Character theQEy and Artin L-functions
J. Martinet
I. NON ABELIAN L-FUNCTIONS
The aim of this chapter is to describe the theory of
Artin's non abelian L-functions, teking for granted the

theory of sbelian L-functions. This chapter owes much to a

talk by Serre (Fonctions L non abéliennes, Séminaire de

Théorie des Nombres, Bordeaux, 10 avril 1973).

§1. Frobenius

Two papers of Frobenius, both dating back to 1896, play a
key role in the theory we are going to describe. The first
one is devoted to what is now called the "Frobenius sub-
stitution". Let E/K be a finite norﬁal extension of number
fields with Galois group G, and let P be a finite prime of
K. Assume E/K is unramified at p.  For every prime P of E

lying above P, there is a unique element Op € G (the
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Frobenius substitution) such that, for any integral x € E,

- N(p)

the congruence GP(x) =¥ mod P holds, where N(p) is t

i

|

|

I

|
i
absolute norm of p. Moreover, the conjugacy class of GPT
i

l

in G does not depend on the particular choice of P above P

in E. Frobenius stated in this paper a density theorem of

the éebotarev type, and proved the following result: for |
every cyclic subgroup C of G, there exist infinitely many |
primes P such that O? is a generator of C. Even disregard#
questions of density, this is weaker than Cebotarev's theo
which asserts that every generator of C is of the form %5

infinitely many P.

The second paper of Frobenius we are concerned with is

devoted to the definition of the characters. As will be

seen in a moment,

the theory of L-functions relies heavily

on the consideration of both the notion of a character and

of the Frobenius substitution. But Frobenius did not see

the connection, and the sequel of his work deals mainly

with the theory of characters.

§2, Weber

For an ideal § of K, 1let Iﬁ be the group of ideals of

K prime to § and let Pﬁ be the subgroup of I6 which consist
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of ideals which can be generated by a totally positive ele-
ment o of K congruent to 1 modf{ . Let H be a subgroup of
Iﬁ containing P6 (we call such a subgroup a congruence
subgroup) .

Weber called an abelian extension E of K "a class field

for H" if the prime ideals of K which decompose completely

in E are precisely those which belong to H, and if § is in

some sense the smallest possible ideal. In this situation,
the prime divisors of § are precisely the prime ideals of K

which are ramified in E.

*
Now, for every character X : I,/H > C , there is an L-
6

function defined for Re(s) > 1 by:

I 1
pYé 1-x(p) N(p

L(s,x) = s

The question arises of comparing the zeta function CE(S)

with the product I L(s,x) when E is a class field for H.
Generally, they are not equal, Dbecause of the possible
existenée of prime ideals which are ramified in E/K but not
in the subfield corresponding to the kernel of x. I shall

write
tp(s) v T L(s,x)
X
to mean that the equality is true up to a finite number of

factors.
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To obtain an equality, one must, for each character X

i

replace § by the conductor of X. This was known to Weber

\ : for those abelian extensions which were known to be class
\ \ fields.
\
“ \’ V
\ \ \ : 83. Artin's first definition of L-functions
5 . \
\ i\ : Artin's first definition of L-functions appeared in 1922

.\ -‘ | \\\

: \ <

(on a new king of I, series). In the meantime (1920) Takagi

had established in full generality the classical results of

'5:{,_- T

class field theory, namely the one-to-one correspondence
-

between abelian extensions of number fields and congruence

subgroups, and also the isomorphism theorem, which asserts

that the Galois group G of the extension is isomorphic to the

quotient Ié/H.

- Using an isomorphism between T /H and G, it would be
N g

possible to define L-functions for degree one characters of

\ ‘ AN G. But Takagi's theory does not give any canonical iso-

morphism between I6/H and G. Nevertheless, Artin thought

that the I-

series we defined Previously with g congruence

class character could be identified with L-

series defined

for a degree one character ¥ of ¢ by the formula:

g L(s,¥) = L

_—
unraﬁified l'w(cp) N(p)~?
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where Gp is the Frobenius substitution of one P above p

(Note that Gp is well defined since G is abelian). This led

Artin to conjecture that one obtains an isomorphism between

Iﬁ/H and G by sending the class in Ié/ﬂ_gf an unramified

prime ideal P onto the Frobenius substitution GP' This
Artin called "the general law of reciprocity" (because it
implies fairly easily the known laws of reciprocity). In his
paper on L-functions, he proves the law of reciprocity for
a lot of abelian extensions E/K (e.g. cyclotomic extensions,
cyclic extensions of prime power degree pn when K contains
the pn—th roots of unity, cyclic extensions of prime degree,
...). He was quite sure of the validity of his reciprocity
law. Indeed, it is stated as a theorem (Satz), and his
paper of 1927 on the reciprocity law is simply called "proof
of the general reciprocity law".

We are now able to give Artin's first definition of L-—

functions:

Definition Let E/K be a finite normal extension of number
fields with Galois group G. Let V be a finite dimensional
complex vector space, and let s+ p(s) be a representation

of G in V. Denote by x the character of p, defined by
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X(s) = Tr(p(s)) for all s € G. For & prime P in K, the

determinant det(1 - N(p) ° D(OP)) does not depend on the

choice of P above P, and takes the same value for two

isomorphic representations. We can therefore define

L(s,x) = 1 % e .
P det(1-p(op)N(p) °)
unramified

The series is convergent for Re(s) > 1.

It is then obvious that I is additive, i.e.

(a) Lis,x,*x,) = L(s,xl)L(s,xz) .

The following equalities, however, are true only up to
a finite number of Euler-factors (we use the notation ""),

Let H be a normal subgroup of G corresponding to an

extension F/K . Let p be a representation of G/H with

character x and let p' be the lifting of p to G with chara—

acter x'.

(b)

Then we have the lifting formula

L(S,X') v L(S,X)

Let H be a subgroup of G, and let X be a character of

*
H which induces the character x

of G.

Then we have the

induction formula
*
(e)  Lis,x ) ~L(s,x) .

Moreover, Artin proved that L(s,1) ~ CK(S).
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Applying formula (c) to the unit character of a subgroup
H of G corresponding to an extension F/K, we obtain the
N .
formula CF(s) L(s,rG/H), where Yo 18 the character of
the permutation representation of G on G/H.
Let us take H = (1) in the above formula. Then rG/H is

the character r ., of the regular representation of G, which

G

is Jjust the sum 2 x(1)Xx over all irreducible characters of

X
G. Now applying formula (a), we get

r (s) T on(s,0X )

B X irreducible

Assuming the reciprocity law, Artin gave a proof of the
theorem of density conjectured by Frobenius. He stated the
existence of an analytic continuation for his L functions
(with perhaps "ramification" points) and of a functional
equation relating L(s,x) and L(1-s, X) as had been proved in
1917 by Hecke for abelian L-functions. He also asked
whether his L functions are holomorphic in the whole' complex
plane for a character which does not contain the unit chara—

cter. We now call this statement "the Artin conjecture".

§L, The general definition of non abelian L-functions

Surprisingly, Cebotarev proved in 1926 the density

theorem conjectured by Frobenius without using L-functions.
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The main idea behind the proof is to reduce to the

case of g

cyclotomic extension. In 1927, wusing this device, Artin

proved his general law of reciprocity. In 1930, he returned

to the problems of L-functions in his paper "on the theory of

L series with general characters".  The two main problems

are:

(1) To define local factors at ramifieq primes, in such
\\—p

& way as to put true equalities in the above formulae.
(ii) To define local factors at infinity and an exponent—
ial factor in order to get an analytic continuation and a

functional equation.

(i) As always, we consider a normal extension E/K of

number fields with Galois group G and a complex representation

P+ G > GL(V) with character . Let P be a prime of K;

choose a prime P above p.

Let DP and IP denote, respective-

ly, the decomposition group and the inertia group of P,

Now, the quotient group DP/IP is isomorphic to the Galois

group of the residue extension. Hence,

we can define a

Frobenius substitutionqﬂabelonging to DP/IP. The vector

space V is acted on by G via the formula o x = po(x) for all
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x € V and all 0 € G. Let

p
v ={xev]| V oe Ip, ox=x} ,

the subspace of elements of V fixed by IP. Once more, the
il

- P
. GP) of V does

determinant of the transformation (1-N(p)
not depend on the particular choice of P above p, and is

the same for two isomorphic representations. We can thus

define

L(s,x) = T
14 det
finite

for Re(s) > 1.

Now, the induction formula and the 1lifting formula be-
come equalities. We summarize the fundamental results

(notation as above):

Theorem (a) L(S,X1+X2) = L(s,xl) L(S,xz)

(b) L(s,x") = L(s,x)
(¢) Lis,x) = L(s,x).

Assume G is abelian. Let X be a degree one character

of G, and let ¥ be the corresponding congruence class

character. Then,

(d) L(s,x) = L(s,¥).
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An obvious corollary is the equality:

t(s) = T 1(s,0%1)
X
irreducible

Moreover, if V is of dimension 1 and if o(I
I
. P
act trivially, then V = (0).

P) does not

This explains why, for an

abelian L function, local factors corresponding to the primes

dividing the conductor reduce to 1.
Artin gave a more explicit description of his functions

using an expansion of log L(s,X). Let us first consider

the case of an unramified prime P of K. Let d be the

dimension of V, and let Ki(P) (1 £1 5 4d) ve the eigen-

values of p(OP) for some P above p. Then,
d
det(1-N(p)"® p(op)) = (1-x. (p) N(p)~%).
i 1=1
Thus,
d = A (p"
log = = ] ) :

det(1-N(p) ™" p(0p)) il m=1l m u(p)™

i} °§ x(OI,?)

m=1 m N(p)™

where x(cg) is just the trace of the m-th power of the
Frobenius substitution. For a prime P with ramification
index e, the above definition of X(U%) makes no sense, as

OP belongs to DP/IP' We define however x(Og) as an average,
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X(Ug) = Z X(s), where the sum is taken over the

sl——)Om o
elements s of DP which map onto GP in DP/IP’

The logarithmic expansion is now true for any prime P of

K. Hence:

m

E x( op)

log L(s,X) = Z
P om=l m N(p

ms
)
a formula which gives an expansion for the logarithmic

derivative of L(s,x):

L' (5,%) x(op)
L) )ZO log(n(p) | ——

Remark. Let us choose a fixed algebraic closure @ of @.
Then every number field K can be considered as a subfield of
Q. Let QK be the (infinite) Galois group Gal(®/K). Then
property (b) of the above theorem shows that an L function
is attached to every finite dimensional complex representa-—
tion of QK with open kernel. Such a representation has a
character, and we can define as usual virtual characters of
QK. Then property (a) allows us to define an L function

L(s,x) for every virtual character X of QK.

(ii) We are now going to define an enlarged L-function
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A of the form A(s,x) = A(X)S/2 YX(s) L(s,X), and to prove
for it the existence of a meromorphic continuation together
with a anCtiQEfi/EgEEEESE Ms,x) = w(x) AM1-s, X) for some
constant W(x) of absolute value 1. According to the known
properties of abelian L-functions, we must define I'-factors

and the constant A(¥).

¥ Let us begin with the I'-factors. Put v(s)

ws/2 I'(s/2). We define YX as a product Yx(s) II Y;(S),

-
where v ranges over the infinite places of K, and Yv, the
- s A O

local factor at infinity, is defined in the following way:
for v complex, we put Y;(s) = [y(s) Y(s+i)]X(l). Now,
let v be a real placé of K. To every place w of E above v
corresponds a decomposition group (or inertis group)

G(w) = {s e G|sw =w} of order 1 or 2. The generator of

G(w) plays the role of the Frobenius substitution, and is

defined up to conjugacy by v. We write for V a direct sum

s s i + = 5 5
decomposition V = Vv @ Vv corresponding to the eigenvalues

+1 and -1 of p(ow) for e fixed w above v, and we put

, dim V:; aim V_
YX(S) = v(s) Y(s+1) .

4% The definition of A(x) needs the notion of a conductor

4(x) which must generalise the conductors of class field




CHARACTER THEORY AND ARTIN L-FUNCTIONS 13

theory defined for abelian characters. The theory of this
R s

conductor, now called the Artin conductor, is developed
in the paper "The group theoretical structure of the dis-
criminants of algebraic number fields", written at the end
of the year 1930.

Let p a prime ideal of K. Choose a prime ideal P above
p. Let Gi (i = 0) be the corresponding ramification groups

(Go is the inertia group) and let 8 be the order of Gi. We

define a rational number

n(Xap) = Z

1=

(n(x,p) is actually independent of the choice of P above p).

Theorem (Artin) n(x,p) is an integer.

Nowadays, this is proved using Brauer's induction
theorem (see Serre, Corps locaux, chap. VI, §1-3. for a
proof) .

To prove this theorem, Artin reduced to the case
G = Gl’ using an argument of Speiser. Now, G1 is a p—
group and it was known to Artin that every irreducible
character of a p-group is induced by a character of degree

one of some subgroup. As Artin had established induction
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properties for n(x,p), the proof was reduced to the case of

degree one characters. He could then complete the proof

using a theorem of Hasse, now known as Hasse—Arf theorem

after its generalization by Arf.

For an unramified prime ideal P, one has n(yx,p) = 0.
Therefore, the formuls

P

defines/ggﬁiggg;,gi;K*. which is known as the Artin con-

ductor.

The constant A(x) is now defined by the formula

400 = g "M w00y

where dK is the absolute discriminant of K.

N

Theorem Let A be the "enlarged" L-function defined by the
2
formula A(s,x) = A(X>S/ Y

X(s) L(s,X) for Re(s) > 1. Then

A possesses a meromorphic continuation in the whole complex

plane, and satisfies the functional equation A(1-s,Y)

W(x) A(s,x) for some constant W(Xx) of absolute value 1 (the
T R e N E

so-called "Artin root number"). <

In the theorem,

X is the complex conjugate of x. If
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X is the character of a representation p : G ~ GL(V), x is
the character of the contragedient representation

* *
. G > GL(V ) (V is the dual space of V), defined by

-1 *
(£), x> = <f,0 (x)> for all s e G, xeV, feV,

Artin could not prove the existence of a meromorphic
continuation for the function A. The theorem was proved in
1947 by Brauer. We now give the proof.

We must first establish properties (a), (b), (c) for the

_EE}EEEEE_E:EEEEEEQEﬁﬂ Properties (a) (additivity) and (b)
(1ifting property) are easily verified for the functions L
and Yyo 88 well as for the condgctor 6(*). Thus, they are
true for the constant A(X), and hence for the function A
(therefore, we can define Yx(s), 4(x), A(x) and A(s,x) for
a virtual character of QK). It is not difficult to show the
invariant of YX under induction. For the Artin conductor,
the formula is a bit more complicated. Let H be a subgroup
of G with fixed field F, and let X be a character of H. The
conductor of the character X* of G induced by X is given by:

where DF/K is the discriminant

of the extension F/K.
A simple calculation using the transitivity formula for

*
discriminants gives the equality A(x ) = A(x), eand thus the
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induction formula, A(s,x*) = Ms,x) for the enlarged L-
function.

We now apply Brauer's induction theorem: there exist
subgroups H, (1 €1 <n) of G, degree one characters
X. (L £1i g£n) of H; and rational integers n, (1 £i <n)

i
for some n such that the following equality holds:

X = izl ng X -

We thus have, by properties (a) and (c):

n ni
A(S,X) = H A(SQXi) ° ha
i=1

For 1 £1i £ n, let Fi be the fixed field of Hi’ Hi the
kernel of x; end F! the fixed field of H. The extensions
F:!L/Fi are cyclic extensions with Galois group Gi = Hi/H;'
Writing x! for the character of Gi defined by X;» We then

i
have, by property (b):

Ms,x;) = Ms,xi).

We now use Hecke's results. By composition with the
Artin map, the characters xi define congruence class chara-
cters (or id8le class characters in modern language) wi of
Fi’ and we know, by property (d), that the function L.
L(s,xi) i; equal to L(s,wi). Now, given an abelian'9j .7

function L(s,¥), Hecke defined an enlarged function A (s,yp)
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by the formula

M (s,p) = A (9)5/? Yj(s) Ls¥)

where A'(Y) = |dKl NK/Q (4(y)) and Y¢(s) is a product of

gamma factors of the form y(s) or y(s+l) depending on the
behaviour of ¢ at infinity. He proved the existence of a
meromorphic continuation in the whole complex plane for A'
together with a functional equation

A (1-s, ¥) = W'(¥) A'(s,¥)
for some constant W'(y) of absolute value 1. Note that the
analytic continuation of A' is in fact holomorphic when ¥ is
not the trivial character.

Now, given a degree one character X on the Galois group
of a cyclic extension F'/F and its corresponding idéle class
character ¥, Artin proved the equality of the "Artin" con-
ductor §(x) and the conductor of ¥ in the sense of class
field theory. We thus have A(x) = A'(¥), and the equality
of the gamma factors YX and YX, is easily verified.

Going back to our previous notation, we have A(s,xi) =
A'(s,wi) for all s € € with Re(s) > 1. This implies the
existence of the meromorphic continuation for A(s,x) =

E A'(s,wi)ni as well as the functional equation. More-—

i=1 n n.

over, the equality W(x) = .Hl w'(wi) 1 shows that W(x) is
l=
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of absolute value 1.
Corollary With the notation of §3, the following prop-
erties hold for the Artin root number:

(a) W(x1+x2) =W(x.) Wix)

(b) Wix"') = w(x)

Note that properties (a) and (b) allow us to define W(x)

for a virtual character of QK'

85. Some elementary remarks on the Artin conjecture

Recall that the Artin conjecture is the following: for

a character X of a representation which does not contain the

——

_unit representation, the corresponding function L(s,x) (or,
which amounts to the same, the enlarged function A(s,x)) is
holomorphic.

Artin's conjecture is true for characters of de ree one
(this is a consequence of Hecke's results for abelian L-
functions). As we know that an L-function is meromorphic,

it is enough to show that some power of it is holomorphic to

prove Artin's conjecture. Thus, for a character yx which is

a linear combination with positive rational coefficients of
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characters induced by non trivial degree one characters of
subgroups, the corresponding L-function is holomorphic.
Until recent work of Tate, this was the only way one could
prove that a given L-function is holomorphic.*

The following well known example is due to Aramata and

was rediscovered by Brauer:

Example. Let E/K be a normal extension. Then the
augmentation representation of its Galois group (the regular
representation minus the unit representation) has the above
property.  Consequently, the quotient EE(S)/EK(S) is
holomorphic, or, as one says, CK(S) divides CE(S).

Note that it is not known whether CK(S) divides EE(S) if

E/K is not assumed to be normal. The result, however,

would follow from a proof of Artin's conjecture.®

*
Footnote: But see a recent paper of Langlands mentioned

in Serre's talk (3.3)).

®Footnote: See here also Van der Waall's talk.
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II. GALOIS ACTION ON ROOT NUMBERS

This chapter is devoted to Galois Gauss sums. The main
result is a theorem of Frohlich, which gives a formula for
the Galois action on the Galois Gauss sum, and hence on the
root number. Fréhlich proved his theorem by global methods,
and the proof I gave in Durham closely followed his original
proof. I give here a local version of this theorem, from
which the global result is easily deduced. This has been

made possible by the theory of local constants of Langlands

and Deligue.

§1. More on the Artin conductor

The Artin conductor can be defined for more general
extensions than extensions of number fields. Let A be a
Dedekind ring and K its quotient field. Let E be a finite
normal extension of K with Galois group G, and let p be a
representation of G in a finite dimensional vector spacelwith

character X. Assume that all the residue class extensions

are separable. Let p be a prime ideal of K. Let us choose
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a prime ideal P in E above pP. We can then define the rami-

fication groups Gi of P. Writing e; for the order of Gi’

we define as in chapter I,

© g G.
n(x,p ) = Z -+ codim V =1
i=0 &
Theorem 1.1. n(x,p) is an integer.

(For a proof, see Serre, Corps Locaux, chap. VI, §1-3).
In particular, if E/K is unramified at p, then
n(x,P) =0, and if E/K is tamely ramified, then n(yx,p) =
codim VGO.
We now define the Artin conductor by the formula:

pdiid s K g0 = 1 6P }_
: ,

The Artin conductor has the following 3 fundamental
properties:
(a) 60x + x") = 6(x) . 6(x")

b X 1s lifted from a character x' of & quotien
(b) If is lifted f h t ! of /gfft' G

—_—

H of G, then:

(c) Let H be a subgroup of G, corresponding to a

*
subfield F of E; let X be a character of H and let X be the

character of G induced by Y. Then:
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»

§x") = 1y e (600 pim/ )

where D(F/K) is the discriminant (relative to the ring A) of
the extension F/K.

Let DP be the decomposition group of some ideal P above
P, and let Xp be the reEEEEEEEEE_SE_E,ES_EP' Then X is
induced by xp. Let E(P) be the decomposition field of P.
Then, E(P)/K is unramified, and formula (c). shows the
equality:

n(X,P) = n(Xpa P nEp)-

~

P

(resp. p). Then Dp is canonically isomorphic to the Galois

group of ﬁp/ﬁp, and the integer n(x,p) is the corresponding

—

EEEE%EE,EEEEL_EEJQE?ined for this extension.

When A is a discrete valuation ring, there is no need
to specify the ideal we choose, and we simply write n(x)
instead of n(x, P).
;¥; We now restrict ourselves to the case when K is a number

field, and we define an integer n(y, v) for every infinite

place v of K. If v is complex, then so is every place of

B above v; we say in this case that E/K is unramified st v,

and simply put n(x,v) = 0.
SRS S e e

3
]
]
]
]
]
]
] Let B, (vesp. k) be the completion of E (resp. K) st P
)
)
]
)
]
]
)
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§0) = e (6000 p(r0 XY

where D(F/K) is the discriminant (relative to the ring A) of
the extension F/K.
Let DP be the decomposition group of some ideal P above

p, and let Xp be the reﬁifiEEEQE_SE_EJES_EP' Then ¥ is

induced by Xp- Let E(P) be the decomposition field of P.

Then, E(P)/K is unramified, and formula (c). shows the
equality:

n(x,p) = nlxp, P N Ep).

~

Let Ep (resp. Kp) be the completion of E (resp. K) at P

(resp. p). Then Dy is canonically isomorphic to the Galois
p

group of ﬁp/ﬁp, and the integer n(x,p) is the corresponding

o

i
]
J

—_—

EEES%EE.E&EEl_éZAQEfined for this exten;igg.

When A is a discrete valuation ring, there is no need

-

to specify the ideal we choose, and we simply write n(x)
instead of n(x, P).
;ﬁg We now restrict ourselves to the case when K is a number

field, and we define an integer n(x, v) for every infinite

place v of K. If v is complex, then so is every place of

E above v; we say in this ggggﬂt@a;_@lg_iﬁ_gggggigiggdgt V,

and simply put n(x,v) = 0.
giS ey gr e

e | e B

[~ —
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3 If v is real, let w be a place of E above v. In Chap-
4
é ter I, we defined the "inertia group" Lr E {s € Glsw = wl.
\ \ ' We consider that the extension E/K is @ggg;y\zggifigg\gt Vg

S ¢ and we define n(X,v) by the formula:

|\ ‘ n(X,v) = codim v ¥,

\ ‘ \ : Of course, n(X,v) does notidepend on the choice of w above
% \ D v, and n(X,v) = 0 if w is real. We can use the decom-

: \ position V = V: ® V; of V given in chapter I, §4. +to com-
pute n(X,v). Clearly, n(x,v) is the number of eigenvalues
L \ equal to -1 for a "real Frobenius" o,  Now, X(Ov) =

\p dim V: = dim V; 5 the following formula holds:

Mol n(X6v) =5 (x(1) - x(9,)).

Remark 1.  The integer n(X,v) was used by Hasse to define

the infinite components of the Artin conductor.

N W r ~ Remark 2. The same arguments can be used to compute
\ » \ n(x,p) for an extension vhich is tamely ramified at P
|

; n(x,P) is the number of eigenvalues other than +1 for a

generator Op of the inertia group of some ideal P above P.

We can also define an integer n(x) in the local

archimedean case. Then, E and K are isomorphic either to
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the field R of real numbers or to the field € of complex

numbers, and we define n(X) by the formula:

n(Xx) = codim VG.

Now, given a normal extension E/K of number fields, a

place v of K and a character X on G = Gal(E/K), one can
define a local character X  on Gal(Ew/Kv), where Kv is the
completion of K at v and Ew is the completion of E at some
place w of E above V.

The situation is now the same as in the finite case,

and the following equality holds:

n(x,v) =n(x,) -
The proof is clear from the formulae n(X,v) =

% (x(1) - x(o_)) and n(x_) -;-(xv(l) - x, (o)), since X,

e e

is the restriction of X to the subgroup (1,0 ) of G.

f—

We end this § with the definition of the conductor for
an infinite extension. We again use the definitions of the
beginning of this séction. Let L be an infinite normal
extension of K with Galois group G. By a representation p
of G, we understand a homomorphism p of G into the linear

group of a finite complex vector space with open kernel.

Such a representation factors through the Galois group of a

finite extension. Recalling the invariance of the conductor
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under lifting, we define §(P) to be the conductor of p',

where P' is any representation of a finite Galois extension

3 ah%w 3

such that p' 1lifts to ¢ on G. Such a representation has a
character X, and we can define n(X) as above. Virtual
characters are then defined in the usual way, and the def-

inition of the conductor of a virtual character is immediate.

Remark We define an unramified (virtual) character as a

character which is the difference of 2 unramified characters

L of representations. It is clear that such a character has

] a trivial conauctor. The converse however is false, for
the difference of two ramified characters can well have a

1 trivial conductor.

' Thus unramified characters are the characters which can
be factored through a finite unramified extension. In the
same way, we define a tame character to be a character

which factors through a finite tame extension.

JI
§2.\;;:;ﬁ Gauss sums
e, S

In this section, p is a fixed prime number and K a

finite extension of the field Qp of p-adic numbers. Let OK

(resp. P, D, U ) be the valuation ring of K (resp. the

K’ 'K
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maximal ideal of O the different of the extension K/Qp,

K’
the group of units of OK). For any integer 120, let U; be

the subgroup of those units of K which are congruent to 1

) 1 e}
modulo pK (thus, Uy UK). We denote by e

parameter of OK (PK =, 0.).

RC;XQZYWe first define the non trivial additive character
(]

*
: K> C as the composition of the following L maps:

a uniformizing

(1) (2) (3) (4)

%
Q> /7% > Z > ¢ where:
. Qp 5 @/ »

K

1 is the tra T
(1) is the ce rK/Qp

(2) is the canonical surjection
(3) is the canonical injection which maps Qp/Z&) onto

the p-component of the divisible group ®/%

. g 2mi
(4)  is the exponential map x > e~ % |

For every x € Qp, there is a rational r, wuniquely de-

fined modulo 1, such that x — r ¢ Zb . Then ¥(x) = ¥(r) =

2mir
e

The equality ¥(x+y) = ¢(x)¥(y) shows that ¥(-x) kb(x)—1

Y(x) for every x e K. We also remark that Y is trivial on

s =1 =1 .
the codifferent DK , and that DK 1s actually the greatest

ideal of K on which ¢ is trivial.

The following lemma will be used to establish a basic




PR Pty

28 MARTINET

property of Gauss sums.

Lemma 2.1. Let n 20 be an integer and let d be an element of

=} -
%Z ( DK N(PK) " Let S be a set of representatives of 0, modulo

K
P;. Then, the sum A = ) ¥(yd) does not depend on the
yEes _1
particular choice of S.  Moreover, A = N(PK)n if d ¢ DK 5

and A = 0 otherwise.

(For an ideal I, N(I) denotes the unique power of p

which generates the ideal NK/Q (I); if I is integral,
25 e o8 S uephas
p

N(I) = card(OK/I)).

y mod %, then W(ya) W(y'a)”" = W((y-y')d)=

i

Proof If y!'

—~1
1; thus, A does not depend on the choice of S. If d e DK "

then ¥(yd) = 1 and
n

A= ) 1 =1n(p)".
n K
yﬁOK/PK

—
Suppose now that d does not belong to DK . For any integral

Z, ytz runs through a full set of representatives of O

K
modulo PE when y does.  Thus A = ) U((y+z)d) =
n
y€OK/PK
I w(ya)w(zd) = ¥(zd)X, and (1-9(2d)) A= 0. As ¥ is

I
y€OK/PK

not trivisl on the ideal dOK, one can choose z such that

¥(zd) # 1.

Hence, A = 0.



* * *
‘Now let 6: K = € be a character of K with open kernel:]

Let n = n(6) be the valuation of the conductor §(6) of 8,

so that §(0) = pE. The integer n is the least integer such

that the character 0 is trivial on the group U;.

‘We say that 0 is unramified if n(6) = 0.  Then, for a

non zero fractional ideal I, the value 6(x) of € on a
generator x of I does not depend on the choice of x; we

call it 6(I).

—

Definition The local Gauss sum T(0) is the sum

t(e) = ) e(f) D,
€Oy

where c is a generator of the ideal 96 = 4(0) D

K° and x

runs through a set of representatives of UK modulo UE.
When 6 is unramified, the sum reduces to 1 term, and

we have the equality

If moreover K is an unramified extension of Qp, then

w(0) = 1.

Remark It is easily verified that 1(6) does not depend

ek oo N i

] CHARACTER THEORY AND ARTIN L-FUNCTIONS 29




=~

o ke U

30 MARTINET

on the choice of the representatives of U, mod U;. Hence,
I

T(0) does not depend on the choice of c.

Proposition 2.2. Let 0 be a character of K*. Then:
(i) |t(0)] = /N(4(0))
(ii) 7(8) T(8) = 6(-1) N(4(9)).

Proof We first remark that (ii) is an easy consequence

of (i), since

©(8) = L8 v =1 8- -2
X X
=8(-1) ] 8 WD)
X
= 0(-1) (8).

Moreover, if 6 is unramified, then N(F(0)) =1 and

t(6) T(8) = o(T ) o(D 1) = 1.

We now only have to prove (i) for a ramified character.

We write |1(8)]% = 1(0) 1(6) as a double sum:

©(6) (8)
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we get the equality

(o) t(8) =

) w(y(%:l-) ).
n
yeUK/UK

We now write o(x) as the difference

Z ¢(Y(Eil))- By lemma 2.l., z

n n
yepK/pK YeOK/pK
if x # 1 mod pﬁ, and N(pK)n = N(4(6)) otherwise; similarly,

= (x-1)m
IowyEL) = ] Wy — ) =oirx £
n n-1 '
yepK/pK yeOK/pK

n- s
) 1 otherwise. We thus have the

mod p;_l , and N(pK

equality |(6)] = N(§(e)) = o(x) Mp)™ ™,
errI;—l/Ulré

and we

must prove that the sum p= Z o(x) is zero. But,

xely /0
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for any z € UE l, 0(z) u= ) 0(xz) = W. By the

oL

n-1

definition of the conductor, there exist z € UK such that

6(z) # 1. Hence, =0, Q.E.D.

[—7We can now define the local root numbers\ Let K be a

local field of characteristic O, and let ® be a character

*
of K .

. Ay E n .~n(06
Definition SK For K =R or K = C, define W(0) =1 n(0)

where n(0) is the integer defined in section 1.

¥ For K non archimedean, define W(8) = ___ILEl_ .
Ai(4(0))

We now explain the connection between these local root

numbers and the root number defined by Hecke for abelian L

functions.

Tet K be a number field, and let X be an idele class
character (i.e., @ X is a continuous character on the
group IK of the iddles of K, trivial on the principal
idgles). For every place v of K, the natural imbedding
Ki - IK defines a character X, on Ki. The following

theorem was proved by Tate in 1950.

2
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Theorem 2.3 Wwix) =1 W(Xv)'

v
For a proof, see Tate's thesis, in Cassels-Frohlich,

p. 305-347. (Note that the infinite product makes sense

because T(Xp) = N(ﬂ(Xp)) = 1 for every finite prime P at

which both the character X and the extension K/Q are un-
/—Jf

ramified).

§3., The transfer

Given a group G, we denote by Gab the quotient of G by
its commutator subgroup. Let G be a group and let H be a
subgroup of finite index in G. Let © : G/H 9;§(%e a set
of representatives for the left cosets of G modulo H. Given
s € Gandt € G/H, we define én element a_ o of H by the

2

formula:

. B
s 6(t) = 0(st)a_ /H A

Definition Let s € Gab, and let s € G be a representative
of s. The image in Hab of the element I a of H is

B tec/m °?
called the transfer of s.

Notation Verg(g) or simply Ver(s); we also define the

transfer of s itself Dby Ver(s) = Ver(s).

&
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It can be shown that Ver(s) does not depend on the choice

made in the definition, and that the transfer is a homo-

; ab . ab . ; ]
morphism of G dinto H . By duality, given an abelian
group A, there is a transfer Ver : Hom(H,A) > Hom(G,A).

The transfer was first defined by Schur, and redis-
covered by Artin in connection with class field theory. We
shall use the transfer for its role in class field theory

and for the calculation of the determinant of an induced

representation.
a) Class field theory. For convenience, we use
infinite Galois groups. For a topological group G, the

group Gab is the quotient of G by the closure of its com—

mutator subgroup.

Proposition 3.1. The following two diagrams are commute-

tive:

_ ap  Ver N ab Ver
Gal(Q_/K) > Gal(Q_/E)
I b b
% inclusion
K — E

o0
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In both diagrams, the vertical maps are Artin maps.

In the left hand diagram, E/K is a finite extension of
fields of finite degree over QP, contained in a given al-
gebraic closure-@p of @ .

In the right hand diagram, E/K is a finite extension of

number fields, and I, I are the corresponding idele

K> "B
groups.

We shall write Ver for the transfers involved in these

E/K
2 diagrams.

Proof This is a property of class formations (see e.g.
- il
Artin-Tate, Class Field Theory, chap. XIV, or Serre, Corps

Locaux, chap. XI).

b) Induced representations. Given a representation p

of a finite group G in a complex vector space V, the de-
terminant of p depends only on the character of p. By
linearity, we define the determinant of any virtual

character X of G. (Notation : detx).

Proposition 3.2. Let G be a finite group and let H be a

%
subgroup of G. Let X be a character of H, and let X be




o m—
p.
)
o
-

T T

H
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the character of G induced by X. For any element s € G, let

eG/H(s) be the signature of the permutation of G/H defined

by multiplication by s. Then:

det ,(s) = (S)X(l)

X

or, more briefly:

detX(VerH(s)) 5

€/u G

x(1)
G/H

det % €

oVer(det ).
X X

*
By linearity, we may assume that X and X are char—

*
Thus, X

Proof

acters of representations. corresponds to a vector

space V with G action, and X to a subspace W of V invariant

under H.  The fact that the representation afforded by V is

induced by the representation afforded by W can be described
in the following way. Let © = G/H > G be a set of represent-
atives of left cosets of G mod H. Let W, = 0(0) W. Then,
V is the direct sum-: V= & W_.

oeG/H .
determinant of the endomorphism x * sx of V for every s € G.

We must now find the

Write x = Z
: oeG/H
) s e(o)x0 = 3
oeG/H oeG/H Ss
i is the product vu, where u, defined by 6(0)xU F’e(c)as .
k]

0(0) X;, with x € W. Then, sx =

0(s0) a x .

s
oXg Thus ,

the map x > sx

X
o?

f maps each Wc onto itself, and v, defined by

0(o) X, 0(s o) 6(0)_1 Xy, maps W = 0(0) W onto 6(s0) W.
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Now, everything is easy: first detv(u) = det (ulwc)
oeG/H o

= I > = >11 =
! detw(x as,ox) detw(x ! asaox) detX(Ver( )). DNow

let ei(l < i € xX(1)) be a basis of W.  Consider the basis
G(O)ei (oeG/H, 1 €1 £ X(1)) of V.  For each i, Vv per-
mutes the 9(0)ei, and the signature of the permutation is
EG/H(s). As there are X(1) indices i, det (v) =

v
(s)XH)

£ , Q.E.D.

G/H

Corollary. If ¥ is a character of trivial determinant and

*
of degree zero, so is the induced character X .

(.
m (0 W a)ﬂluva
§), Local \Galois)Gauss sums
\—— .

Let p be a place of @, and let @p be an algebraic

closure of @ (thus, @, =R and Q, =C). By a local
field, we mean a finite extension of QP which is contained

in @p' Given a local field K, we consider virtual char-—

acters of Gal(ﬁ;/K) which are differences of two characters

of representations of open kernel. We simply write GK for
__\_’__/'—/\

the Galois group Gal(ﬁp/K).

For a local field K and a (virtual) k?aracter ® of G

Deligne and Langlands defined a local root number W(6) (see

Tate's lecture cf. [14] ).  The local root number is well
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defined by the following three properties:

(@ w0, + 0, = s, wo,).
(ii) Let © be a irreducible character of degree one,

*
and let 0' be the character of K defined by 6 via the Artin

mep.  Then, W(6) is the local root number W(6') defined in
section 2,
(iii) Let E be a finite extension of K, let 6 be g

*
character of degree zero of GE and let 6 be the character

%
of QK induced by 6.  Then W(6 ) = w(e),

We are now able to define the local Galois Gauss sum.

Definition Let K be a non archimedean local field, ang

let 6 be a character of Gal(@P/K). The local Galois Gauss

sum 1(0) is defined by the formula:

©(8) = w(8) VN(4(0)) ,

where §(6) is the Artin conductor of 6 ang the square root

i’
is the positive square root,

N,
Note that §(86) = §(8). | Hence
e r——

s,
e M“'h“s\,/

W(e) = __(8)
MN({(e))

The local Galois Gauss sum is well defined by the
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following three properties which are obvious consequences of
the corresponding properties for local root numbers and
conductors:

(i) (6, + 62) = r(el) (6 ).

1 2

(ii) Let 6 be an irreducible character of degree oney
and let 6' be the character of K* defined by 6 via the Artin
mep. Then, t(6) = 1(0'), the local Gauss sum defined in
section 2.

(iii) Let E be a finite extension of K, 1let 6 be a

*
character of degree O of GE and let 6 be the character of

*
Gy induced by 6. Then (6 ) = 1(6).

Notation. Given a local field K, an element x € K* and an
irreducible character of degree one 6 of G,, we write 0(x)
for the element 6(w), where w € G;b is the image of x unddr
the Artin map.

Proposition h.1. Let K be a finite extension of Qp, and
let 6 be a character of GK. Then:

(1) |<(e)| = /(§(6))

(ii) 1(6) ©(8) = N(§(6)) dety(-1).

The following corollary is an easy consequence oOf the




~
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% i above proposition for an extension of Qp, and is obvious
i{ | for K = R or x = ¢:
g !
Corollary. Let K be a local fielq. Then:
| (1) lwoy| =1
| (ii) W(6) W(B) = aet,(-1). )
|
|
Proof. We have only to prove the proposition when 6 is an
£ ; .
4 /7 irreducible character of degree 1, and show that the 2

sides of the equalities are invariant under induction for

characters of degree zero. Now, the case of an irreducible

‘ L character of degree 1 has already been dealt with in §2,

and both sides of the above equalities are invariant under

| induction when 6 is of degree 0 (for (

ii), just remark

i —
that (6) =9 )

[ Remark. Using part (ii) of proposition 4.1., one proves

immediately the formuls

W(0) () = det (-1)/N(4(0)) .




CHARACTER THEORY AND ARTIN L-FUNCTIONS

§5, Galois action on Galois Gausg sums and root numbers

(local theory)

Let K be local field, and let 6 be a character of GK.

The values of 6 are algebraic numbers. For any w € QQf$&(§/hv )

we define 6® vy the formula: 8%(s) = (e(s))w for every

s € G.. We do not worry about left or right action of GK
as the results we are going to prove do not depend on the
choice we make.

The aim of this section is to compute W(Gw) in terms of
W(6) and the theorem we shall prove is just a local version
of a global theorem of Frdhlich. For an archimedean local
field, ¥ = 6, and there is nothing to do. We thus
restrict ourselves to finite extensions of QP, p finite.

Now, tT(8) is an algebraic number: for a character
of degree one, this is clear from the definition, and the

general case is a consequence of the induction formula.

Therefore, W(O) itself is an algebraic number. We shall

now compare t(68¥) with T(e)w.

We first define a homomorphism up of QQ = ¢al(Q/@) into

Up’ the group of p-adic units.

Definition. Given w € QQ, up(w) is the unique p-adic
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' : ot u (w
unit such that |n =nP » for every pl-¢p root of unity
p n in @, For any extension k of Qp, we view up as & homo-
\ ¥ *
’ﬂ morphism of QQ into K ,
,\‘
sﬁ ‘. Theorem 5.1, Let K be g finite extension of Qp for some
kW \ finite p, and let 6 be a character of GK. Then, for any
\ Wat | ' w e S?Q,
\ \ (o) (0) det, (u (uw))
| \ =T e u (w)),
- e p
\ ( Proof. The proof is in 2 steps.
AN
)\‘ \\‘ B g, ‘

Step 1. Let 6 be g character of degree 0, ang let F be g
subfield of K.

Assuming the formuls is true for 0, we

%
prove it for the character 6

of GF induced by 6, For the
%
right hand side, observe that (6 )

act y(u ()

= 1(6) and that

= dete(up(w)) by propositions 3.1,

and 3.2,

. . * o ! Wl
For the left hand side notice that (6 ) =(6" ),
-1 -1 -1

T(6™ )Y = r((e¥ ) Hyw . (6 ),

hence

i Step 2. We prove the formula for an irreducible character
|t *
Lé I/ of degree 1. Regarding 6 as g character on K

> We write,
fl
!
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with the notation of §2, 1(6) = ) e(-f) w(f). Then :
xe Uy /Uy
-1
[0° D w1 = T @) p®.
XQUK/UE xEUK/U;

Now, w(f) is a p"-th root of unity for some n.  Thus,

u (w

) (0) -
T RERTC RS = (& u ()7

c ¢ p

Therefore,

-1
w w

(e )

¢(%) (by the transformation

X X up(w))

(6) dete(up(w)), Q.E.D.

We now state a corollary which is useful for the global

%
theory. We defined a homomorphism up 3 QQ -+ qpc: Qp' By

composition with the Artin map, we obtain a homomorphism

1 2 ) ab.
Ty 5 Gal(Qp/Qp)

Corollary 5.2. The notation being as in the theorem,
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= 1(9) dete (VerK/Q

(v_(a)).
L p *

Proof. Obvious from the following commutative diagram:

_ ab _ b
cal(d /0, ) ~ Ter , Gal(Qp/K)a

Artin Artin

Q — K
inclusion

Q

previous corollary,

Remark 1. Let o' be an element in the inertia group of
ab ab . - : ' . .

GQ . As QQ 1s abelian, this element (' defines a unique
1Y - -

element o ¢ Qab via any imbedding of @ in Qp. To use the

one must be able to compare ' and
v (w).  The result is actually the following one:
w' = v (w). The equality is true thanks to the minus sign
in the definition of up(w) (see Corps Locaux, last remark

of chap. XIV, §7). ‘

Remark 2.

To finish this section,

we come back to the

root number itself. For any w € QQ’ §(6%) = §(e).

(8)
vn(4(e))

theorem 5.1 gives a way of computing W(Ow) when 4(6) and

Thus,

using the formula W(6) = we see that
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W(0) are known. To express the result in terms of w(o)

itself, it is enough to know the action of w on W ({(6)).

The following proposition is obvious:
Proposition 5.3. Let 6 be a character of GK with trivial
determinant. Assume that the norm of the conductor of 0 is

a square. Then,

§6. Real valued characters

In this section, K is a local field and 6 a real
valued character of G+ The formula w(e) w(e) = dete(-l)

reduces to W(6)2 = dete(-l). Thus, W(6) is a fourth root

of unity. Moreover, if det o is trivial, then W(0) = +1
or -1,
The following two propositions give local versions of a

global theorem of Frhlich (see next section).

Proposition 6.1. Let K be a non archimedean local field,
and let 6 a real valued character of GK with trivial de-
terminant.  Each of the following conditions implies the

other:

(1) W(6"™) = W(6) for every w %
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(ii)  1(6%) = t(8) for every w e QQ

(iii) t(6) is a rational number.

(iv) N(4(e8)) is a square.
Proof. (i) => (ii). Since 6 = 6, w(6) = L6 .

N(g)(6)
w
Since §(6°) = 4(6), (6") = x(0) ML) = w(e),
(ii) => (iii). By theorem 5.1., 7(0)* = t(68") = <(0).
(iii) => (iv). N({4(8)) = L o] B,
w(oe)?

(iv) =>(i). Obvious by proposition 5.3.

Proposition 6.2. Let K be a non archimedean local field,

and let 0 be a real valued character of GK. Assume more-

over that 0 is tame (i.e.,

0 factors through a finite
\-—_—f

tamely ramified extension). Then, the conductor of 6 is g

square, and therefore W(ew) W(6) for every w e Q

0

We must prove that the integer n(6) is even. We

tamely ramified extension E of K,

can view 6 as(gycharactgx,of the Galois group of a finite
Lo d B

and it is enough to give

the proof when 6 is a character of a representation p of G.

Now,

we know that n(6) is the number of eigenvalues other
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than +1 of p(0), where 0 is a generator of the inertia
group. Let n be the number of eigenvalues of p(0) equal
to -1. Since 6 is real valued, the non real eigenvalues
appear in pairs of conjugates; hence, n(6) = n mod 2.
Now, the determinant of p(0) is the product of all eigen-
values of p(0). The product of the non real eigenvalues
is +1. We thus have the equality +1 = det(p(o)) = (-1)% .

Hence, n(6) =n = 0 mod 2, Q.E.D.

Remark. Let O be a character of a finite extension. The
statement W(0") = W(6) for every w € QQ is equivalent to the

following one : the value of W(6) depends only on the simple

factor of @[G] corresponding to 6. Another example where

this situation arises will be given in chapter III, §k.

§7. Global theory

In this section, K is a number field and X is a virtual
character of the infinite Galois group QK = Gal(Q/K) which

factors through a finite extension of K.

\ The Galois Gauss su&1was first defined by Hasse by a

formula of the type T(x) = W(x)J N(4(x)), where W(x) is

the Artin root number and the tilde means that one must
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’ first choose g sign for the absolute norm of the conductor

and then extract an g

Ppropriate square root, Note that
" VI(6(x)) is the product of the usual MN(B(X)) by a fourth

root of unity. Following Frohlich, we define this root
\

of unity as an "infinite part"

of the root number. More-

, over, to be consistent with the Preceding sections, we
RN YR consider W(X) instead of W(x).

Definition 7.1. For every infinite place v of K,  let

Wv(x) = i—n(x,v)’ where n(x,v) is the integer defineq in
\ R wift $1.  The infinite part of the root number is the complex
\ ‘

: number W_(x) = I Wo(x).
ﬁk\ ! f ‘ v infinite
‘\ \"-'. i \
\ i Definition 7.2.

The Galois Gauss sum t(x) is the complex

number defined by

N - 00 = w00 WG (7!

where W(X) is the Artin root number, and YN(§(x)) is the

positive square root of the positive generator of the

absolute norm of the Artin conductor,

Note that {(x) = §(x),

and that W (x) = W_(x) (For

Just remark that n(x,v) = n(Xv),

is the local character on the completion of K at v

the latter equality,

where xV
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defined by X 3 hence, X, = Xy and wv(Xv) = WV(X) for every

infinite place v of K). Thus, the following equality

holds: ~
T(x) W (x)

) = ————
A0

Remark  (Bxercise) W(x) t(x) =VE(§(0) W,(x) . (Hint:

prove the equality Wv(x)2 = detx (-1) for any infinite

place V).

Proposition T.1l.

where X.. is the local character on the Galois group

»

¢ = Gal(® /K ) of the completion of K at p (g is a given
Kp PP P

algebraic closure of Qp, and p lies above ).

Proof. The Artin root number W(x) is the product I W(xv)
v

where v runs through all places of K (see J. Tate, Durham) .

Now, W_(x) = it Y I wix,)
v infinite v infinite

Hence, W(X) W (0 = w(x) W (07 = W)
p finite

—————————————

Now, the positive rational number N(4(x)) is also the

product I N(ﬂ(Xp)). Therefore
p finite
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W) 0,0 W(X,)
X)) = ——— "~ _ I

= = T t(x
N(§(x)) P finite VN(§(x )

P P finite

We shall now use proposition T.1. to derive global re-

sults from the local results of §5. and §6.

Theorem 7.2. (Frdhlich) For every w €
S

bl

=]

O )" = 700 aet (Ve ()]

-1 -1
Proof. For every finite prime P of K, (xp)w = (x” )p;
hence,
Wt w o @
(x ) ™(x, )
e, I = I det w
2 (X ] R WRACH

P finite " p P finite Xo /0P
with the notation of corollary 5.2,
The theorem we want to prove is now a consequence of

the following lemma of class field theory.

Lemma 7.3.

For any irreducible character of degree one ¥

of QK’

V(v (w)) = I b (Ver (V_(w))).
erK/Q P finite P KP/Qp p

Proof of the lemma. When K = @

» the formula we want to
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prove is simply

ab
(w) = I Y (V (w)) for any w e QQ .

. p finite pop
] It is a consequence of the discussion of the reciprocity

law over the rationals (see Artin-Tate's notes, chap. 6. §2). |
] The general case is an easy consequence of the commutative

diagram of §3.

Remark. Theorem T7.2. can be stated in terms of iddles. De-

« B

fine u : Q@ > I b = 1 and u(w)_ = u (w) for ev
CHEC R ol = ughol fop eveny

finite prime p. Then:

1 w0t w

I (x ) = 1(x) det_(ulw)) ,

- X

- where det (x) for an idéle x is simply the value of detX on
‘ X ’

- the element s € ng which is the image of x under the Artin
- map.

- The particular case of tame and real valued characters
- can be dealt with easily, as in the local case. We obtain

the following theorem due to Fr&hlich.

L

Theorem T.k. Let K be a number field, and let yx be a

character of QK. Assume that x is tame and real valued.

Then, the following results hold:

L_ b

(i) For every w € QK’ wix") = W(x)
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(ii) t(x)/ T(detx) is a rational number

(iii) Wm(x)/ww(detx) = +1 or -1

(iv) if X is a character with trivial determinant,
then 7(Xx) is a rational number whose sign is the product of

the signs of W(x) and W_(x).

Proof As x factors through a tamely ramified extension,
so does detx. By additivity, T(x)/T(detX) = T(x—detx) and
W (x) /W (detx) = Ww(x—detx). As x~det, has trivial de-
terminant, it is enough to prove (ii) and (iii) for a
character with trivial determinant.

Now, for every finite prime p of K, X

P

valued character with trivial determinant. Hence, by

is a tame real

propositions 6.1. and 6.2., T(xp) is rational. As

T(xp) = +l for almost all p, t(x) = I (¥ p) is rational.

We have thus proved (ii).  Moreover, N(g4(x)) =1 N(ﬁ(xp))
P

is a square by proposition 6.2. As ¥ is real valued,

Hence, W_(x) = LIGORA )

(%)

As it is a 4B root of unity,

W(x) = +1 or -1. is a rational

number. Wm(x) = +1 or -1,

and this proves the assertions (iii) and (iv).

We must now prove (i). We need the following lemma:




CHARACTER THEORY AND ARTIN L-FUNCTIONS

Lemma T7.5.  Let ¥ be a homomorphism of € into {-1,+1}.

K
Then W(Y) = +1.
\——\.

Proof of the lemma. We know that the Artin root number of

a zeta function is +1. If ¥ is trivial, L(s,y) = CK(S),
hence W(Y) = +1. If ¥ is not trivial, then ¥ corresponds
to a quadratic extension E/K, and L(s,¥) = CE(S)/CK(S).

Thus, W(y) = w(cE)/w(cK) = 41,

Proof of (i). Let w ¢ QK. By the above lemma, W(detx) =

W(det w) = +l.  Hence, W(Xw)
X

W(x) = Wiy - detX). We may therefore assume that ¥ is a

= W((x - detx)w) and

character with trivial determinént. We now use the formula

W(x) = 1 w(x,)
v
where v runs through all places of K. By the results of
w
§6., wix,) W(x,). Hence, W(x) =T Wix,) = W(x), Q.E.D.
v
Remark. Without the assumption that X is tame conclusions

(i), (ii) and (iv) of the theorem are no longer valid. See

e.g. [Ta]l 59, or [Tb] Theorem 19.
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58. Global induction formulae

We give in this section induction formulae for the in-

finite part of the root number and the Galois Gauss sum.

These formulae were originally used by Fréhlich to prove the

results of §7, We give them for their own interest.

Definition. Let X be a number field. For any finite

extension E of K and any place at infinity v of K, define

t(E/K,v) = 0 if v is complex,
t(E/K,v) = the number of complex places of R
lying above v if v is real.
Put t(E/K) = ) t(m/k,v).
VvV real

Theorem 8.1. Let E be finite normal extension of a number

field K with Galois group G. Let H be g subgroup of G

corresponding to a field T, Let x be a character of H,

*
and let x be the character of G induced by x.

(i)  For every place v of K,
%
n(x ,v) = )
v
w 1in F

(1) W (x') = w () i1 s(F/K)

n(x, w) + x(1) t(F/K,v)

(1i1) (x") = (x). N(D(E/K))? i H(P/K)  x(1)

2
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where N(D(F/K)) is the absolute norm of the discriminant of

F over K.

Proof. (ii) is an obvious consequence of (i), and (iii)

is easily deduced from (ii): write

*
(x ) _
T(x)

*
Then, W(x ) = R by (ii) and the

%
equality %%%%fj%l = N(D(F/K))X(l) is an easy consequence of

the calculation of the conductor of an induced character.
We are now left with the proof of (i). If x is of degree
zero, the formula we want to prove is:
*

n(x , v) = % n(x,w).
WV

w in F
But n(x, w) = n(xw) and n(x*, v) = n((x*)V)- Thus,

the desired formula is a consequence of the formula which
gives the restriction of an induced representation (see e.g.
Serre, Représentations linéaires des groupes finis, chap.
7> prop. 22). It is thus enough to prove (i) when X 1s the
unit character.

Since n(x,w) = 0, formula (i) can be written
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*
n(x , v) = t(F/K, v).

The equality is obvious when v is complex.

Assume v

is real, and let o be the "Frobenius" of a place w above v

% 1 % %
in E.  Then, n(x ,v) = 7 (x (1) = x (0)). Now

* * -1
x (1) = [F:k], and x (o) = ¥ x(tot™Y). But
teG/H

=] » i
x(tot 7) = 1 if tw lies above a real place of F (for

_1 .
tot 1 € H) and x(tot ) =0 otherwise. Hence,
% %
X (1) = x (0) is the number of elements of G mod H such

that tw lies above a complex place of F, and this number

is precisely 2t(F/K,v), Q.E.D.
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ITII. ORTHOGONAL AND SYMPLECTIC REPRESENTATIONS

§1. Description of real valued characters

Let G be a finite group, and let K be a subfield of the
field € of complex numbers. Given a finite dimensional
K-vector space V and a representation p : G = GL(V), we
define a complex representation p' : G > G1(C @K V) by
pé (18 x) =18 ps(x). We call such a complex represent—
ation a K-representation.

Consideration of direct sums and tensor products of K-

representations shows that the set Rg of characters of K-

representations of G is a subring of the ring RG of charact-

ers of G. Clearly, a character X € Rﬁ has its values in

K. The converse however is not true. We denote by ﬁg

the subring of RG which consists of characters of G with

values in K.
We are interested in the case when K = R, the field

of real numbers. The rings Ri2 and ﬁgqare then related

to geometrical invariants.

We denote by Rg the set of characters of RG which are
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1\ |
£y g (l

» the difference Of 2 characters of Trepresentationg breserving

& non degenerate bilinear form. We shall call a non-de-
B

generate bilinegr form orthogonal (resp. Symplectic) if it

: 18 symmetric (resp. skew-symmetric), We define the subset
\ ; Rg (resp. R%) of R, to be the set of characters x EZEG
which are differences of 2 characters of representationg
\ Y

Preserving an orthogonal (resp. symplectic) form, The virtual

‘ characters ip Rg Will be calleq orthogonal, thoge in Rg
‘ ‘ Symplectic.

b o S
The sets RG’ RG and RG are subgroups of RG.
Moreover,

consideration of tensor products shows immediately

that Rg and Rg are subrings of R _,

whereas Rz is a module

over Rg. Note that every symplectic character hag even

degree ang trivial determinant,

Let 7

;RG+RGbethemapx~Ax+§<.

. b _ =R
Theorem 1.1, (i) RG = RG
N (i) g = R(];R
7[ |
[ c b _ o s
§ (iii) RG = RG + RG
| (iv) g

o s _
G F)RG =Im T,

For g pProof, see e.g.

Serre, [12], 433,
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We can now define three (mutually exclusive) types of
irreducible real valued characters.

Type 1. Xx = ¢ + 6, where ¢ € RG is absolutely irreducible
and takes at least one non real value.

Type 2. X is an absolutely irreducible character and is
orthogonal.

Type 3. X is an absolutely irreducible character and is
symplectic.

These characters are irreducible real valued characters,
and make a basis of ﬁiz, from which bases of Rg and RZ are
easily deduced.

Irreducible real valued characters are in one-to-one
correspondence with the simple algebras which occur in a
decomposition of the semi-simple algebra R(G) . For x of
type (1), the centre of the corresponding algebra is
R () = ¢. Hence, the simple algebra corresponding to ¥
is isomorphic to Mn(C) with n = x(1). For x of type (2),
the corresponding simple algebra is obviously isomorphic
to Mh(IU » with n = x(1). Therefore, a character of type
(3) corresponds to a simple algebra isomorphic to Mn(I{),
where T denotes the skew-field of Hamilton quaternions and

2n = x(1). This last isomorphism can be described as
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Tollows: start with an absolutely irreducible symplectic

Tepresentation p : ¢ > GL(V), where V is a complex vector

Spbace of dimension, say, on. Then p defines g representatig

. & . ;
pﬂ%' G Gl(VIJ where Vj? 1s the vector Space V viewed as g

real vector space (hence, dim Vj? =ln). Let D pe the ring

of those endomorphi sms of V]R which commute with pS for all

5 € G The ring D, which 1s a skew-field by Schur's lemma,

is actually isomorphic to H, and VJR can therefore be glven

a structure of H -vector Space of dimension n, say V}{.

Now the simple algebra corresponding to p is the ring

Ln@H(V]H), 1somorphic 4o Mn(IU

§2. Induction theorems
——=tt1lon theorems

a) The Brauer—witt theorem Given g subfield K of ¢

and a prime number D,

one can define TK—p—elementaxy groups,

which are semi~-direct broducts of a normal cyelic subgroup C

of order prime to P by a p-group p (for a definition,

&8 [12], 512). Ber k=g

see

5 the semi-direct product is

actually a direct product,

and FK—p—elementary groups are

the "usual"

elementary groups. For K = I

» the following

condition must hold :

for every y e P, there exist

te {-1, +1}

1 t

> Such that, for every x € C, yxy— = x .




]
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A group is called FK—elementary if it is FK—p—

elementary for scme p.

Thecrem 2.1. (Brauer-Witt theorem) Every K-character

of a finite group G is a % -linear combination of characters

of the form Indg(x), vhere H is a I' —~elementary subgroup

K

of G and X 1s a K-character of H.

Remark. A FK—elementary group is supersolvable (see the

definition below). Hence, every irreducible character of
I is induced by a character of degree one of some subgroup.
Taking K = €, one has the "usual" Brauer theorem used in
chapter 1.

b) The Borel-Serre theorem. Call a group G

supersolvable if there exists a sequence {e} =
GOC_ Glc i 'Gk~lc Gk = G of normal subgroups of G such
that Gi/Gi—l is cyclic.

The following theorem was proved by Borel and Serre in

1953 ([2]).

Theorem 2.2. (Borel-Serre theorem) Let L be a compact

Lie group, and let G be a supersolvable subgroup of L.
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Then, G is contained in the normalizer N of a maximal torus

T of L.

We make a few comments on this theorem.
1) The inclusion G <& N simply means that, for every s € G
=1
and every t € T, sts g 15

2) Two maximal tori of L are conjugate.

§3. Induction theorems for orthogonal characters

Definition The dihedral group D2n of order 2n is the

group on 2 generators 0 and T with relations o = 12 = 1,
== 1 1, . . o

TOT =0 . Note that 1t 1s the semidirect product of

its subgroups generated by o and by T.

All the characters of D2n are orthogonal. There are 2

(resp. 4) irreducible characters of degree one of D2n if n

is odd (resp. even). The remaining irreducible characters

of D2n are of degree 2.

Definition Let G be a finite group. An character x of

G is called a dihedral character if X factors through a
dihedral quotient of G and is irreducible of degree 2.

The following theorem is extracted from Serre's paper
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on Artin-conductors ([13] ; see also D. Quillen, [10],

lemma 2.4).

Theorem 3.1. (Serre) Let G be a finite group, and let X

be an orthogonal character of G. Then, X is a 7% —linear

combination of characters of the form Ind§(¢) where H is a

subgroup of G and ¢ satisfies one of the 3 following
conditions:

(1) $ is a homomorphism of H into {-1, +1}

(ii) @ =y + ¥, where ¥ is an irreducible character
of degree one of H

(iii) @ is a dihedral character of H.

Proof. By theorem 2.1, we may assume that G is a FIQ—
elementary group and that X is an irreducible orthogonal

character. Since every I'  —elementary group is super-

R
solvable, theorem 3.1 is a consequence of the following

more precise result for supersolvable groups.

Theorem 3.2. Let G be a finite supersolvable group and
let ¥ be an irreducible orthogonal character of G. Then,

one of the following conditions holds:




~
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(1) X is a homomorphism of G into {-1, +1}
(ii) x =V + ¥, where ¥ is induced by an

irreducible character of degree 1 of some subgroup of G

(iii) x is induced by a dihedral character of some

w subgroup of G.

|

M 1 Proof. Let n = x(1). The character X is the character of
a representation p : G G1(V) where V is a real vector space

\ Qf of dimension n. The group p(G) is contained in the ortho-

i gonal group O(V) of some positive definite bilinear form on

V. By theorem 3.2, p(G) is contained in the normalizer of

a maximal torus T of O(V). Let m = [g]. There exists a

subspace W of V of dimension 2m such that the matrix of T in

a suitable basis e, , ..., e, of W is of the form

1 2m

Let w, (1 £ i < m) be the subspace of W spanned by the

, €. .. DNow, there are two possibilities:

vectors eQi—l o1
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a) n is odd. Since W is invariant under the action of
G, V contains an invariant subspace W' of dimension 1.
Since p is irreducible, W = (0) and V = W'.  The character
x is then of type (i).

b) n is even. Det H be the subgroup of those elements
s € G such that ps(wl) cW. Since p(G) is contained in

the normalizer of T, o(G) permutes the subspaces Wi. Since

‘0 is irreducible, this permutation is transitive.  This

means that p is induced by the representation m, 4 H -~ Gl(Wl)
deduced from p by restriction to H.  But p1 is a real
reprgsentation. Therefore, pl(H) is isomorphic to a sub-
group of OZ(IQ and X is of type (iii) or (ii) according to

whether p1 is absolutely irreducible or not.

We shall now give a corollary of theorem 3.1. due to
Deligne ([4] 3 Deligne's paper also contains a purely group
theoretic proof of theorem 3.1). We must first extend
slightly the definition of a dihedral character : we consider
that a character lifted from a character X' of a quotient
of G isomorphic to Du is a dihedral character if ¥x' is the

sum of 2 distinct jrreducible characters of degree 1.
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Definition Let G be a finite group. Let X be a dihedral
character of G lifted from a character X' of a dihedral
quotient G' of G.  Then, x' = Ind§:(¢'), where H' is a
cyclic subgroup of G' of index 2 and ©' is an irreducible

character of degree 1. We call rX thet character of G

1
lifted from Indg,(¢'—l).

Note that rX has degree O and trivial determinant.

Theorem 3. 3. (Deligne) Let G be a finite group. Every
orthogonal character of G of degree O and trivial determinant
is a Z-linear combination of characters of the form Indg(Q)

where ¢ is either a character rX or a sum Y+ with v(1) = 0.

Proof. Let X be a character of G of degree 0 and trivial

determinant. By Brauer-Witt's theorem, the unit character

. G
of G can be written as a sum 1 = Z n IndH(¢ ) where H
H H H
ranges over the FI?—elementary subgroups of G and ¢_ is an

H
orthogonal character of H. Now, X =Xx.1=

) n IndE(ResH(x).Q). Since ResH(X) has degree 0 and
H H G G

trivial determinant, so does Resg(x).é. We may therefore

assume that G is a FIQ—elementary group.

Let A be the subgroup of Rg generated by the characters
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of the form of theorem 3.3. With the notation of theorem
3.2, let B (resp. C, D) be the subgroup of Rg generated by
characters of type (i) (resp. (ii), (iii)).

Lemma 3.4. If G is Tna—elementary, then RZ = A+B.

Proof of lemma 3.h. Tt is enough to prove that every

irreducible orthogonal character X belongs to A+B. If
x(1) = 1, there is nothing to prove. We can therefore
prove the lemma by induction on Xx(1). If x € C, say

X = Indg(w + ) with ¥(1) =1, write

x= ma [0 - 1)+ THIN- 1)+ 2.0

* -
Since 1 (1) < x(1), the induction process works.

G . 5
If x € D, say X = IndH(®) where ¢ is a dihedral character,

write ® = ry + (¢ - rQ). Since ¢ - 1, contains the unit

character, the induction process works.

Proof of theorem 3.3. By lemma 3.h., it is enough to show

that any character X € B with degree 0 and trivial determin-

ant belongs to A. Since x(1) = 0, we may write X as a
n

sum X = ) £i (¢i - 1), where the Qi's are homomorphisms
i=1

of G onto {-1,+1} and & = +1 or —1. Since
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2(¢i -1) = TEE_:_ET + (Qi - 1) € A, we may assume that
£ = €, = +1 and g = -1 for i > 3. The result we want to
prove is obvious for n £ 2. Forn = 3, X = ¢1 + ¢2 = ¢3 =1
Since detX is trivial, ¢3 = ®1 ¢2. If ¢, = ¢2, then
x =2(0 -1) € A, If <I>19€<I>2, let H = Ker <I>1n Ker ©,.
Then, G/H is isomorphic to Dq, and Y = To 4o © A. TFor

1 2

n > 3, the theorem is obvious by induction on n : just write

(<1>j.L - 1), and

I o~—Bs

= [ - - =
X (@1 # @, ¢1 8, 1) + (@1 @2 1) L

remark that ¥ is congruent mod A to (@1 5, 1) + (@3 - 1) -

§L4, Some arithmetic properties of orthogonal characters

We first prove a theorem of Serre on conductors of real

representations.

Theorem U4.1. Let K be a number field or a finite extension

of a p-adic field. Let E be a finite normal extension of

K with Galois group G, and let X be a real-valued character

of G. Assume that one of the following conditions holds:
(i)

(ii)

E/K is tamely ramified

X is an orthogonal character

Then, 6(x)/6(detx) is the square of an ideal.
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Corollary h.2. Under the assumptions of the theorem, the

class of the ideal $(x) is a square.

Proof. There is nothing to prove if detX is trivial. If
detX is not trivial, then it is the character of a quadratic
extension F/K, and 6(detx)vis the discriminant of the ex—

tension F/K. Hence, 1its class is a square.

Corollary 4.3. Let K be a finite extension of a p-adic
field. Assume that X has trivial determinant. Then, under
the assumption of the theorem, the local root number W(X)
depends only on the conjugacy class of X (i.e., : w(xw) =

W(Xx) for any w e £ ).

Q

Proof. This is an obvious consequence of chap. II, prop.

6.1.

Proof of theorem L.1. We first remark that 6(X)/6(detx) =

6(X - detx). We may therefore assume that X is a character
with trivial determinant; we must then prove that §(x) is
a square, or, with the notation of chap. II, 81, that

n(x,p) is an even integer for every finite prime [P of K.
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Since n(yx,p) = H(Xp)’ it is enough to brove the theorem

when K is a finite extension of g p-adic field.

There is a fielq E'y, K cEg! < E, such that E'/K is
wramified and E/E' ig totally ramifieq. If H is the sub-

group of G corresponding to E', then the conductors of x

and le have the same valuation. Hence, we may assume

that E/K ig totally ramified.

Now, the case of a tame extension hag already been

dealt with (chap. I7I. 56)

We therefore assume that y ig

an orthogonal character, Since {(x) = 6(x - x(1).1), we

may assume that y ig g character of degree 0, By theorem

3.3., we are reduced to the cage when x = ¢ + § op X =r
Since 4(x + X) = 6(x)2%, we need only consider the case
when E/K is g totally ramifieq dihedral extension and x is

a character of the form Tye

The character Ty is induceqd by a character of the form

(¢ - 1) of g cyclic subgroup H of @ of index 2, where ® is

irreducible of degree 1.  Denote by F the fixed fielg of
H. Using the Artin map,

*
F .

we can view ¢ gg g character on
We know that the conductor of ¢ is the least integer

t such that ¢ ig trivial on U;, and we must brove that thig

integer is even. The following proof has been given to me




]
]

J

.

i

CHARACTER THEORY AND ARTIN L-FUNCTIONS

by Serre. (cf. Exercise 7).

Any easy calculation shows that the transfer from Gab
to H is trivial. Hence, ® has a trivial restriction to K*.
On the other hand, since F/K is totally ramified, the
inclusion i : K* *‘F* induces for every n an isomorphism
in : UE/U§+1 * Uin/U§n+l. Therefore, if ® is trivial on

+ : .. .
U2n l, then @ is trivial on Uin. Hence, the least integer

F
t such that ® is trivial on U; is even, Q.E.D.

Remark U4.1. The conclusion of theorem 4.1. need not hold
if the real valued character X is not orthogonal; for

example, see [13], or [Ta] (Theorem 6).

Remark U.2. Serre actually proved a more general theorem,
namely : let A be a Dedekind domain with quotient field K;
let E be finite normal extension of K with Galois group G,
and let X be a character of G. Assume that all the residue
extensions of E/K are separable. Then, under the assump-
tions of theorem L.1l., 6(x)/6(detx) is a square. The

proof is also by reduction to the dihedral case. (ef.

Exercise 8).
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} 18 Remark L. 3, The corresponding global statement to

; corollary L.3. is true. By a theorem of Frahlich and

Queyrut (see Tate (Durham)),  W(x) = +1. The equality

\ : , W(Xw) = W(X) for every w e QQ is therefore trivial. Note
\ .

that the original proof of the theorem of Frohlich and

Queyrut used a reduction to the case of a dihedral extension;

; ‘\ ‘ \ | the equality W(X) = +1 was then proved by direct calculation.

L} i §5. Induction theorems for symplectic characters.

.'.

{ { Definition. The quaternion group th or order Ln is the
|

group on 2 generators 0 and T with relations : o = 12

2
" - -1 : . .
T =1, 10T =0 ", it contains a unique element of

\ \\1 . Nz | order 2, namely T2, H, is cyclic; for n > 1, {1,7%}

f is the centre of H » and th/{l,Tz} is the dihedral group

(| D, of order 2n. Note that H is the non-trivial extension
&

\ ) {H of the group C2 of order 2 by the cyclic subgroup generated

i by o, the action of the generator of 02 being given by

! -1
- O o

The group th has L characters of degree 1. The other

irreducible characters are real-valued characters of degree

2 Those which factor through a dihedral quotient are

orthogohal, and those which do not are symplectic.
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Definition Let G be a finite group. A quaternion
character of G is an absolutely irreducible character of
degree 2 of G which is 1ifted from a symplectic character

of a quaternion quotient of G.

Theorem 5.1. Let G be a finite group and let X be a
symplectic character of G. Then, X is a Z —linear com-
pination of characters of the form Indg(Q) for some subgroup
H of G, where:

(1) either & = ¥ + 5, where ¥ is an irreducible
character of degree 1 of H,

(ii) or ¢ is a quaternion character of H.

Proof. Write for the unit character of G a decomposition

1= 2 n IndG (x.) where H ranges over the T'__ —elementary
H H G " "H R

subgroups of G, n. € % and X

- i is an orthogonal character.

Then,

X = X.1= % ng Indg (Resg(x).xH).

Since RZ is a module over RZ, Resi(x).xH is a symplectic
character. Since a TI{—elementary group is supersolvable,
theorem 5.1. is a consequence of the following more

precise result for supersolvable groups
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Theorem 5.2. Let G be a finite supersolvable group, and
let X be an irreducible symplectic character of G.

Then one of the following conditions holds

(i) x =92 + 5, where ¢ is induced by an irreducible
character of degree one of some subgroup of G;

(ii) x is induced by a quaternion character of some

subgroup of G.

Proof. Let e be a complex representation with character

b If X is absolutely irreducible, we know from 81 that

P comes from a quaternion representation p : G > V where

V is a (say, left) vector space over the field H of

Hamilton quaternions. The same is true if X not absolutely

irreducible. In both cases, the representation p is

irreducible as a quaternion representation.

Let B be a quaternion—hermitian form on V invariant

under G, and let L be the group of automorphisms of V which

preserve B.  Then, L is a compact Lie group, and p(G) is

contained in the normalizer of a maximal torus T of L.

Now, consider in GLn(}{) the diagonal matrices
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a4, Y
0 qn
with Iqil =1, where |q| is the norm of the quaternion gq.
These matrices form a compact subgroup. Take for each

*
index 1 a subgroup Si of H isomorphic to the circle. Then,

it can be proved that the subgroup

of Gln(IU is a maximal torus, and every maximal torus of
GL(V) is obtained by this construction after having choosen
a suitable basis el,...,en of V, since two maximal tori
are conjugate.

Going back to the proof of theorem 5.2, we can choose

*
a basis CIEEREPLN of V and subgroups Sl,...,Sn of H such

that

e

deg

=
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Let V. (1 €< i € n) be the quaternion line He,, and let

H be the group of those s € G such that pS(Vl) & Vl' Since

p(G) is contained in the normalizer of T, p(G) permutes the

Vi's. Since p is irreducible, the permutation is transit—

ive. Hence p is induced by Py the representation of H in

Gl(Vl) obtained by restriction of p to H.  Now, pl(H) is a

*
finite subgroup of H , and the complete list of the finite

*
subgroups of H is known : if X is a non cyclic subgroup of

* %
H , K contains the elements {-1, +1} of H , and
K/{-1, +1} is isomorphic to a finite subgroup of SO3(IU ,

hence is cyclic, dihedral or isomorphic to one of the three

groups Aq, DH, A5. Therefore, K itself is cyclic,

gquaternion or isomorphic to one of the three "pinary

polyhedral groups" A, S,, Ac. But the last three groups
Bo Pue s

are not supersolvable, since Aq, Su, A5 are not. Hence,

pl(H) is cyclic or quaternion, and p is of type (i) if
o (H) is cyclic, of type (ii) otherwise.  (Here is

alternative proof : pl(H) is contained in the normalizer

N, of 5, and it is easy to find the structure of

2 =i =1
N, : N1 = <8 , n>, with nsn =8 for every s € S1 and

!
n2 = -1. Hence, either pl(H) is contained in S1 and

pl(H) is cyclic, or pl(H) is not contained in S, and pl(H)

|

1

I
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is quaternion.)

Remark. The conclusion of theorem 2.2 holds without the
assumption that L should be compact. Hence, one can
apply this theorem to the "usual" symplectic group szn(w)
to obtain a proof of theorem 5.2. Nevertheless, quatern-—
ions are more suitable to study symplectic representations.
Note that the unitary group associated to a quaternion-
hermitian form is often called "the symplectic group" in the

theory of Lie groups.
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IV. EXERCISES (Prepared jointly with J.-P. Serre)

Exercise 1 (Dedekind) : Non abelian cubic fields.

Express the zeta function of a "pure" cubic field
3/- 5 ; - 3
K = @( Va) in terms of abelian L-functions of @( v1).
Generalize to any non abelian cubic field of discriminant D

replacing Q(S/I) by @(VD).

Exercise 2 : Artin conductors.

In this exercise, A is a Dedekind domain with quotient
field X, and E is a finite normal extension of K with
separable residue extensions. We consider representations
Py P 5 Py of G = Gal(E/K) into the linear groups of complex
vector spaces V, Vl, V2 of respective dimensions n, n;, n,.
Let N = [E : K]. Discriminants and conductors are relative
to A (cf. II. §1).

a) Prove that 6(detp) divides §(p). (Hint: view
detp as a representation of G into G1(A V)).

b) Prove that if p is faithful, then the primes of K

which divide §(p) are exactly those which divide the

=

s e U
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discriminant D(E/K).  More precisely:

bl) If p is irreducible, then 4(p)™ aivides D(E/K).

bz) D(E/K) divides 6(p)N'l.

b,) If dety is trivial, then D(E/K)? divides 6(p)N'l

(Hint : D(E/K) is the conductor of the regular representation;

observe for b3) that if detp is trivial, then, for any

subgroup H of G, v = ¥ or codim v o3 2).

n n
.. 2
¢) Prove that 6(01 ® pz) divides 6(91) 6(02) 1, and

that these 2 ideals are equal if 6(91) and 6(02) are coprime.

(Hint: wuse the inclusion V? ® VSC:.Vl ® VZ)G,

and the

equality V? & Vv, = (V, ® VZ)G if G acts trivially on V2).

d) Let o be the contragredient representation of p.

Prove that §(p 8 p) divides 6(0)2(n_l).

Exercise 3 : Artin root numbers of tensor products.

a) Let K be a finite extension of a p-adic field, and

let X5 Xy be two characters on GK = Gal(@p/K). Assume that

factors through an unramified

x1 is unramified (i.e. X1

extension). Prove the following two formulae:

%, ) x, (1)
w(xl) W(xz) detxl(é(xz))

al) W(x1 xz)

N I R L S

)
t(x,) ' cets (4(x,))

n
—
—

>
~

az) T(x1 xz)

W

|2}
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b) Let K be a number field, and let p1 and P, be two

representations of QK = Gal(Q/K) with coprime conductors.
Prove the following equality relating Galois Gauss sums and
conductors:

p,(1) p (1)

(o, ® pz) = T(pl) w(p,) detal(ﬁ(pz)) d6t52(6(01))’

where Ei is the contragredient representation of py-
¢) Under the assumptions of b), let E be a finite
normal extension of K with Galois group G such that pl and

p, factor through G. For every real place v of K, let

2
Ov € G be a real Frobenius substitution and let ni(v) be the
number of eigenvalues of pi(Ov) equal to -1. Prove the

formula (cf. Weil, Lecture Notes 189 (1971) p. 152,

lemma B):
W(p1 B pz) = ,
(v)n, (v)
p,(1) p, (1) rearl 2
w(°1) W(oz) detpl(ﬁ(oz))detpz(é(ol)(—l)

Hint. To prove a), one may assume that Xl is irreducible

of degree 1. Consider for any finite extension F of K the
X, (1)
. 1
- -
functions X, W(xlanz) and x, > W(x,) detxl(NF/K(é(xz)»,

where x1 is a fixed unramified character of QK and Xl F is
- 4
the restriction of detX to QF. Show that both functions

1
are invariant under induction from QF to QF' for any field




o
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F' with K ¢ F'c F when Xz(l) = 0, and prove that they are

equal when X, is irreducible of degree 1. -

Exercise U : Zeta functions with a zero at s = 3. (cf. -

J.V. Armitage, Invent. Math., 15 (1972), "

199-205) .
Let K be a number field. Denote by HK its ideal class
* %
group. For a character Yo HK # O let P' : QK -~ C De

the character which corresponds to ¥ via the Artin map.

a) Let x be a character of QK' Prove the formula

i vy = w60 W) X 400 I

(Use exercise 3).

b) Let E be a finite normal extension of K with Galois -

group G and let X be a real valued character of G such that .

W(x) = -1. Prove that the function s > L(s,x) has a zero -

or a pole of odd order at s = 1.

¢) Under the assumption of b), prove that the zeta

function of E has a zero at s = 1.

da) Let x be a real valued character. Assume that the

class in H of f(x) is not a square. Prove that the zeta
=]

B or of some quadratic extension of E has a zero

function of

.
at s = 3.
Ly
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e) Use a) together with the theorem of Frohlich ang
Queyrut to prove that the class in HK of the conductor of an
orthogonal representation is a square (cf. III, cor. h.2).
:] Note. The proof of ¢) runs as follows : by Artin's in-
duction theorem, there exist a positive integer N, cyclic
subgroups Hy (1 5sisry), iﬁtegers n, (1 £41 5 7) and

irreducible characters of degree one ®i of Hi for some

-

. r
integer r such that Ny = ) n, Indg (¢i).
i i

l=
& N r n.
We thus have the equality L(s,x) = T L(s,2.) *,
= i=1 *
Since the L functions s +'L(s,¢i) are holomorphic at s = 3,
] one of them has a zero at g = 5 We have thus proved the

existence of a cyclic subgroup H of G and of an irreducible

T

degree 1 character ¢ of H such that L(%, ) =0. Write now |

the zeta function of E as g product CE(S) = L(s,?) T L(s,yp)
V#0

where ¥ runs through the irreducible degree 1 characters of

(T

H.  Then, L(s,¥) is holomorphic at s = 3 for every 1.

Since L(3, ¢) = 0, cE(%) =0, Q.E.D.

Exercise 5 : Simple zeros of zeta functions (cf. Stark,

]
:ﬂ Invent. Math., 23 (197h), §3, p.14}).
| Let K be a number field and let E be a finite normal

Eﬂex‘tension of K with Galois group G. Let s € (. For any

L
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virtual character X of G, let VS(X) be the order at z = s
of the L—function z > L(z,X). Since the function
X VS(X) is additive and takes integral values, there

exists a virtual character wS’ € RG such that
v (x) = <X ¢G> for every X € R.,. — 4
s > s G

a) Prove that for any subgroup H of G, ¢§ is the
restriction of wg to He.

Assume now that s is a simple zero of the zeta function

of E.

b) Prove that wg is an irreducible character of degree

1 of G; hence, for any representation of G, the correspond}n

ing L-function is holomorphic at s. 3
(Hint : prove first the result for wg where H is a cyclic .,
subgroup of G. Then, show that it implies the equality 8
<¢S, w§>G = 1. Therefore, w: is irreducible, and the =
result follows from the equality ¢S(l) =1.)
c) Let Ks be the cyclic extension of K corresponding 7
to Ker ws. Show that the zeta function of a field F

between K and E has a zero at s if and only if F :’Ks.

d) Assume that s is real.  Show that WS takes its

values in {#1} ; thus, X =K or [KS : K] = 2.




CHARACTER THEORY AND ARTIN L-FUNCTIONS

Exercise 6 : Normal extensions with Galois group A5 (cf.

E. Artin, Collected papers n° 2 and 3).

a) Prove that the alternating group on 5 letters of

~order 60 has 5 irreducible characters Xl’ Xg Xé, X, X5

~ of respective degrees 1, 3, 3, L, 5.

!

1 (Remark : X, and X;, are conjugate and take their values in
-

.1 Q(/g); they come from icosahedral representations

MJVAS > SOs(IU . The character )(L+ comes from the simplex
1 representation A, > SOH(IU.)
‘ b) Prove that Xy + x;, 1+ X, and X are monomial.
] Hence, the L-functions L(s, X, + x;), ’ L(s, )(5) and
EQ(S) L(s,xq) are holomorphic (the last one for s # 1 only).

It is not known whether L(s,xa), L(s,x;) and L(s,xq) are -

holomorphic.

Exercise 7 : Dihedral and quaternion extensions (cf. Frahlich,

Proe. London Mgth., o, 28 (1974), ho2-L38).

Let K be a local field, and let E be a quadratic

g & _— :
extension of K corresponding to a character £: K - {+1}.
Let F be a cyclic extension of degree N of E, corresponding

S x *
to a character @ : E > (¢ .
a) Prove that F/K is normal if and only if Ker @ is

. EJ invariant under the action of g = Gal(E/K).
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Assume now that F/K is normal with Galois group G. Let
H = Gal(F/E).

b) Prove that the non trivial element of g = G/H acts
on H by so—»s_1 if and only if <I>(NE/K(E*)) = {1}, i.e.

o(Ker €) = {1}.
c) Assume that ®(Ker €) = {1}. Prove that

%
(i) either @ has a trivial restriction to K , and then

G is dihedral

%
(ii) or the restriction of & to K is equal to €, and G

is quaternion.

d) State and prove the corresponding results in the

global case. G
(Hint : for c), consider the transfer from ¢* to H). -
E: |
k|
Exercise 8 : Quasi-finite residue fields. .
5|
L |

a) Let k be a field.  Show that there exists an ex—

tension k, of k which is a quasi-finite field. (Hint : let

kK be an algebraic closure of k; show the existence of a

normal extension k' of k(t) with Galois group isomorphic
to Z , and use the method of Corps Locaux, ch. XIIT. §2,

Exer. 3a); hence, one can take for k1 a field of

transcendence degree at most 1 over k.)



b)

R
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Let K be a local field with residue field k, and

let L be a totally ramified extension of K. Let k1 be an

~ extension of k.

Show the existence of local field K, with

E@residue field k1 which is an extension of K and is linearly

~disjoint over K with L, i.e. : L, =1L GK K, is a field.

- (Hint :

reduce to the case when kl is generated over k by a

= single element).

= theorenm"

c)

Combine a) and b) to prove the following "meta—

every statement about the ramification groups

" of a normal totally ramified extension of a local field which

'[is true in the case when the residue fields are quasi-finite

is true in general.

-

d)

Application :

prove Serre's theorem on conductors in

full generality (cf. III, theorem 4.1 and Remark L4.2).

=y

d




