ⊂ L2 ⊂ . . . of

lattices which are even from L2 or L3 on.

In this sequence the annihilators of L∗
i /Li are alternatively multiplied

and divided by a factor 2. Thus if L0 is unimodular, the Li are alternatively

2- and 1-modular. This is the case of the Li = BW2i+1 , starting with Z×Z

and σ(x, y) = (−y, x).

Question 4.12. Can one construct other infinite series of strongly
perfect lattices by the method above applied with other lattices L than Z ?
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A good candidate for L could be the Leech lattice Λ24, with its
unique conjugacy class of symplectic automorphisms. The first step is a
2-modular lattice of dimension 48 (Quebbemann), indeed the laminated
lattice of Conway-Sloane’s “principal series”. One could also look at
32-dimensional lattices (not BW32 !) — many of them may be expected
to be of symplectic type.
The direct study of minimal vectors (as in [Ven3] for the Barnes-Wall

series) is certainly difficult; maybe group theory can provide examples
to which the theory of invariants apply (with the Leech lattice?), as in
[Bac3] for the Barnes-Wall series.

One more remark on the construction above: it is easy to list all
extremal (in the sense of modular forms) 1- or 2-modular lattice of
dimension n which can be constructed by the method above from lat-
tices of dimension n

2
. This stops at n = 64, where unimodular lat-

tices of minimum 6 can be constructed from the four known extremal
2-modular lattices of dimension 32. But I do not know how to prove
that we indeed obtain pairwise non-isometric lattices.

Finally I mention a possible connection of the theory of strong eutaxy
with Watson’s index theory of Section 6.

Conjecture 4.13. In any infinite series of strongly perfect lattices, the
maximal index tends to infinity with the dimension.
(Stronger form: even the maximal annihilator of a quotient Λ/Λ′ where
Λ′ is generated by minimal vectors of Λ tends to ∞.)

5. Eutaxy and Related Properties

5.1. Weak eutaxy. We say that a lattice is weakly eutactic if there
exists a relation of the form Id =

∑
x∈S(Λ)/± ax px with real eutaxy

coefficients ax; expressed using a Gram matrix A = Gram(B) for some
basis B for Λ, this reads A−1 =

∑
x∈S(A)/± a′x (x

tx). If it is possible

to find non-negative (resp. strictly positive) eutaxy coefficients, we
say that Λ is semi-eutactic (resp. eutactic). It results from work of
A.-M. Bergé and myself that there are only finitely many n-dimensional
weakly eutactic lattices (at most one per minimal class), and that these
lattices are algebraic.

Problem 5.1. (1) Use the classification of cells obtained by Elbaz-
Vincent, Gangl and Soulé in [E-G-S2] to classify weakly eutactic
lattices in dimensions 6 and 7.

(2) Is there an interpretation in terms of lattices of the discriminant
and the signature of the field of definition?
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(3) Is every number field with at least one real place the field of
definition of some (weakly) eutactic lattice?

[(1) After Batut, one can use the gradient algorithm; see [Bt], which proved

efficient in dimension 5.

(2) Up to dimension 5, eutactic lattices are defined over totally real fields.

Batut (unpublished, and probably lost) has classified the eutactic lattices

belonging to a minimal class c ≺ cl(A6). He found this way an example

defined over a cubic field with mixed signature.

(3) is part of Question 9.7.4 of [M], where variants of eutaxy to be discussed

below are also considered.]

5.2. Strong eutaxy. Since the notion of strong eutaxy is less restric-
tive than that of strong perfection, classifying strongly eutactic lattices
in a given dimension will be even more difficult than classifying strongly
perfect lattices in this dimension. This looks hopeless in dimensions
n ≥ 8. For n ≤ 6, this is a byproduct of the classification of minimal
classes (see [M] for n ≤ 4; [Bt] for n = 5; [E-G-S2] for n = 6); the
results can be read on my home page. Dimension 7 could be obtained
using the data of [E-G-S2]. Indeed, a minimal class C is characterized
by its barycenter matrix S · tS where S is the matrix of components of
S(Λ) of some Λ ∈ C on a basis for Λ. (In other words, C is character-
ized by the isometry class of a lattice with Gram matrix S · tS.) Then
(S · tS)−1 is a Gram matrix for the strongly eutactic lattice in C, if any.
The only general classification results that can be reasonably ex-

pected concern lattices with “small” s− n.

Problem 5.2. Classify strongly eutactic lattices which are generated
by their minimal vectors and have s = n + 1, s = n + 2 or s = n + 3.
[We find only Zn for s = n (weak eutaxy suffices), and probably only A∗

n for

s = n+ 1.]

5.3. Dual-eutaxy. In [B-M1]; see [M], Section 3.8, dual-extreme lat-
tices were characterized à la Voronoi by properties of (1) dual-perfection
and (2) dual-eutaxy, namely (1): the px, x ∈ S ∪ S∗ span Ends(E),
and (2): there exists a relation of the form

∑
x∈S(Λ)/± axpx =

∑
x∈S(Λ∗)/± a′xpx

with strictly positive coefficients ax, a
′
x. Under these conditions, both S

and S∗ span E, so that we may define dual-perfection and dual-eutaxy
by adding to conditions (1) and (2) above the fact that each set S
and S∗ spans E. Thanks to these complementary conditions, it can be
proved ([M], Th. 9.6.10), that there are only finitely many dual-eutactic
lattices (up to similarity), and that these lattices are algebraic.
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If n = 2, since all lattices are isodual, dual-eutaxy is equivalent to
eutaxy, and holds uniquely for Z2 and A2.
If n = 3, dual-eutactic lattices are Z3 (s = s∗ = 3), A3 (s = 6, s∗ = 4)

and A∗
3, and the “ccc-lattice” (s = s∗ = 4), defined over Q(

√
2); see

[M], exercise 9.6.2 and Proposition 11.6.1.

Problem 5.3. Use Problem 3.2, (1), to list all 4-dimensional dual-
eutactic lattices. In particular, is Z4 the unique such lattice with
s = s∗ = 4 ? More generally, what about s = s∗ = n ?

6. Watson’s Index Theory

The aim of this theory, initiated by Watson in [Wat4], is to classify
pairs (Λ,Λ′) of a well-rounded lattice Λ and a (well-rounded) sublattice
Λ′ of Λ having a basis made of minimal vectors of Λ.
Let d be the annihilator of Λ/Λ′. We have d ≤ [Λ : Λ′], and [Λ : Λ′] ≤

γ
n/2
n (use Hadamard inequality), hence d ≤ γ

n/2
n . We may express Λ

on a basis of minimal vectors (e1, . . . , en) for Λ
′ as Λ = 〈Λ′, x1, . . . , xk〉

where the xi are of the form xi =
a
(i)
1 e1 + · · ·+ a

(i)
n en

d
. The numerators

of the xi define a linear code C over Z/dZ. The precise question is now
to list the codes which may occur in a given dimension. (Warning: for
d > 2, it may happen that a code does not correspond to a pair (Λ,Λ′).
For instance, for n = 9, there exists a ternary code of dimension 3, but
the maximal possible index is 16 < 33.)

The results are known up to dimension n = 9: 8 for n ≤ 8, they can
be read in [Mar6], which extends previous work by Watson, Ryshkov
and Zahareva. The case of dimension 9 has been solved recently by
Keller, Schürmann and myself ([K-M-S]). In particular, we obtain from
the results above the list of all possible structures of Λ/Λ′ as an Abelian
group, and the maximal index ın = maxΛ′ [Λ : Λ′] for n ≤ 9.

One more notation for further use: reordering the basis (ei) and

reducing the a
(i)
j modulo d if need be, we may assume that for some

ℓ ≤ n, we have 1 ≤ |a(i)j | ≤ d
2
if j ≤ ℓ and a

(i)
j = 0 if j > ℓ. We call ℓ

the length of (Λ,Λ′). Thus if d = 2 (resp. d = 3), we may assume that

a
(i)
j ∈ {0, 1} (resp. a

(i)
j ∈ {0,±1}). Moreover, negating some ei if need

be, we may assume whatever d that a
(1)
j ≥ 0.

8(August 25th, 2018.) In a mail from December, 2016, M. Dutour-Sikirić in-
formed me that he solved the case n = 10. In work in progress he also considers
dimensions 11 and 12.
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6.1. Large indices. Whereas dimensions n ≤ 8 could be essentially
dealt with by hand, dimension 9 could not have been handled with-
out heavy computer-aided proofs. One of the problems is that on the

one hand, the discrepancy between known upper bounds for γ
n/2
n and

conjectural values quickly increases with n, and on the other hand, the

actual value of ın is often smaller than γ
n/2
n : equality ın = γ

n/2
n holds

for n = 4, 7, 8, 24, conjecturally for n = 16 (with Λ16), but is prob-
ably scarce (note that in these cases, the index is a power of 2); and
moreover, large values of ı generally correspond to non-cyclic quotients
Λ/Λ′. All this makes dimension 10 hardly feasible.
I have no general conjecture to set. For relatively small n, we ob-

serve that binary codes give for n = 9 to 13 examples of 2-elementary
quotients of order 2n−5 (e.g., Λmax

n for n = 11, 12, 13, 〈E8,D10 〉 for
n = 10).

Conjecture 6.1. For n = 10, 11, 12, 13, one has ın = 2n−5.

Question. For n = 10 and ı = 2n−5 = 32, are the three types (25), (4 · 23)
and (42 · 2) the only possible structures for Λ/Λ′ ?

6.2. Connection with perfection: small indices. We first set the
following conjecture, based on experimentation in low dimensions to
be discussed below.

Conjecture 6.2. For any integer k ≥ 2, there exists n0 such that every
perfect lattice generated by its minimal vectors of dimension n ≥ n0

either is similar to the root lattice An (of index 1) or has index ı ≥ k.
[The condition generated by its minimal vectors is necessary; see below.]

I am not able to make a precise general conjecture giving an estimate
of n0 as a function of k. This looks however possible for small k.
By a theorem of Korkine and Zolotareff (see [M], Theorem 6.1.2), a

perfect lattice of maximal index 1 is similar to the root lattice An (and

the weaker condition “ s ≥ n(n+1)
2

” even suffices).
To discuss larger indices, we introduce the lattice Λ0 generated by

the set of minimal vectors of Λ, which necessarily contains all possible
lattices Λ′.
When ı(Λ) = 2, the set of indices of Λ is {2} or {1, 2} according to

whether Λ0 = Λ′ or Λ0 = Λ. In the first case, Λ′ is well-defined, and per-
fect (because S(Λ0) = S(Λ)), hence similar to An. As a consequence,
Λ is of the form 〈A2

m,An〉 for some odd integer m ∈ [9, n] (see [M],
Section 5.3 for the definition of the Coxeter lattices Ar

n, r | n + 1);
there are ⌊n−7

2
⌋ such lattices, all perfect of index 2 but not generated

by their minimal vectors.
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In the second case, among perfect lattices with n = 4, 5, 6, 7, there
are 1, 2, 2 and 1 lattices of index 2, and none exist for n = 8. Moreover,
these are the less dense (or the two less dense) lattices after An.
Similarly, there are only two 8-dimensional perfect lattices with max-

imal index 3.
These observations support the following conjecture:

Conjecture 6.3. A perfect lattice which is generated by its minimal
vectors and has maximal index ı ≤ 3 is of dimension n ≤ 8 or is similar
to An. [See [Ber6] for a partial result on index 2.]

A neighbour problem concerns the strict inclusions which may exist
among perfect lattices having the same dimension. The only such pairs
(Λ,Λ′) in dimensions n ≤ 8 are are (E7,A7), (E8,A8), (E8,D8).

Problem 6.4. Classify all inclusions Λ ⊃6= Λ′ between 9-dimensional
perfect lattices.

6.3. Connection with perfection: index and density. Recall that
the perfect lattices are denoted up to n = 7 by P i

n with decreasing
density as i increases from 1 to a value in, equal to 33 for n = 7, and
which would be equal to 10916 for n = 8. With respect to the density,
Läıhem lattices — those which have a perfect hyperplane section with
the same minimum— play a special rôle: among perfect, 8-dimensional
lattices, the 8 densest lattices and the 23 less dense lattices are Läıhem
lattices.

Problem 6.5. Classify perfect, 9-dimensional lattices having a hyper-
plane section with the same minimum.

A look at the long table of perfect lattices for n = 8 shows that most
of the lattices have index in a middle range: 8072 lattices have index
system I = {1, 2, 3, 4, 22}, and the index system of 2837 out of the
remaining 2844 ones is obtained from I by adjunction of {5}, {6}, or
{5, 6}. In this respect a great deal of 9-dimensional perfect lattices is
expected to have and index systems containing {1, ..., 7}, but I cannot
forecast any precise result.

Clearly, a large index implies a high density. The problem is to know
whether the converse holds among perfect lattices and to understand
why the sets of indices are almost never highly lacunary (as Dn, which
has only the 2-elementary quotients of order 1, 2,. . . ,2⌊(n−3)/2⌋).

The case of small indices was considered in Subsection 6.2. In the
other direction, we ask for good bounds of γ(Λ) valid for perfect lattices
having a not too large index. Actually, if n = 7, a direct proof of
ı(Λ) ≤ 4 =⇒ γ(Λ) < 26/7 = 1.81... would suffice to prove that γ7 = 26/7
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and that this value is attained only on lattices similar to E7. Similarly
(however, less important, since the transition from n = 7 to n = 8 can
be easily done using the Mordell inequality), a proof of ı(Λ) ≤ 6 =⇒
γ(Λ) < 2 would solve the analogous problem for n = 8.

I end this section by quoting a conjecture of Coxeter.

Conjecture 6.6. (Coxeter.) An is the less dense of the n-dimensional
lattices.

Formerly I had the opinion that it should be false. However a look
at the tables of perfect lattices up to n = 8 shows that there is a gap
of density between An and the other perfect lattices. Moreover taking
into account the loose link which seems to exist among perfect lat-
tices between maximal index and density together with Conjecture 6.3
above, I have changed my mind.

7. Lattices Modulo 2

This section refers to my papers [Mar8], Reduction Modulo 2 and 3 of
Euclidean Lattices, and its complement [Mar10], except that I restrict
here myself to modulus 2. In these papers I considered the question
of finding representatives of small norm for the 2n − 1 non-zero classes
modulo 2 of an n-dimensional lattice Λ. Letm = minΛ. Given x, y ∈ Λ
with y ≡ x mod 2, say, y = x+ 2z, we have the identity

N(y) +N(x) = 2(N(x+ z) +N(z)) , (∗7)
from which we deduce the following three properties which hold when
both x, y have norm at most 2m :

(1) N(y) = N(x).
(2) If N(x) < 2m, y = ±x.
(3) If N(x) = 2m, such vectors y constitute an orthogonal frame

Sx with k(x) ≤ n pairs ±y, and the vectors y+z
2
, y, z ∈ Sx

constitute a root system of type DDDk (scaled to norm m).

Set k(x) = 1 if 0 < N(x) < 2m. We then have

∑

0<N(±x)≤2m

1

k(x)
≤ 2n − 1

and equality holds if and only if all classes of Λ modulo 2 contain a
representative of norm N ≤ 2m. Also every x ∈ Λ with N(x) ≤ 2m is
a minimal vector of some class modulo 2 of Λ.9

9by (∗7), if Λ is integral, this holds for N(x) ≤ 2m+ 1
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This raises the following question: when do all classes modulo 2
contain a vector of norm N ≤ 2m ?

In [Mar8] such lattices are listed in dimensions 2 to 10, 12 (Coxeter-
Todd’s K12) and 24 (Leech’s Λ24). Moreover in dimensions 2 to 6, for
some of these lattices, the strict inequality N < 2m suffices (which
amounts to saying that these lattices have empty spheres of norm 2m).
This implies that this property then extends to a small enough neigh-
bourhood, and shows that in dimension 2 to 6, the set of lattices
for which N ≤ 2m suffices contains an open subset in the set of
n-dimensional lattices.

Question 7.1. Do there exists lattices in dimensions n > 10, not
similar to K12 nor to Λ24, for which vectors of norm N ≤ 2m suffice
to represent all classes modulo 2?

Question 7.2. Do there exist lattices in dimensions n > 6 for which
vectors of norm N < 2m suffice to represent all classes modulo 2?

My feeling is that the answers to the two questions above are
negative. As a consequence it would be possible to classify lattices
of dimension n > 6 having representatives modulo 2 of norm ≤ 2m.

Congruences modulo 2 between vectors of norm > 2m and a given
vector of smaller norm sometimes involve interesting configurations, in
particular for pairs of norms of the form (N, 4m − N). Also among
(integral) odd lattices, one needs consider vectors of norm 2m + 1 (if
any) to obtain all classes modulo 2. In this case configurations S(A∗

ℓ)
play the rôle that payed S(Zℓ) for vectors of norm 2m.

8. Connection with Algebraic Number Theory

I just quote here a few questions related to algebraic structures on
lattices. Well-known examples are Eisenstein, Gaussian or Hurwitz
lattices. In full generality we wish to consider an order O in some semi-
simple algebra L, most of the time an algebra with involution, equipped
with a bilinear twisted trace form TrL/Q(αxy) for some conveniently
chosen α ∈ L, and lattices Λ endowed with a structure of O-module
for which the scalar product on E := L ⊗O Λ is obtained using the
twisted trace form on L.

Important examples are provided by G-lattices where G is a finite
group and L is a quotient of the group algebra Q[G]. (In other words,
E defines a representation of G over Q.) Taking G = {1, σ, σ2} with
σ3 = 1, and assuming that σ is an orthogonal transformation of E
with minimal polynomial X2 + X + 1, we obtain Eisenstein lattices,
since Z[G]/(1 + σ+ σ2) can be identified with the ring Z[ω] ⊂ Q(ω) ≃
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Q(
√
−3), where ω is a cube root of unity and the scalar product comes

from a Hermitian scalar product on E viewed as a vector space over
Q(

√
−3), the field of Eisenstein numbers. With G = {1, σ, σ2, σ3}, σ of

minimal polynomial X2 + 1, we obtain Gaussian lattices, and Hurwitz
lattices which are modules over the order M2 of Hurwitz quaternions
inside the field of “usual” quaternions over Q, with basis (in the usual
notation) 1, i, j, ω = −1+i+j+k

2
, where i2 = j2 = −1 and ij = −ji = k

are related to the double cover Â4 (or Ã4) of the alternating group on
four letters; for a general discussion of Hermitian structures, see [M],
Chapter 8.

Other interesting cases are cyclotomic structures (cyclic G-lattices)
where G = 〈σ〉 is cyclic of some order m ≥ 3 and the representation
maps σ onto a a root of unity of order m in Q(ζm), or quaternions with
center Q ramified at 3 and ∞, where a maximal order M3 affords a
representation of the quaternion group H12, or also quaternions with
center Q(

√
2) or Q(

√
5), unramified off the two infinite places, which

are connected with representations of the double covers Ŝ4 of S4 and

Â5 (or Ã5) of A5.

There is a Voronoi theory and a Voronoi algorithm for G-lattices
which allows classifications; see [M], Chapters 11 and 12. Thanks
to work of Sigrist, and more recently Schürmann, using the Voronoi
algorithm, the classification of Eisenstein lattices is known up to di-
mension 10 (relative dimension 5) and that of Hurwitz lattices up to
dimension 12. (Using this last result, Stephanie Vance could prove ([Van1])

that the density of Λ16 is the highest possible among Hurwitz lattices.)

It could be interesting to consider other structures than Eisenstein,
Gauss and Hurwitz. To my knowledge no computations have been
carried out for other groups in relative dimension > 1. Classifications
for cyclic groups in relative dimension 1 have been obtained by Sigrist,
e.g., groups of order 17 or 32 in dimension 16.

Independently of group theory, general classification problems, both
in an algebraic or in an arithmetic setting, for forms TrL/K(αxy), maybe
twisted by a Galois action of order 2, have been considered by Eva
Bayer and its Lausanne group. This can be viewed as a different ap-
proach of relative 1-dimensional problems.

A challenging problem is the possibility of constructing a given lattice
as an ideal equipped with a (twisted) bilinear trace form. For ins-
tance such a construction of the lattice E8 has been obtained by Bayer-
Fluckiger and Suarez in [Bay-S1] inside a totally real octic field L. Their
construction makes use of the existence of a quartic field inside L.
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Can one construct E8 as above inside a primitive, totally real, octic
field? Same question for E7 inside a totally real field of degree 7.

9. Analytic and Algebraic Geometry

This section deals with lattices associated with Abelian varieties over
the complex numbers. The problem is to construct such varieties. Ja-
cobian varieties of curves are important examples, with dimension the
genus of the curve. However, putting together Hurwitz’s and Torelli’s
theorems, we see that from real dimension 8 onwards, some lattices
having a large automorphism groups will not show up.
The question is:

Can one construct “interesting” lattices using the Albanese variety of
a variety having a much smaller dimension?

This question is discussed in a 1999 letter to Eva Bayer and Joseph
Oesterlé (in French), which can be downloaded as a companion file to
this file. Note that lattices occur in many constructions in algebraic
geometry (Elkies-Shioda theory, . . . ). Albanese varieties are only one
aspect of the question.

10. “Classical” geometry of numbers

For this section, and also for the next one, I refer to [M], Sections
2.5 to 2.7, where I introduced a non-traditional notation, and also
to the developments displayed in my homepage: Other texts, On the
Minkowski Constants for Class Groups (referred to below as [MCCG])
and the other text that follows it (that I intend to turn into a single
text), and their common appendix.

Let A ⊂ E be an open set containing the origin. We say that Λ is
admissible for A if Λ ∩ A = {0}, and define the lattice constant κ(A)
of A as the lower bound of the determinants of admissible lattices
for A (κ(A) = +∞ if no admissible lattices exist). The problem is
to calculate (or at least to find good lower bounds for) κ(A), and if
possible, to describe admissible lattices for A, for suitably chosen sets A
which have applications in various domains of number theory. The
description of admissible lattices is most of the time out of reach. A
particular but important case is the description of isolated (admissible)
lattices for A, at least for not too large determinants, that is admissible
lattices Λ such that a small enough neighbourhood of A only contains
admissible lattices of the form λu(Λ) with λ ≥ 1 and u ∈ Aut(A).

I quote below some important families of domains, among which
the Minkowski domains, of a great importance in Algebraic Number
Theory.
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(1) Quadratic forms. We consider the domains |q(x)| < 1 where q
is quadratic form of signature (r1, r2) with r1 + r2 = n (thus, non-
degenerate). We may assume that r1 ≥ r2 by negating q. When
r2 = 0, the calculation of κ(A) amounts to that of γn. If r2 > 0
and n ≥ 5, we have κ(A) = +∞ (conjecture of Oppenheim, now a
theorem of Margulis). Much (but not all) is known for signature (1, 1).
There remains the case when (r1, r2) = (2, 1) (resp. (3, 1) or (2, 2)),
where only a few successive minima are known, by old work of Boris A.
Venkov 10 (resp. Oppenheim). Domains of signature (2, 2) are related
to the theory of indefinite quaternion fields of center Q.
[Besides the Minkowski domains to be considered below, one could also

consider domains related to quaternion fields or even Cayley octonions. In

the case of totally definite quaternions and octonions with center Q, one find

spheres of dimension 4 and 8, with critical lattices produced by the “usual”

quaternions (D4) and octonions (E8), respectively.]

The subject of the following problem is an analogue to that of
Swinnerton-Dyer’s paper [SwD].

Problem 10.1. To make algorithmic and to write down a program ex-
tending B.A. Venkov’s list of successive minima, and use these data to
(try to) guess a putative law analogue to Markoff’s law for signature
(1, 1), but . . .
does (by contrast to the Markoff chain) the sequence of successive min-
ima tend to infinity? [My guess is that it does.]

(2) Minkowski domains. With the notation of [M], writing now n as a
sum r1 + 2r2, these are the domains

Ar1,r2 =
{
x ∈ E |

r1∏

i=1

|xi| ·
r2∏

j=1

(y2j + z2j ) < 2r2
}
,

where yj = xr1+j and zj = xr1+r2+j . We denote by κr1,r2 the lattice
constant of Ar1,r2. Thanks to the normalization factor 2r2, we have
in any given dimension the inclusions Ar′

1
,r′

2
⊂ Ar1,r2 if r′1 < r1, and

Minkowski’s theorem for class numbers takes the simple form:

Let K be a number field of signature (r1, r2) and discriminant dK .
Then any class of ideal of K contains an integral ideal a of norm
NK/Q(a) ≤

√
|dK |/κr1,r2 .

The constants κr1,r2 are known only if n = 2 (and then they coincide
with the constants in (1)), and n = 3 (Davenport, who found a simple
proof for signature (3, 0) but not for (1, 1)); see [MCCG]. Minkowski’s

10Boris B. Venkov’s father
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original bound, obtained by applying his theorem on convex bodies
to the largest convex set contained in Ar1,r2, reads

√
κr1,r2 ≥ (π

4
)r2 nn

n!
.

Using spheres (as suggested by Minkowski in a letter to Hermite), one
obtains κr1,r2 ≥ ( n

γn
)n, better in low dimensions than the previous one

for signatures with a large r2.

In the applications to Algebraic Number Theory, analytic methods
initiated by Zimmert in [Zi] (and a clever use of Weil’s “explicit for-
mulae” when only discriminants are concerned) can be used instead
of geometric methods to handle class groups. Nevertheless good lower
bounds of κr1,r2 may prove useful in low dimensions. For n = 4, the
lower bounds going back to Minkowski yield for r2 = 2, 1, 0, κ ≥ 64,
70.17 . . . , 113.77 . . . , to be compared with the expected exact bounds
117, 275, and 725, respectively. The last one has been improved to
κ > 500 by Noordzij (1967; ref [Noo] in [MCCG]). Similarly the con-
stant for n = 5, r2 = 0 has been improved to κ ≥ 3251 by Godwin
(1950; ref [God] in [MCCG]).

It would be interesting to extend Swinnerton-Dyer’s list of succes-
sive minima in [SwD] for the domain of totally real cubic fields, and
to try to see whether the sequence of minima looks as if it is un-
bounded (which is my feeling). Explorations in larger dimensions look
intractable. However restricting oneself in dimension 4 to lattices corre-
sponding to quartic fields containing a given quadratic subfield of small
discriminant might well be attacked by the methods that Swinnerton-
Dyer used in the case of cubic fields; and such a work could be inter-
esting with respect to the problem considered in the next section.
[Explicitly we should prove that the lattice constants for lattices containing

Q(
√
5) are 125, 275 and 725 if r2 = 0, 1, 2, respectively, and that the lat-

tice constant for fields containing Q(
√
−3) is 117 (necessarily, for r2 = 0).

Note that (as Sir Peter told me; see the appendix) one should expect

Markoff-like phenomena to occur, at least for real quadratic subfields and

signature (4, 0).]

11. Diophantine Approximations

One of the most basic problem in the theory of diophantine approxi-
mations is, given an irrational number α, to study the smallest constant
C for which the inequality

|α− p
q
| < C

q2

has infinitely many solutions in coprime integers p, q (or to prove that
any positive C is admissible). In [Cas1] this question is transformed
into a problem about the minima of real, indefinite quadratic forms,
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and this last problem has an easy translation in terms of admissible
lattices for the Minkowski domain A2,0.

The natural generalization to the approximation of several real num-
bers by rational numbers having a common denominator is also consid-
ered in [Cas1]. However the case of dimension n ≥ 2 sounds different
from the one-dimensional case.

In a different direction an extension of the one-dimensional problem
consists in considering the approximations of a given complex number
by elements of a given imaginary quadratic field. This problem was
considered in the fifties in (more or less joint) work of Roger Descombes
and Georges Poitou; see more specially
[Poi] G. Poitou, Sur l’approximation des nombres complexes par les nombres

des corps imaginaires quadratiques dénués d’idéaux non principaux, parti-

culièrement lorsque vaut l’algorithme d’Euclide, Ann. Sci. E.N.S. (3) 70

(1953), 199265; MR0066431.

[In this work the notion of a denominator makes sense because the author

only considers fields of class number 1. The general case needs an “ideal”

modification of the notion of a denominator.]

To evaluate some constants Poitou makes use of the Minkowski con-
stant κ0,2, more precisely of the lower bound suggested by Minkowski in
his letter to Hermite; and indeed only lattices containing a 2-dimensio-
nal lattice associated with the embedding of the given imaginary qua-
dratic field need be considered. This is analogue to the usual situation,
for which such a restriction does not show up, since it is automatic (the
sublattice is Z ⊂ Q).

In my opinion the special cases of approximations over Q or an imag-
inary quadratic field can be generalized in the following setting.
We consider the following data:

• An integer n ≥ 1 written as a sum r1 + 2r2;
• n complex numbers αi, 1 ≤ i ≤ n which are real for i ≤ r1 and satisfy
the condition αi = αi−r2 for r1 + r2 + 1 ≤ i ≤ n ;
• A number field K of signature (r1, r2) equipped with embeddings
σi : K → C for 1 ≤ i ≤ n with σi(K) ⊂ R for i ≤ r1 and σi = σi−r2 for
r1 + r2 + 1 ≤ i ≤ n,

and we try to find elements x ∈ K for which the |αi − σi(x)| are
small. Looking for a generalization of the cases when (r1, r2) = (1, 0)
or (0, 1), it seems reasonable to associate this approximation problem
with the Minkowski domain A2r1,2r2 and to try to bound the product∏n

i=1|αi − σi(x)| in terms of a denominator dn(x) of x. This could be
defined by writing (x) = ab−1 where a, b are coprime integral ideals and
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setting dn(x) = NK/Q(b). A precise statement could be that provided
the αi do not lie in the Galois closure of K, the inequality

n∏

i=1

|αi − σi(x)| <
1

√
κ2r1,2r2

· 1

dn(x)2

should have infinitely many solutions in x ∈ K.
Note that in this statement, K occurs only by its signature. Prob-

ably one could replace κ2r1,2r2 by the lattice constant κ2r1,2r2(K), ob-
tained by restricting oneself to those admissible lattices of dimension
2n containing the n-dimension lattice associated with K.

I am no specialist of diophantine problems, and I leave the specialists
the task of checking whether the exponent I gave above is reasonable.


