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Abstract. This paper is a continuation of Reduction Modulo 2 and 3 of
Euclidean Lattices ([7], Journal of Algebra, 2002).

Résumé. Reduction modulo 2 et 3 des réseaux euclidiens (II). Cet article fait
suite à l’article [7] Reduction Modulo 2 and 3 of Euclidean Lattices, paru en
2002 au Journal of Algebra.

1. Introduction.

Let E be an n-dimensional Euclidean space with scalar product x · y, and let
L be the set of lattices (discrete subgroups of rank n) in E. For a lattice Λ ∈ L,
we denote by minΛ its minimal norm: min Λ = minx∈Λr{0} x · x, and by detΛ the
determinant of the Gram matrix (ei · ej) of any Z-basis (e1, e2, . . . , en) of Λ.

In this paper, we still study short representatives for classes modulo 2 and 3 of
a given lattice, indeed only modulo 2 from Section 3 onwards. Section 2 is devoted
to root lattices modulo 2 and 3 and Section 3 to laminated lattices modulo 2. In
Section 4, we give a few complements which may apply to odd lattices. In Section 5,
we show how to attach to classes modulo 2 containing not too large vectors a lattice
of codimension 1 having a relatively large minimum. Notably, the Leech lattice
produces the 23-dimensional “equiangular” integral lattice of minimum 5 described
in [9] whose set of minimal vectors constitutes a spherical (tight) 5-design; see
also [1].

We now recall some results which are proved in [7]. We denote by Λ a lattice,
and we set n = dim Λ, m = minΛ, and for t > 0, we denote by St the set of norm t
vectors in Λ and we set st = 1

2 |St|. We also denote by m′ the norm of the second
layer of Λ: m′ = minN(x)>m N(x).
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For lattices modulo 2, the basic identity, involving non-zero vectors x and
y = x + 2z ≡ x mod 2Λ, is

N(y) + N(x) = 2
(
N(z) + N(x + z)

)
. (1)

Provided that y 6= ±x, this implies N(y) + N(x) ≥ 4m, with equality if and only if
z and x + z = y − z are minimal.

Proposition 1.1. If x 6= 0 and y 6= ±x, we have N(y) + N(x) ≥ 4m, and
equality holds if and only if z and x + z = y − z are minimal. We then have
x · z = −N(x)

2 , and x and y are orthogonal.

Proof. The first part is clear. If N(z) = N(x + z) = m, then

2 x · z + N(x) = 0 and y · x = N(x) + 2 x · z = 0 .
�

A complete set T of shortest representatives for non-zero classes modulo 2 yields
a weighted formula of the kind ∑

x∈T

1
w(x)

= 2n − 1 (2)

where w(x) = |{y ∈ Λ | N(y) = N(x) and y ≡ x mod 2Λ}| .
In [7], we essentially considered vectors of norm N ≤ 2m. The weight w(x)

is equal to 1 if 0 < N(x) < 2m and belongs to the interval [1, n] if N(x) = 2m;
some estimations for w beyond norm 2m will be proved in the next sections. This
implies the inequality ∑

0<t<2m

st +
s2m

n
≤ 2n − 1

and various other inequalities of the same kind related to better bounds for w under
various hypotheses.

For lattices modulo 3, the basic identity, involving non-zero vectors x and
y = x + 3z ≡ x mod 3Λ, is

N(y) + 2N(x) = 3
(
2N(z) + N(x + z)

)
, (3 a)

together with its companion identity obtained by exchanging x and y:

N(x) + 2N(y) = 3
(
2N(z) + N(y − z)

)
. (3 b)

We shall this time enumerate the classes modulo 3 up to sign (i.e., we now
consider the set T of pairs ±C of classes modulo 3). The weighted formula now
takes the form ∑

x∈T

1
w(x)

=
3n − 1

2
. (4)

In [7], Theorem 3.13, we proved for the weight the following results:
• w(x) = 1 if 0 < N(x) < m + m′ or m + m′ < N(x) < 2m + m′;
• w(x) = 1 or 3 if N(x) = m + m′;
• 1 ≤ w(x) ≤ n + 1 if N(x) = 2m + m′.
[w = 3 (resp. w = n + 1) corresponds to a configuration A2 (resp. A∗

n+1.)]

In the sequel, weighted formulae will be displayed in the following form: for
norms N where the weight may take values larger than 1, an expression such as( (a1 + a2 + · · · )

w
+

b1 + b2 + · · ·
w′ + · · ·

)
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means that a1, a2, . . . are the number of pairs of vectors in the various norm N
orbits with weight w, etc.

As noticed in [7] (Proposition 2.9 and Table I), lattices having mod 2 repre-
sentatives of norm N < 2m constitute an open set in L. The corresponding mod 3
result applies to lattices having representatives of norm N < 2m + m′; this results
from [7], Propositions 3.7 and 3.8; it notably applies to An (n ≤ 3) and D4; see
next section. Finally, we shall essentially consider only irreducible lattices; indeed,
the bound 2m for classes modulo 2 does not hold for reducible lattices to within
the three exceptions A1 ⊥ A1, A2 ⊥ A1 and A2 ⊥ A2 (up to scale). It is easy to
verify that the similar list for mod 3 lattices reduces to A1 ⊥ A1 and A2 ⊥ A1.

2. Root Lattices Modulo 2 and 3.

In this section, we consider irreducible root lattices, indeed lattices isometric
to An (n ≥ 1), Dn (n ≥ 4) or En (n = 6, 7, 8). We have m = 2, and disregarding
the trivial cases of A1 and A2, m′ = 4, hence 2m + m′ = 4m = 8. We denote by
(ε0, ε1, . . . , εn) (resp. (ε1, . . . , εn)) the canonical basis for Zn+1 (resp. Zn) and set

An = {x ∈ Zn+1 |
∑

xi = 0} and Dn = {x ∈ Zn |
∑

xi ≡ 0 mod 2} .

Proposition 2.1. Up to signs, shortest representatives for classes modulo 2
or 3 of An or Dn are the vectors which are of one of the following forms:

(1) εi1 ± εi2 ± · · · ± εik
, of norm 2k, for An and Dn, modulo 2 and 3.

(2) 2εi, of norm 4, for Dn modulo 2.
(3) 2εi1 + · · · + 2εi`

+ εi`+1 + · · · + εi`+k
− εi`+k+1 − · · · − εi3`+2k

(` > 0), of
norm 6` + 2k, for An modulo 3.

(4) 2εi1 ± εi2 ± · · · ± εik
(k > 0), of norm k + 4, for Dn modulo 3.

Moreover, the weights of the vectors above are 1 in case (1), n in case (2),
(
3`+k

`

)
in case (3), and k in case (4).

Proof. (Sketch.) If x =
∑

j ajεj ∈ Λ (Λ = An or Dn) has some large
component ai, consider a transformation of the form x 7→ x ± 2(εi − εj) or x 7→
x± 3(εi − εj) if Λ = An, x 7→ x± 2(εi ± εj) or x 7→ x± 3(εi ± εj) if Λ = Dn (and
then also x 7→ x±4εi or x 7→ x±6εi if x has a single component). That the vectors
listed above are among the shortest representatives in their class is easy to verify;
we leave to the reader the calculation of the weights. �

For exceptional lattices, we have:

Proposition 2.2. For E6 mod 2, E7 mod 3 and E8 mod 2 and 3, all classes
possess representatives of norm ≤ 2m = 4 or 2m + m′ = 8. For E7 mod 2 (resp.
E6 mod 3), there is one missing class, whose smallest representatives have norm
6 (resp. 12); this is the set of minimal vectors in 2 E∗

7 (resp. 3 E∗
6), of weight 28

(resp. 27).

Proof. Modulo 2, we use the general bound w ≤ n and its refinement
w ≤ n − 1 (proved in [7] before Theorem 2.4) which applies to lattices such that
(2m)n

det(Λ) is not a square, together with the fact that the sum must not exceed 2n − 1.
This immediately gives us the following three formulae for vectors of norm 2 and 4:

E6 mod 2: 36 +
135
5

= 63 = 26 − 1 ;
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E7 mod 2: 63 +
378
6

= 126 = (27 − 1) - 1 ;

E8 mod 2: 120 +
1080

8
= 255 = 28 − 1.

The same device applies for classes modulo 3. For integral lattices, the bound
w ≤ n + 1 can be refined to w ≤ n whenever the scaled copy of A∗

m to norm
2m + m′ (here, 8) is not integral; this applies to E6 and E7. We also need the fact
that norm 6 vectors in E7 share out among two orbits (in all other cases, primitive
vectors of norm N ≤ 8 constitute a single orbit). These two orbits have s′6 = 28
and s′′6 = 1008 pairs of vectors; the first one is 2S(E∗

7). These remarks show that
the weighted formulae for vectors of norm N ≤ 8 are:

E6 mod 3 : 36 + 135 +
360
3

+
432
6

= 363 =
36 − 1

2
- 1 ;

E7 mod 3 : 63 + 378 +
(
28 +

1008
3

)
+

2016
7

= 1093 =
37 − 1

2
;

E8 mod 3 : 120 + 1080 +
3360

3
+

8640
9

= 3280 =
38 − 1

2
.

There remains to characterize the two missing classes. For E7 mod 2, consider
x ∈ 2S(E∗

7). We have N(x) = 22 · 3
2 = 6. Let y ≡ x mod 2 in E7. We have

N(y) ≡ N(x) ≡ 2 mod 4. Hence if y were shorter than x, it would have norm 2.
But pairs of norm 2 vectors in E7 constitute an orbit of 63 > 28 different classes
mod 2, a contradiction.

Similarly, the 27 pairs of vectors in 3S(E∗
6), of norm 32 4

3 = 12, cannot be
congruent mod 3 to a shorter vector, for such a vector would have norm 6 (because
y ≡ x mod 3E6 ⇒ N(y) ≡ N(x) mod 3), and norm 6 vectors constitute an orbit
of 360

2 = 120 > 27 vectors. (Incidentally, this shows that all norm 10 vectors in E6

are congruent mod 3 to a norm 4 vector.) �

3. Laminated Lattices Modulo 2.

These lattices, that we shall consider only in the range 1 ≤ n ≤ 24, were defined
inductively by Conway and Sloane; see [3], Chapter 6 for a precise definition. They
have minimum 4. There is one lattice in each dimension, denoted by Λn, except for
n = 11, 12, 13 where there are two, three, and three lattices respectively, charac-
terized by their kissing number, and denoted by an extra superscript min, mid or
max. The aim of this section is to show that the list of laminated lattices for which
it was proved in [7], Section 2, that all classes modulo 2 contain representatives of
norm N ≤ 8 is actually complete up to dimension 24.

Theorem 3.1. Laminated lattices of dimension n ≤ 24 possessing represen-
tatives of norm N ≤ 8 for all classes modulo 2 are those of dimension n ≤ 6,
8 ≤ n ≤ 10 and n = 24.

Before proceeding to the proof, we state and prove a lemma:

Lemma 3.2. Let L be an integral lattice of minimum 3 and let Λ = Leven be
its even part. Assume that there exist in L two non-orthogonal pairs of minimal
vectors. Then Λ has minimum 4 and contains a class modulo 2 of minimum 12.
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proof of 3.2. We have minLeven ≥ 4, and if x, y are non-orthogonal, non-
proportional minimal vectors in L, we have x ·y = ±1, hence N(x∓y) = 4, whence
N(Leven) = 4.

Let e ∈ S(L) and let f = 2e. Since [L : Λ] = 2, we have Λ = 〈L, e〉 = 〈L, f
2 〉,

hence
L r Λ =

{
x
2 | x ≡ f mod 2Λ

}
.

Since min L = min LrΛ = 3, we have N(x) ≥ 12 on the whole class of f modulo 2.
Since N(f) = 12, this completes the proof of the lemma. �

proof of Theorem 3.1. In dimensions n ≤ 8, the laminated lattices are
scaled copies of root lattices, namely An (n = 1, 2, 3), Dn (n = 4, 5) and En

(n = 6, 7, 8), and Theorem 3.1 follows from the results of Section 2. For n = 24, Λ24

is the Leech lattice, and the result is a theorem of Conway (see [3], Chapter 12).
The case of dimensions 9 and 10 is dealt with in [7], Section 2, Table III. We are
thus left with the 18 laminated lattices of dimension n ∈ [11, 23]. We now show
how Lemma 3.2 can be used to deal with 16 of them.

Recall that O23 stands for the unimodular 23-dimensional lattice of minimum 3.
The lattice Z ⊥ O23 can be defined as a Kneser–neighbour of Λ24 through a norm 4
vector, which shows that (O23)even is isometric to Λ23. Now, it is shown in [2] that
the antilaminations of O23 (the descending chain of the densest cross–sections) pro-
duce a unique lattice (denoted by On) in dimensions 23 to 14. Since the antilamina-
tions of Λ23 also produce the Λn series in these dimensions, we have (On)even ' Λn

for 14 ≤ n ≤ 23. Then we find two 13-dimensional lattices, which allows again
to deal with Λmax

13 and Λmin
13 (Λmid

13 is a dead–end for laminated lattices). We can
even consider dimensions 12 and 11. Explicitly, in the notation of [2], we have
Λmax

13 ' (O13b)even, Λmin
13 ' (O13a)even, Λmax

12 ' (O12b)even, Λmid
12 ' (O12a)even,

and Λmax
11 ' (O11)even. As for Λmid

13 , it is also the even part of an integral norm 3
lattice, discovered by Plesken and Pohst ([8]), indeed the lattice with s = 84 of
their list. Lemma 3.2 shows that all the sixteen lattices listed above contain a class
of minimum 12.

To complete the proof of Theorem 3.1, it suffices to consider the two lattices
Λmin

11 and Λmin
12 . We have shown using PARI-GP that vectors of norm N ≤ 8 do not

represent all classes. For the sake of completeness, we display below the weighted
formulae for vectors of norm N ≤ 8 for the four lattices Λ9, Λ10, Λmin

11 and Λmin
12 .

The notation is that of section 2. The first two numbers are s4 and s6; we then
give for each weight the numbers of vectors in a given orbit with this weight. (Note
that two congruent vectors may belong to different orbits.)

Λ9 : 136 + 128 +
1 + 8

9
+

560 + 512
8

+
448
4

= 511 .

Λ10 : 168 + 384 +
3 + 24

9
+

768 + 288
8

+
48 + 192

5
+

1152
4

= 1023 .

Λmin
11 : 216 + 816 +

54
9

+
1032

8
+

960
5

+
1920

4
+

384
3

= 1967 .

Λmid
12 : 312 + 1728 +

12 + 96
9

+
768 + 192 + 24

8
+

768 + 3072
5

+
1536 + 2304

4
= 3903 .
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We observe that there are (211 − 1)− 1967 = 80 missing classes in the case of
Λmin

11 and (212 − 1)− 3903 = 192 in the case of Λmin
12 . �

4. Odd Lattices Modulo 2.

In this section, we consider as previously a lattice Λ of dimension n and mini-
mum m. Our aim is to study the contribution of norm 2m+1 vectors. Such vectors
of course do not exist if Λ is even. In the proposition below, the rôle of the dual of
an Ak lattice resembles the one it plays for norm 2m + m′ vectors with respect to
Λ mod 3.

Theorem 4.1. Let Λ be integral.
(1) Vectors of norm 2m + 1 (if any) are minimal in their class modulo 2.
(2) If minΛ is odd, each class contains at most 2m + 2 pairs of such vectors,

and when this bound is attained, their configuration is that of S(A∗
2m+1).

Proof. Let x ∈ S2m+1(Λ), and let y ≡ x mod 2Λ, say, y = x + 2z. By
Proposition 1.1, we have N(y) ≥ 2m − 1. Since y ≡ x mod 2 =⇒ N(y) ≡ N(x)
mod 4, we must have N(y) ≥ N(x), which proves the first part of Theorem 4.1.

Suppose now that N(y) = N(x) = 2m + 1. Writing −y = x − 2(x + z), we
see that changing y into −y amounts to exchanging z and −(x + z). In the sequel,
we shall assume that N(z) = m + 1 and N(x + z) = m. With this choice we have
x · z = −(m + 1), hence x · y = 2m + 1− 2(m + 1) = −1.

Lemma 4.2. Let ±x1, . . . ,±xr, r ≥ 2 be a system of norm 2m + 1 vectors in Λ
belonging to the same class modulo 2 Λ. Then for a convenient choice of the xi

among xi,−xi, the scalar products xi · xj, j 6= i all have the same value, namely
+1 if m is even, and −1 if m is odd.

proof of 4.2. For i = 2, . . . , r, define zi by xi = x1 +2zi. Taking x = x1 and
y = xi in the calculation we made in the course of the proof of Theorem 4.1, we
see that we may choose the signs of the xi so that x1 · xi = −1 for all i ≥ 2. We
then have

xi · xj = (x1 + 2zi) · (x1 + 2zj) = 2m + 1− 4(m + 1) + 4 zi · zj

hence
zi · zj =

2m + 3 + xi · xj

4
for 2 ≤ i < j ≤ r. We must have xi ·xj +2m +3 ≡ 0 mod 4, whence the result for
2 ≤ i < j ≤ n. Negating x1 if m is even yields the desired result in all cases. �

End of proof of 4.1. Since m is odd, we may assume by Lemma 4.2 that
xi · xj = −1 for all pairs (i, j) with j 6= i. Since

N(x1 + · · ·+ xr) = r(2m + 1)− 2
(

r

2

)
= r (2m + 2− r) ≥ 0 ,

we have r ≤ 2m + 2, and x1, . . . , xr generate a canonical section of A∗
2m+1 scaled

to norm 2m + 1. Since the vectors xi+xj

2 belong to Λ, we are done. �

Example 4.3. Let Λ be E∗
7 scaled to minimum 3. This is an integral lattice,

whose norms are the positive integers congruent to 0 or −1 modulo 4. We have
s3 = 28, s4 = 63 and s7 = 288, hence

s3 + s4 +
s7

8
= 28 + 63 + 36 = 127 = 27 − 1 .
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Theorem 4.1 hence shows that the shortest vectors in classes modulo 2 of Λ are
those of norm 3, 4, and 7.

5. Lattices of Codimension 1.

In this section, we assume that Λ is integral. We explain how to construct
lattices of dimension n−1 from a vector e ∈ Λ of norm µ in the range m ≤ µ < 2m.
(Everything also works if µ = 2m, but the configuration of minimal vectors of the
lattices we are going to construct are then uninteresting orthogonal configurations.)
We denote by C the class of e modulo 2.

Lemma 5.1. Let e be as above and let x ≡ e mod 2Λ. Then one of the following
conditions holds:

(1) x is proportional to e.
(2) N(x) > 4m− µ.
(3) N(x) = 4m− µ and x is orthogonal to e.

Proof. Write x = e + 2z. Proposition 1.1 shows that if x is not proportional
to e, then N(x) ≥ 4m−N(e), and that if equality holds, then e · z = −N(e)

2 , which
implies e · x = e · (e + 2z) = 0. �

Lemma 5.2. L = C ∪ 2Λ is a lattice of determinant 22n−2 det(Λ).

Proof. We have C ∪ 2Λ = 2Λ ∪ (e + 2Λ). Hence L is a lattice containing 2Λ
to index 2, which shows that det(L) = 2−2 det(2Λ). �

By Lemma 5.1, min L = µ and S(L) = {±e}. To obtain a lattice with a larger
minimum, we consider Le = (R e)⊥ ∩ L.

Proposition 5.3. Le = (R e)⊥∩L is an (n−1)-dimensional lattice of minimum
M ≥ 4m− µ and determinant 22n−2µ det(Λ) if µ is even, and 22nµ det(Λ) if µ is
odd.

Proof. Only the last assertion needs a proof. Given a primitive vector e′ ∈ L∗,
the determinant of L′ = L ∩ (R e′)⊥ is det(L′) = det(L) N(e′) (see [6], Proposi-
tion 1.3.4; N(e′) is the determinant of the 1-dimensional lattice (R e′)∩L∗). Here we
must determine a generator e′ of R e∩L∗. We have L = 〈2Λ, e〉 and (2Λ)∗ = 1

2 Λ∗,
hence

L∗ =
{y

2

∣∣ y ∈ Λ∗, y · e ≡ 0 mod 2
}

.

If µ is even, e ∈ L∗; if µ is odd, 2e ∈ L∗. Since e is primitive in Λ (because
N(e) < 4m), a congruence e ·y ≡ 0 mod a may not hold on Λ∗ for an integer a > 1.
This shows that if µ is even (resp. odd), e (resp. 2e) is primitive in L∗. This
completes the proof of the proposition. �

Proposition 5.4. Let Λe = Le if µ ≡ 1 mod 2, Λe = 1√
2

Le if µ ≡ 2 mod 4,
and Λe = 1

2 Le if µ ≡ 0 mod 4. Then Λe is an integral lattice, and we have
det(Λe) = 22nµ det(Λ) if µ ≡ 1 mod 2, det(Λe) = 2n−2µ det(Λ) if µ ≡ 2 mod 4,
and det(Λe) = µ

4 det(Λ) if µ ≡ 0 mod 4.

Proof. The assertions concerning the determinant of Λe follow immediately
from Proposition 5.3. It thus suffices to prove that x, y ∈ Le =⇒ x · y ≡ 0
mod (4, µ) . Write x = 2z (resp. x = e+2z) if x ∈ 2Λ (resp. x /∈ 2Λ), and similarly
y = 2t or y = e + 2t. If both x and y belong to 2Λ, then x · y ≡ 0 mod 4. If, say,
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x ∈ 2Λ and y /∈ 2Λ, we again have x · y = 2(z · e) + 4 z · t = 4 z · t ≡ 0 mod 4.
Finally, in the remaining case, we have

x · y = µ + 2e · z + 2e · t + 4 z · t and 2(e · z) ≡ 2(e · t) ≡ −µ mod 4 ,

hence x · y ≡ −µ mod 4. �

We now give some examples. In all cases we shall consider, the minimum of Λe

is equal to the lower bound given in Proposition 5.3.

If m = 2 and if Λ is even, the only possible choice is µ = 2. Take for Λ an
irreducible root lattice of dimension n ≥ 2. Then norm 6 vectors in Λ belong
to one or two classes modulo 2, and exactly one such class C contains a norm 2
vector e. When Λ is isometric to An (n ≥ 2), Dn (n ≥ 4), E6, E7, and E8, Λe

has minimum 3, and s(Λe) is equal to n− 1, 2(n− 2), 10, 16, and 28 respectively.
The lattice corresponding to E8 is a scaled copy of E∗

7, and E7 and E6 yield lattices
similar to Coxeter’s D+

6 and A2
5.

If m = 4, we may choose µ = 4 or µ = 6, obtaining in general a lattice Λe of
minimum Me = 3 if µ = 4 and Me = 5 if µ = 6 (and no other value if Λ is even).

Theorem 5.5. Let Λ be an integral lattice of minimum 4.
(1) If µ = 4, then minΛe ≥ 3 and det(Λe) = det(Λ).
(2) If µ = 6, Λe is an integral lattice whose norm 5 vectors have mutual

scalar products ±1. In particular, directions of norm 5 vectors constitute
an equiangular family of lines.

Proof. If µ = 4, the result is an immediate consequence of Proposition 5.4.
Let now µ = 6, and let x = e + 2z and y = e + 2t (y 6= ±x) be two norm 10 vectors
in Le. We have x · y = −6 + 4 z · t (see the proof of Proposition 5.4). Since z
and t are minimal in Λ, we have z · t ∈ {4, 2, 1, 0,−1,−2,−4}. Since y 6= ±x, we
have |x · y| ≤ 5, which implies z · t = 2 or 1, hence x · y = ±2. This proves that
non-proportional norm 5 vectors in Λe have scalar product ±1, hence that they
generate an equiangular family of lines. �

We now consider the important special case of Λ = Λ24 (the Leech lattice).

Corollary 5.6. Let Λ be the Leech lattice Λ24.
(1) If µ = 4, Λe is the unimodular lattice O23 (min = 3, s = 2300).
(2) If µ = 6, Λe is the integral lattice of minimum 5 with s = 276 (= 23·24

2 )
which is dual (up to scale) to the lattice M23[2] of [9], Table 19.2.

Proof. If µ = 4, Λe is a unimodular lattice of minimum M ≥ 3, hence iso-
metric to O23 ([3], Table 16.7).

If µ = 6, we use the fact that Λe has minimum 5 and kissing number
|a10|
|a6|

= 276,

where we denote as in [7] by a6 (resp. a10) the unique orbit of vectors of norm 6
(resp. 10) in Λ24. Theorem 9.1 of [9] (and the results of [5] on equiangular families
of lines) now shows that Λe, as an integral lattice of minimum 5 with equiangular
directions of minimal vectors and maximal possible value of s, is similar to M23[2]∗.

[ For µ = 4, since
|b12|
|a4| = 2300 (notation of [7]), we recover the equality s(O23) = 2300.]

�
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Remark 5.7. The integral scaled copies L of M23[2]∗ (of minimum 5) and L′ of
M∗

23 (of minimum 15) which occur in Table 19.2 of [9] have the same configurations
of minimal vectors. Indeed, L′ contains to index 2 a lattice isometric to

√
3 L. The

successive layers of L (resp. L′) have norms 5, 8, 9, 12, . . . (resp. 15, 20, 24, . . . ).
This shows that L contains a class modulo 3 of minimum 60, which produces
vectors of norm 3 · 60

9 = 20 in L′.
Similarly, using the parity class of O23 (of minimum 15; see [4], where Elkies

proves a much more general result), we obtain after rescaling an integral lattice of
minimum 12. This lattice is indeed proportional to Λ∗

23.
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