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ON CLASSIFYING MINKOWSKIAN SUBLATTICES

WOLFGANG KELLER, JACQUES MARTINET, AND ACHILL SCHÜRMANN,

WITH AN APPENDIX BY MATHIEU DUTOUR SIKIRIĆ

Abstract. Let Λ be a lattice in an n-dimensional Euclidean space E and
let Λ′ be a Minkowskian sublattice of Λ, that is, a sublattice having a basis
made of representatives for the Minkowski successive minima of Λ. We extend
the classification of possible Z/dZ-codes of the quotients Λ/Λ′ to dimension 9,

where dZ is the annihilator of Λ/Λ′.

1. Introduction

Let E be an n-dimensional Euclidean space, with scalar product x ·y. The norm
of x ∈ E is N(x) = x ·x (the square of the “classical norm” ‖x‖). Let Λ be a lattice
in E of rank n, that is, a full rank discrete subgroup of E and a Z-module in E of
rank n. Let m1, . . . ,mn be its successive minima in the sense of Minkowski: each
mi is the smallest real number such that the span of the set of vectors in Λ of norm
N ≤ mi is of dimension at least i. A Minkowskian sublattice

Λ′ = 〈e1, . . . , en〉 = Ze1 + · · ·+ Zen

of Λ is one having a basis consisting of linearly independent representatives e1, . . . , en
of m1, . . . ,mn. Let dZ be the annihilator of Λ/Λ′. Then

Λ = 〈Λ′, f1, . . . , fk〉
is generated by the vectors ei together with some vectors f1, . . . , fk ∈ Λ of the form

fi =
a
(i)
1 e1 + · · ·+ a

(i)
n en

d
,

where the vectors a(i) = (a
(i)
1 , . . . , a

(i)
n ) mod d are the words of a code over Z/dZ.

We attach in this way to Λ a collection of codes over Z/dZ which depend on the
choice of the ei. We consider the problem of classifying for a given dimension n the
set of codes which arise for some lattice Λ ∈ E (up to equivalence).

This problem was first considered by Watson in [Wat71b], who obtained, in
particular, the classification for n ≤ 6. This theory of Watson was then extended
by Ryshkov (see [Ryš76]) to n = 7. Zahareva ([Zah80]) considered the problem for
n = 8. Her results were completed by the second author in [Mar01], where also

Received by the editor April 20, 2009 and, in revised form, January 29, 2011.
2010 Mathematics Subject Classification. Primary 11H55, 11H71.
Key words and phrases. Euclidean lattices, quadratic forms, linear codes.
The first and the third authors were supported by the Deutsche Forschungsgemeinschaft (DFG)

under grant SCHU 1503/4-2. The third author was additionally supported by the Université
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new concepts, such as the perfection rank or the minimal class of a lattice, were
introduced. This latter paper will be our basic reference for what follows.

The index theory has various applications. The results of this paper will help
to gain a better understanding of lattices in dimension 9 and above. For example,
we shall consider in a forthcoming paper [MS10] the question of the existence of a
basis of minimal vectors for lattices generated by their minimal vectors. Based on
the classification of this paper, it appears possible to resolve this question in the
currently open cases of dimensions 9 and 10. Another future application may be a
computer assisted classification of perfect forms in dimension 9.

It should be noted that the two mentioned applications make use only of results
for well-rounded lattices, that is, for lattices with minimal vectors spanning E.
In other words, these lattices have equal successive minima m1, . . . ,mn. Indeed,
a deformation argument (see [Mar01, Theorem 1.5]) shows that all codes can be
realized using well-rounded lattices. So from now on, we shall no longer work with
the successive minima. Moreover, since the set of codes associated with a lattice Λ
only depends on the similarity class of Λ, we shall in general work with lattices of
minimum 1, except that the lattices we shall exhibit will be scaled for convenience
to the smallest minimum which makes them integral.

Any code C of length n can be trivially extended to all dimensions n + k by
adding k columns of zeros to a generator matrix for C. On the side of lattices,
these codes can be realized by convenient direct sums of both Λ and Λ′ and k copies
of Z. In particular, we may consider (Λ ⊥ Z

k,Λ′ ⊥ Z
k). For this reason, we shall

systematically restrict ourselves to codes which do not extend trivially a code of
smaller length, as was done in [Mar01, Table 11.1].

A complete list of the existing codes for n = 9 can be found in Sections 6
and 7; in all cases we give the most important invariants. There are 137 codes in
dimension 9, whereas only 42 codes exist in dimensions n ≤ 8 all together. Our
results are too complex to be shortly described in this introduction, so that we shall
content ourselves here with a crude result, namely the list of possible structures
of Λ/Λ′, merely viewed as an abstract Abelian group. By the comments above,
it suffices to list for each dimension n the group structures which exist in this
dimension but not in dimension n− 1. We use the standard convention for quoting
Abelian groups by their elementary divisors, writing for example for short 8, 4·2, 23
for the groups of order 8 isomorphic to Z/8Z, Z/4Z×Z/2Z and Z/2×Z/2Z×Z/2Z.

Theorem 1.1. The possible structures for quotients Λ/Λ′ as above up to dimen-
sion n = 9 are as follows:
n = 1 : 1 ;
n = 4 : 2 ;
n = 6 : 3, 22 ;
n = 7 : 4, 23 ;
n = 8 : 5, 6, 4 · 2, 32, 24 ;
n = 9 : 7, 8, 9, 10, 12, 6 · 2, 42, 4 · 22 .
Moreover, all structures which exist in dimension n = 4, 7, 8 exist for the lattices
D4, E7, E8, respectively, but no such “universal lattice” exists in dimensions 6
and 9. For the laminated lattice Λ9 only the quotient 42 is missing. We refer to
Appendix A for more information on the mentioned lattices.

The results for n ≤ 8 were obtained in [Mar01], using essentially calculations by
hand. After many codes were a priori excluded, a computer was used only to find
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lattices, proving the existence for the remaining codes. The complication of some
proofs, however (e.g., the non-existence of cyclic quotients Λ/Λ′ of order 8), clearly
shows that the methods of [Mar01] are no longer suitable in higher dimensions,
at least when it involves an index [Λ : Λ′] ≥ 7. So here we develop a method
that also allows us to prove non-existence of codes using computer assistance. Our
calculations not only verify all of the previously known results for n ≤ 8, but also
allow us to give a full classification for n = 9.

In [Zah80], Zahareva introduces the notion of a free pair (Λ,Λ′): a pair of well
rounded lattices such that the set of minimal vectors of Λ reduces to the basis
vectors ±ei of Λ′. For each given structure of the Abelian group Λ/Λ′, there are
minimal dimensions n0 and n1 such that n-dimensional lattices with the given
structure exist for all n ≥ n0 and some of them are free for all n ≥ n1. Table 1
shows information on these minimum dimensions up to index 8 that follows from
our classification.

Table 1. Existence and free quotients

[Λ : Λ′] 2 3 4 22 5 6 7 8 4 · 2 23

exists 4 6 7 6 8 8 9 9 8 7
free 5 7 7 8 8 9 9 9 9 10

The remainder of the paper is organized as follows:
In Section 2, we set some notation and discuss some bounds for the index [Λ : Λ′],

by which it becomes clear that in each dimension only finitely many codes have to
be considered. We describe some identities which further allow us to considerably
reduce the number of codes which need be considered.

In Section 3, we recall the basic dictionary between lattices and positive definite,
real symmetric matrices. We, in particular, review some facts about the Ryshkov
polyhedron that parametrizes all lattices whose non-zero vectors are of length at
least 1. We establish a connection between its facial structure and the possible
minimal classes of a lattice. We show that each code over Z/dZ of length n is
associated with a unique minimal class and a unique set of faces of the Ryshkov
polyhedron.

In Section 4, based on the connection established in Section 3, we give an algo-
rithm that allows us to test whether or not a given Z/dZ code can be realized by
a pair of lattices (Λ,Λ′).

In Section 5 we give criteria due to Watson that easily allow us to exclude many
codes from further considerations.

In Section 6, we consider cyclic quotients Λ/Λ′ which exist in dimension 9, but
not in dimension 8. We give a complete list of corresponding codes (see Table 2).
Whereas our results for d ≥ 7 depend on computer calculations, we give arguments
for all “small” cyclic quotients of order d ≤ 6. We hereby establish the classification
in all dimensions for lattices Λ with maximal index [Λ : Λ′] ≤ 6, for sublattices Λ′

generated by minimal vectors of Λ.
Section 7 is devoted to non-cyclic quotients. We consider for all dimensions,

quotients of type 2k, 3k and 4 · 2k. In order to give a complete list of possible codes
in dimension 9, other cases are treated computationally, giving overall a computer
assisted proof of Theorem 1.1. All of the existing, 9-dimensional codes are listed in
Tables 3, 4, 5, 6, 7, 8, 9, and 10.
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In Section 8, we discuss the existence of lattices Λ which are universal in the
sense that every quotient L/L′ which exists in dimension n indeed exists for L = Λ;
see Theorem 1.1. It turns out that such a lattice does not exist for n = 9. However,
all structures except quotients of type 42 are attained by the lattice Λ9.

Appendix A is devoted to perfect lattices that occur at several places in the
presented “index theory”: the root lattices, the laminated lattices, and in particular,
the Leech lattice. Appendix B by Mathieu Dutour Sikirić describes a strategy to
compute the index system of a given lattice. We used his computations to check
our results. It helped to discover problems in an earlier version of this paper.

In addition to the information contained in this article, extra data and MAGMA

scripts accompanying our classification are available as an “online appendix”. To
access these, either download the source files for the arXiv paper arXiv:0904.3110
or download it from the corresponding world wide web page of Mathematics of
Computation. The file Gramindex.gp contains a Gram matrix in PARI-GP format
for every found lattice type.

2. Bounds and identities

Recall that we consider pairs (Λ,Λ′) where Λ is a well-rounded lattice in an n-
dimensional Euclidean space E and Λ′ ⊂ Λ is generated by n independent minimal
vectors of Λ. We denote by x · y the scalar product on E and define the norm of
x ∈ E by N(x) = x · x. The minimum of Λ (which is actually attained) is

minΛ = inf
x∈Λ�{0}

N(x) .

The set of minimal vectors of Λ is

S(Λ) = {x ∈ Λ | N(x) = minΛ} ,
and we define s = s(Λ) by |S(Λ)| = 2s. The Gram matrix of an ordered set
E = (x1, . . . , xk) of vectors of E is the k × k matrix Gram(E) = (xj · xk). The
determinant det(Λ) of Λ is the determinant of the Gram matrix of any basis for Λ.
Finally, the Hermite invariant of Λ and the Hermite constant of dimension n are

γ(Λ) =
minΛ

det(Λ)1/n
and γn = sup

dimΛ=n
γ(Λ) .

The following result is well known:

Proposition 2.1. With the notation and the hypotheses above, we have

[Λ : Λ′] ≤ 
γn/2
n � .

Proof. By the definition of the determinant and the index we have det(Λ′) = [Λ :
Λ′]2 · det(Λ). Further, det(Λ′) ≤ N(e1) · · ·N(en) = 1 by the Hadamard inequality
and the assumption minΛ = 1. (We refer to [Mar03] for the corresponding back-
ground.) As det(Λ) ≥ γ−n

n by definition of the Hermite constant, and as the index
is a natural number, the result follows. �

Definition 2.2. The maximal index ı(Λ) of the well-rounded lattice Λ is the largest
value that [Λ : Λ′] may attain when Λ′ runs through the set of sublattices of Λ which
are generated by n independent minimal vectors of Λ.

The index system I(Λ) of Λ is the set of all structures of Abelian groups provided
by quotients Λ/Λ′ as above.
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Example. By Theorem 1.1, the index system of Λ9 is

I(Λ9) = {1, 2, 3, 4, 22, 5, 6, 7, 8, 4 · 2, 23, 9, 32, 10, 12, 6 · 2, 4 · 22, 24} .

The Hermite constants and the critical lattices on which they are attained are
known for n ≤ 8 and n = 24. For other values of n, we must content ourselves with
upper bounds valid for all sphere packings. The best bounds in print are those of
Cohn and Elkies [CE03]. In particular, we have

(1) γ
9/2
9 ≤ 30.21 and γ5

10 ≤ 59.44 .

Note that the conjectural values, namely those of the laminated lattices Λ9, Λ10

(defined in [CS99, Chapter 6]) are

γ(Λ9)
9/2 = 29/2 = 22.627 . . . and γ(Λ10)

5 =
45√
768

= 36.950 . . . ,

which give much smaller bounds for ı(Λ) in these two dimensions.

Remark 2.3. It results from [Mar01] that the bound ı(Λ) ≤ 
γn/2
n � is exact for

n ≤ 8, and that the precise equality ı(Λ) = γ
n/2
n even holds for n = 4, 7, 8, with

Λ one of the root lattices D4, E7, E8; the bound is also tight for n = 24 with the
Leech lattice Λ24 (see Appendix A). Note that by Theorem 1.1 the bound is strict
for n = 9, as the largest possible value for ı(Λ) is then 16, the same as for n = 8.
We conjecture that even the conjectural bound ı(Λ) ≤ 36 for n = 10 is strict, the
actual bound being probably 32.

3. Ryshkov polyhedron and minimal classes

In Section 4 we formulate an algorithm for determining whether or not a given
code C can be realized. For it we use the language of quadratic forms, or equiva-
lently, of real symmetric matrices. Instead of looking at bases of lattices, we consider
their positive definite Gram matrices. Note that there is a well-known dictionary
translating between lattice and Gram matrix terminology. There is, in particu-
lar, a one-to-one correspondence between n-dimensional lattices up to orthogonal
transformations and Gram matrices G up to the GLn(Z) action G 
→ U tGU .

By Sn we denote the space of real symmetric n × n matrices. It is turned into
a Euclidean space with the usual inner product 〈A,B〉 = TrAB. For G ∈ Sn and
x ∈ R

n we write G[x] = xtGx. We note that G[x] = 〈G, xxt〉 is a linear function
on Sn for a fixed x ∈ R

n.
Let Sn

>0 denote the set of positive definite matrices within Sn. It is well known
that Sn

>0 is an open convex cone whose closure is the set of positive semi-definite
matrices. In accordance with the definition for lattices, we define the minimum of
G by

minG = min
x∈Zn\{0}

G[x]

and its set of minimal vectors by

S(G) = {x ∈ Z
n | G[x] = minG}.

Within Sn
>0, the set of Gram matrices G with minimum min(Λ) at least 1 form

a locally finite polyhedron — the Ryshkov polyhedron

R = {G ∈ Sn | G[x] ≥ 1 for all x ∈ Z
n \ {0}}.
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Here “locally finite” means: for Gram matrices G in any fixed, bounded part of
R, all except finitely many of the inequalities G[x] ≥ 1 are strict (see [Sch09a]
for a proof). As a consequence, bases of lattices with minimum 1 are identified
with a piecewise linear surface in Sn

>0 (the boundary of R). Its faces form a cell
complex, naturally carrying the structure of a combinatorial lattice with respect to
inclusion. Note that the relative interiors of faces are disjoint, whereas the closed
faces themselves may meet at their boundaries. For basic terminology and results
from the theory of polyhedra we refer to [Zie97].

The group GLn(Z) acts by G 
→ U tGU on the Ryshkov polyhedron and its
boundary. All bases of a given lattice Λ with minimum 1 yield Gram matrices that
lie in the relative interior of faces of the same dimension k. This invariant is the
perfection co-rank of Λ; its perfection rank is

perf Λ = dimSn − k.

By a well-known theorem of Voronoi (see [Vor07]), we know that up to the
action of GLn(Z), there exist only finitely many vertices (0-dimensional faces) of
the Ryshkov polyhedron. They are called perfect, as are the corresponding lattices,
which are the lattices having full perfection rank dimSn =

(
n+1
2

)
. As a consequence

of Voronoi’s finiteness result, there exist only finitely many orbits of faces of any
dimension. Thus we obtain an abstract finite complex (quotient complex) from the
face lattice of R modulo the action of GLn(Z).

Under the action of GLn(Z), the relative interiors of faces of R fall into equiva-
lence classes. The corresponding equivalence classes of lattices are called minimal
classes. The inclusion of faces F ′ ⊆ F induces a (reversed) ordering relation on
corresponding minimal classes, denoted by C ≺ C′. With respect to this ordering,
the minimal classes form a combinatorial lattice that is anti-isomorphic to the face
lattice of the quotient complex described above. Note that lattices Λ and Λ′ in the
same minimal class C are characterized by the fact that there exists a transformation

(2) u ∈ GL(E) with u(Λ) = Λ′ and u(S(Λ)) = S(Λ′).

Inclusion of minimal vector sets u(S(Λ)) ⊆ S(Λ′) induces the same ordering relation
C ≺ C′ on minimal classes.

Given Λ′ ⊂ Λ having a basis of minimal vectors of Λ, all lattices L of the minimal
class of Λ contain a sublattice L′ such that Λ/Λ′ and L/L′ define the same code
over Z/dZ, where dZ is the annihilator of Λ/Λ′. This follows from the existence of
a transformation u as in (2). As a consequence, given a minimal class C, the set
of codes attached to pairs (Λ,Λ′) as above with Λ ∈ C is an invariant of C; and
more generally, the set of codes and index system of a class C′ � C contain those
of C. This implies that for the classification of possible codes and index systems,
it would suffice to study the finitely many perfect lattices of minimum 1. However,
in dimension 9 these are not fully known and it appears that there exist too many
of them for such an approach (see [DSV07]).

Given a Z/dZ-code C, we consider the set of minimal classes of well-rounded
lattices Λ such that Λ/Λ′ defines the code C for a suitably chosen sublattice Λ′ of
Λ, having a basis of minimal vectors of Λ. As shown by the following proposition,
all of these well-rounded minimal classes are attached to a uniquely determined
minimal class CC of C.
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Proposition 3.1. Let C be a Z/dZ-code. Then there exists a unique well-rounded
minimal class CC , such that C(Λ) � CC , for every well-rounded lattice Λ with sub-
lattice Λ′ generated by n minimal vectors of Λ such that Λ/Λ′ defines the code
C.

For the proof of the proposition, we give a geometric argument involving the
Ryshkov polyhedron R, which leads us to the main idea underlying the algorithm
that we treat in the next section. We show that there exists a uniquely determined
orbit of a face F of the Ryshkov polyhedron R for every code C that exists.

Proof of Proposition 3.1. Assume the code C is generated by k code words a(i),
i = 1, . . . , k. So we may assume the lattice Λ′ has a basis of minimal vectors
e1, . . . , en of Λ and Λ = 〈Λ′, f1, . . . , fk〉 with

fi =
a
(i)
1 e1 + · · ·+ a

(i)
n en

d
,

for i = 1, . . . , k. Choose a basis B = (b1, . . . , bn) of Λ. Then ei has coordinates
ē(i) ∈ Z

n with respect to the chosen basis B. Note that these coordinates can be

expressed in terms of the a
(i)
j and d, independently of the specific lattices Λ and Λ′.

Assuming the minimum of Λ is 1, we know that the Gram matrix of B is con-
tained in the affine subspace

(3) TC = {G ∈ Sn | G[ē(i)] = 1 for i = 1, . . . , n}
of Sn, respectively, in its intersection with the Ryshkov polyhedron R. This inter-
section is a face F of R that is determined by C, up to the choice of the basis B.
Choosing another basis B′, we find a matrix U ∈ GLn(Z) with B′ = BU and a
corresponding face F ′ of R with F ′ = U tFU . Thus up to the action of GLn(Z), the
face F is uniquely determined by the code C. The orbit of the relative interior of F
corresponds to a uniquely determined minimal class CC . It has the desired property,
as every pair of lattices (Λ,Λ′) satisfying the assumption of the proposition has a
basis with Gram matrix in F . �

Let us note that the face F of the Ryshkov polyhedron described in the proof
is bounded. In fact, it can be shown that the bounded faces of the Ryshkov poly-
hedron are precisely the ones coming from lattices having n linearly independent
minimum vectors (attaining the minimum 1). So the classification of possible codes
is equivalent to the classification of bounded faces of R up to the action of GLn(Z).
For this it is enough to determine bounded faces of maximal dimension, that is,
those bounded faces that are themselves not contained in the boundary of other
bounded faces.

An important tool that we use, to show that certain codes cannot be realized,
is the estimation of the Hermite constant on a given minimal class. The minimum
of the Hermite constant may not be attained on a given minimal class, but if
it is attained, then it is attained at a weakly eutactic lattice. These lattices are
characterized by the fact that a corresponding Gram matrix G satisfies

(4) G−1 =
∑

x∈S(G)

λxxx
t

for real coefficients λx. A lattice is called eutactic if there exists such a relation
with strictly positive coefficients λx and strongly eutactic if they are additionally
all equal. The above-mentioned result is due to Anne-Marie Bergé and the second
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author (see [Mar03, Section 9.4]). They also show that there exists at most one
weakly eutactic lattice in a given minimal class C, respectively, in its closure

C =
⋃

C≺C′

C′ .

An easy consequence is the following result for orthogonal sums of weakly eutactic
lattices.

Proposition 3.2. Let C1, C2 be minimal classes of dimensions n1, n2 and define
C := C1⊕C2, of dimension n = n1 + n2, by

C = {Λ = Λ1⊕Λ2 | Λi ∈ Ci, S(Λ) = S(Λ1) ∪ S(Λ2)} .
Then the weakly eutactic lattices in C1⊕C2 are the orthogonal sums Λ1 ⊥ Λ2 of
weakly eutactic lattices Λi ∈ Ci. In particular, the minimum of γ on C is attained
on an orthogonal sum Λ1 ⊥ Λ2.

The following lemma derived from the proposition will allow us to show that
certain codes are impossible for n = 9.

Lemma 3.3. Let Λ be a well-rounded lattice of dimension n = 9 having an E8-
section with the same minimum. Then no lattice having the same minimum as Λ
strictly contains Λ.

Proof. Assume that some lattice L with minL = minΛ contains Λ to an index
d ≥ 2. Let us scale for convenience all lattices to minimum 2. By Proposition 3.2,
we have γ(Λ) ≥ γ(E8 ⊥ A1) = 2 · 2−1/9, hence γ(L)9/2 ≥ 2 · γ(E8 ⊥ A1)

9/2 = 32,
which contradicts the upper bound (1). �

4. An algorithm to check the existence of a code

The basic idea of the following algorithm is motivated by the geometric situation
described in the proof of Proposition 3.1. Given a Z/dZ-code C, we either show
that the intersection of TC (as in (3)) with R is empty, or we show that it is non-
empty by finding a corresponding Gram matrix. A problem we have to deal with is
the fact that R is given by infinitely many inequalities. The idea is to start with a
finite set of inequalities and then successively add inequalities until either we find
a point in the intersection or have a proof for infeasibility. For the starting set of
inequalities we take a finite set of vectors V ⊂ Z

n such that the linear function
TrG = 〈Idn, G〉 is bounded from above on the polyhedron

(5) P = {G ∈ TC | G[v] ≥ 1 for all v ∈ V }.
Note, if P is empty, we have a proof that the minimal class CC is empty. The
assumption on the bounded trace allows us to find a solution of the linear program-
ming problem

(6) max
Q∈P

TrQ.

Depending on whether or not the found solution G of this linear program is positive
definite or not we have a different strategy for obtaining additional inequalities,
respectively, vectors for the description of P . In the first case we compute the
minimum of G. If it is 1, the Gram matrix G proves the existence of the minimal
class CC and corresponding lattices. If the minimum is less than 1 we add S(G) to
V . In the second case, if G is not positive definite, we add some vector(s) v ∈ Z

n
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to V with G[v] ≤ 0. Such vectors can be found for example by an eigenvector
computation. Having enlarged V , we can go back and solve the linear program (6),
now with respect to a smaller polyhedron P . Again, if P is non-empty, we obtain
a new solution G and proceed as described above. See Algorithm 1 for a schematic
description of the described procedure. Note that all of the steps can be realized
with the help of a Computer Algebra System. We used MAGMA [MAGMA] for our
computations, in conjunction with lrs [lrs] to perform polyhedral computations.

Input: n, d, C = {a(i) ∈ (Z/dZ)n | i = 1, . . . , k}
Output: (“true” and a corresponding Gram matrix G)

or (“false” and V ⊂ Z
n such that P in (5) is empty)

V = initial set of integral, non-zero vectors
do

P = {G ∈ TC : G[v] ≥ 1 for all v ∈ V }
if P = ∅
then

return (“false”, V )
else

determine G ∈ P with TrG = max
G′∈P

TrG′

if G ∈ Sn
>0

then
if min(G) ≥ 1
then

return (“true”, G)
else

V = V ∪ S(G)
end if

else
compute finite NV ⊂ Z

n with G[v] ≤ 0 for v ∈ NV
V = V ∪ NV

end if
end if

end do

Algorithm 1. Determines feasibility of a given code C

It is not a priori clear that this procedure is in fact an algorithm, that is, if it
stops after finitely many steps. As long as it does in all cases we consider, we may
not even care. In order to guarantee that the computation finishes after finitely
many steps, depending on T , we can restrict the vectors to be added to V to some
large finite subset of Zn, for example, by bounding the absolute value of coordinates.
An explicit bound for the coordinates of vectors x ∈ Z

n, with G[x] = 1 for G in R
with TrG bounded by some constant, is derived in [Sch09a, Section 3.1].

Algorithm 1 yields a vertex G of the face FC = TC ∩ R of R, associated with
the code C through the choice of specific coordinates ē(i) (see the proof of Proposi-
tion 3.1). If we want to know a description of the whole face FC , we can compute
all of its vertices by exploring neighboring vertices of vertices found so far, until no
new vertices are discovered. As the face FC is bounded this traversal search on the
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graph of vertices and edges (one-dimensional faces) of FC ends after finitely many
steps. Given a vertex G, the neighboring vertices are found as follows. We consider
the polyhedral cone

(7) {G′ ∈ TC | G′[x] ≥ 1 for all x ∈ S(G)}
with apex G. Thus the elements of S(G) yield a polyhedral description with linear
inequalities. Using standard methods (cf. for example [Sch09a, Appendix A]), we
can convert it into a description,

{G′ ∈ Sn | G′ = G+ λ1R1 + . . .+ λkRk, λi ≥ 0},
with extreme rays given by generators R1, . . . , Rk ∈ Sn \ {0}. For each of these
generators Ri we can find a neighboring vertex of G in FC by a procedure similar
to the one of finding contiguous perfect forms (cf. [Sch09a, Section 3.1]). See
Algorithm 2.

Input: Vertex G of FC and generator R of an extreme ray of (7)
Output: ρ > 0 with min(G+ ρR) = min(G) and S(G+ ρR) �⊆ S(G).

(l, u) ← (0, 1)
while G+ uR �∈ Sn

>0 or min(G+ uR) = min(G) do
if G+ uR �∈ Sn

>0 then u ← (l + u)/2
else (l, u) ← (u, 2u)
end if

end while
while S(G+ lR) ⊆ S(G) do

γ ← l+u
2

if min(G+ γR) ≥ min(G) then l ← γ
else

u ← min

{
min(G)−G[x]

R[x]
| x ∈ S(G+ γR), R[x] < 0

}
∪ {γ}

end if
if min(G+ γR) = min(G) then l ← u end if

end while
ρ ← l

Algorithm 2. Determination of neighboring vertices of FC .

Once we know all the vertices of FC , we can easily compute a relative interior
point that carries information on several invariants of the class CC , like its perfection
rank r and the number s of minimal vectors of Λ. To obtain just any interior
point, it is actually enough to know an initial vertex and the generating rays of the
polyhedral cone (7). If we know all the vertices G1, . . . , Gk of FC , we can compute

the vertex barycenter 1
k

∑k
i=1 Gi of FC that carries even more information. For

example, its automorphism group is equal to the automorphism group

AutFC = {U ∈ GLn(Z) | U tFCU = FC}
of FC . This is due to the fact that any automorphism of the face FC permutes
its vertices, and hence leaves the vertex barycenter fixed. On the other hand, the
vertex barycenter is a relative interior point of FC , that is, a face of the Ryshkov
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polyhedron on which any element of GLn(Z) acts. Therefore, for topological rea-
sons, any automorphism of the vertex barycenter has to be an automorphism of
FC .

In higher dimensions, i.e., for n = 9, depending on the face FC , the polyhedral
computations necessary to find an initial vertex G or even all vertices may not be
feasible (within a reasonable amount of time). In these cases, we can try to exploit
available symmetries, that is, use the group AutFC . It can be computed from the
coordinate vectors ē(i) which define the linear space TC (see (3)). In fact,

AutFC = {U ∈ GLn(Z) | Uēi ∈ {ē(1), . . . , ē(n)} for all i = 1, . . . , n}.

As at least the vertex barycenter of FC is invariant with respect to G = AutFC , it
is contained in the G-invariant linear subspace

TG = {G ∈ Sn | U tGU = G for all U ∈ GLn(Z)}.

So if we just want to check the feasibility of a given code C and want to compute its
invariants from the vertex barycenter, then we can restrict the search to the linear
space TG , respectively, to the affine space TG ∩ TC . In practice, in many cases the
computation time is reduced tremendously by this kind of symmetry reduction.

Note that TG ∩ R, like R itself, is a locally finite polyhedron. Its vertices (and
corresponding lattices) are called G-perfect. We refer to [Sch09b] for a detailed
account and interesting examples. If there is only one Gram matrix up to scaling
in TG ∩ TC ∩R it is G-eutactic and therefore eutactic (see [Mar03] for details). By
the discussion at the end of Section 3, we can then conclude that the minimum of
γ for the minimal class CC is attained on it.

5. Restricting the number of codes under consideration

The computations proposed in the last sections are quite involved, so it is desir-
able to a priori exclude as many cases as possible. An efficient basic tool to restrict
the number of possible codes is the following identity.

Proposition 5.1 (Watson, [Wat71b]). Let e1, . . . , en be independent vectors in E,
let a1, . . . , an and d ≥ 2 be integers, and let

f =
a1e1 + · · ·+ anen

d
.

Denote by sgn(x) the sign of the real number x. Then,((
n∑

i=1

|ai|
)

− 2d

)
N(f) =

n∑
i=1

|ai| (N (f − sgn(ai)ei)−N(ei)) .

Proof. Just develop both sides of the displayed formula. �

Corollary 5.2 (Watson, [Wat71b]). With the notation above, assume that the ei
are minimal vectors of a lattice Λ, that f belongs to Λ and that the ai are non-zero.
Then we have ∑

i

|ai| ≥ 2d ,

and equality holds if and only if the n vectors e′i = f − ei are minimal.
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When adding vectors f as above to the lattice Λ′ = 〈e1, . . . , en〉, one may always
reduce the ai modulo d. When there is only one such vector, i.e., when we may
write Λ = 〈Λ′, f〉, then by negating some ei if needed, we may, moreover, assume
that all ai are non-negative. By reducing the dimension, we may even assume they
are strictly positive. In this case, we adopt the following notation:

Notation 5.3. Suppose that Λ/Λ′ is cyclic of order d ≥ 2, and that

Λ = 〈Λ′, f〉 with f =
a1e1 + · · ·+ anen

d

and ai ∈ {±1, . . . ,±
d
2�}. For i = 1, . . . , 
d2� we then set

mi = |{aj | aj = ±i}|

and say that Λ is of type (m1, . . . ,m�d/2�)d, or simply (m1, . . . ,m�d/2�).

Note, when we use this notation, we have m1 + · · · + m�d/2� = n. It will be
generally assumed that d and the ai are coprime, because otherwise, we could
replace d by one of its strict divisors.

It should be noted that we also have Λ = 〈Λ′, a f〉 for any a coprime to d. This in-
duces an action of (Z/dZ)×/{±1} on the set of admissible types (m1, . . . ,m�d/2�)d.
If one of the types in an orbit does not satisfy Watson’s criterion in Corollary 5.2,
we know that a corresponding code does not exist.

6. Classifying cyclic quotients

In this section we give complete results on cyclic quotients for dimension 9.
The results are displayed in Table 2, with coordinates (a1, . . . , a9) of a generator,
together with three basic invariants of lattices in the corresponding minimal class
(see Proposition 3.1): s = s(Λ), r = perf(Λ) and s′ = s(Λ′). Note that we list only
one admissible type (m1, . . . ,m�d/2�) of each (Z/dZ)×/{±1} orbit, as explained at
the end of the previous section.

Our results show that cyclic quotients exist for n = 9 only with d ≤ 10 and
d = 12. They were obtained using an implementation of Algorithm 1, using
MAGMA scripts in conjunction with lrs. Our source code can be obtained from
the online appendix of this paper, contained in the source files of its arXiv version
arXiv:0904.3110. We used a C++ program to systematically generate a list of pos-
sible cases satisfying the conditions of Watson, described in Section 5. We checked
all cases d ≤ 30, left by Proposition 2.1 and the known bound (1) on γ9. In this
way, we also confirmed all of the previously known results for n ≤ 8 in [Mar01].
In dimension 9, we found several new possible indices. Below we exemplary give
a detailed account of our computational result for d = 12. For d ≤ 6 we give a
derivation.

6.1. Cyclic cases with d = 12. Among the most interesting cases are the cyclic
quotients with d = 12. There are four different types listed in Table 2. Three of
them occur only for the laminated lattice Λ9; it is the unique lattice in dimension 9
with s = 136. The fourth entry shows that there is also one type that occurs for
some lattices with s ≥ 87. One of them with s = 87 is the lattice L87 with Gram
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matrix ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 2 −2 2 −2 0 2 −2 2
2 4 −1 0 −2 2 0 0 2
−2 −1 4 −2 2 −1 −1 1 −2
2 0 −2 4 0 0 2 −1 2
−2 −2 2 0 4 −2 0 1 −2
0 2 −1 0 −2 4 0 1 2
2 0 −1 2 0 0 4 −2 0
−2 0 1 −1 1 1 −2 4 0
2 2 −2 2 −2 2 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The perfection rank of L87 and its Gram matrix G is 42. Hence, by the dis-
cussion in Section 3, it is in the relative interior of a three-dimensional face of the
Ryshkov polyhedron. A closer analysis reveals that this face is an octahedron with
centroid G. Its six vertices come in opposite pairs. Two of these pairs contain
Gram matrices of Λ9. They are obtained as G±R and G±R′, with R and R′ being
symmetric and having entries 0 everywhere, except at the positions determined by
the conditions R32 = R36 = R37 = 1 and R′

84 = R′
85 = −R′

86 = 1 (together with
the symmetric ones). The other pair G±R′′, with R′′

38 = R′′
83 = 1 and 0 elsewhere,

contains two Gram matrices of another perfect lattice with s = 99. We call this
special perfect lattice L99 in the sequel. It is characterized by the fact that it is the
only perfect lattice aside from Λ9 that has a Minkowskian sublattice with cyclic
quotient of order d = 12. Note that any Gram matrix of a lattice with cyclic quo-
tient of order d = 12 can be obtained as a convex combination of suitable Gram
matrices of L99 and Λ9.

A computer assisted calculation shows that both lattices L87 and L99 are eutac-
tic, but not strongly eutactic (see (4)). For example, for a Gram matrix G of L99

we compute (using MAGMA) the set of minimal vectors S(G) ⊂ Z
n and find that it

falls into five orbits under the action of the automorphism group of G. Each orbit O
yields a barycenter

∑
x∈O xxt and the so obtained five barycenters b1, . . . , b5 satisfy

a relation G−1 = λ1b1 + . . . + λ5b5 for positive coefficients λi, as can be checked
easily for example with the Maple package Convex [Convex]. See the comments in
the LaTeX source file of the arXiv paper arXiv:0904.3110 for further details. For
the perfect lattice L99, its eutaxy implies (by a theorem of Voronoi; see [Mar03])
that it is extreme, that is, it attains a local maximum of the Hermite invariant.

6.2. Cyclic cases with d ≤ 6. We give arguments for the 9-dimensional cases
with d ≤ 6 below. Actually, we shall see that it is possible to give complete results
for all dimensions with little extra work once we know the results up to n = 8 for
ı ≤ 5, and up to n = 9 for ı = 6. The general strategy to deal with cyclic quotients
of order ı = d = 3 to 6 is as follows (the notation is that of 5.3): taking into
account Corollary 5.2 and the action of (Z/5Z)× which allows us to exchange m1

and m2 when d = 5, we obtain the inequalities n = m1 ≥ 6 for d = 3, m1 ≥ 4 and
m1+2m2 ≥ 8 for d = 4, m1 ≥ n

2 and m1+2m2 ≥ 10 for d = 5 (and n ≥ 8 is known;
see [Mar01]), and finally m1 +m2 ≥ 4, m1 +m3 ≥ 6 and m1 +2m2 +3m3 ≥ 12 for
d = 6.

As a next step we apply the following averaging argument, justified by the dis-
cussion on symmetry at the end of Section 4:

Remark 6.1. Assuming a lattice of type (m1, . . . ,md/2)d exists, with the notation
of 5.3, we may assume that the scalar products of minimum vectors ek and el
associated with mi and mj are equal. For i = j, that is, for ek and el associated
with the same mi, we denote this scalar product by xi; for i �= j, we denote it by
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Table 2. Cyclic cases for n = 9

d generator s r s′

2 (1,1,1,1,1,1,1,1,1) 9 9 9
3 (1,1,1,1,1,1,1,1,1) 9 9 9
4 (1,1,1,1,1,1,1,1,1) 9 9 9
4 (1,1,1,1,1,1,1,1,2) 9 9 9
4 (1,1,1,1,1,1,1,2,2) 9 9 9
4 (1,1,1,1,1,1,2,2,2) 9 9 9
4 (1,1,1,1,1,2,2,2,2) 9 9 9
4 (1,1,1,1,2,2,2,2,2) 17 15 9
5 (1,1,1,1,1,1,1,1,2) 18 17 9
5 (1,1,1,1,1,1,1,2,2) 9 9 9
5 (1,1,1,1,1,1,2,2,2) 9 9 9
5 (1,1,1,1,1,2,2,2,2) 9 9 9
6 (1,1,1,1,1,1,2,2,2) 18 17 9
6 (1,1,1,1,1,2,2,2,2) 9 9 9
6 (1,1,1,1,2,2,2,2,2) 23 20 9
6 (1,1,1,1,1,1,1,2,3) 27 25 9
6 (1,1,1,1,1,1,2,2,3) 9 9 9
6 (1,1,1,1,1,2,2,2,3) 9 9 9
6 (1,1,1,1,2,2,2,2,3) 9 9 9
6 (1,1,1,2,2,2,2,2,3) 17 15 9
6 (1,1,1,1,1,1,1,3,3) 9 9 9
6 (1,1,1,1,1,1,2,3,3) 9 9 9
6 (1,1,1,1,1,2,2,3,3) 9 9 9
6 (1,1,1,1,2,2,2,3,3) 9 9 9
6 (1,1,1,2,2,2,2,3,3) 9 9 9
6 (1,1,2,2,2,2,2,3,3) 17 15 9
6 (1,1,1,1,1,1,3,3,3) 15 14 9
6 (1,1,1,1,1,2,3,3,3) 23 20 9
6 (1,1,1,1,2,2,3,3,3) 15 14 9
6 (1,1,1,2,2,2,3,3,3) 15 14 9
6 (1,1,2,2,2,2,3,3,3) 15 14 9
6 (1,2,2,2,2,2,3,3,3) 23 20 9
7 (1,1,1,1,1,2,2,2,3) 33 31 9
7 (1,1,1,1,2,2,2,2,3) 18 17 9
7 (1,1,1,1,1,1,2,3,3) 136 45 24
7 (1,1,1,1,1,2,2,3,3) 9 9 9
7 (1,1,1,1,2,2,2,3,3) 9 9 9
7 (1,1,1,1,1,2,3,3,3) 30 26 9
7 (1,1,1,1,2,2,3,3,3) 9 9 9

d generator s r s′

7 (1,1,1,2,2,2,3,3,3) 18 17 9
8 (1,1,1,1,2,2,2,3,3) 136 45 18
8 (1,1,1,2,2,2,2,3,3) 9 9 9
8 (1,1,2,2,2,2,2,3,3) 35 28 9
8 (1,1,1,2,2,2,3,3,3) 50 37 12
8 (1,1,1,1,1,2,2,3,4) 136 45 19
8 (1,1,1,1,2,2,2,3,4) 40 34 9
8 (1,1,1,2,2,2,2,3,4) 37 32 9
8 (1,1,1,1,2,2,3,3,4) 25 24 9
8 (1,1,1,2,2,2,3,3,4) 9 9 9
8 (1,1,2,2,2,2,3,3,4) 17 15 9
8 (1,1,1,1,2,3,3,3,4) 31 29 9
8 (1,1,1,2,2,3,3,3,4) 27 25 9
8 (1,1,1,1,3,3,3,3,4) 34 30 9
8 (1,1,1,1,2,2,3,4,4) 32 28 9
8 (1,1,1,2,2,2,3,4,4) 38 29 9
8 (1,1,1,1,2,3,3,4,4) 42 34 10
8 (1,1,1,2,2,3,3,4,4) 9 9 9
8 (1,1,2,2,2,3,3,4,4) 33 27 9
8 (1,1,1,2,3,3,3,4,4) 23 21 9
9 (1,1,1,2,2,2,3,3,4) 84 43 13
9 (1,1,1,2,2,3,3,3,4) 50 37 10
9 (1,1,1,1,2,3,3,4,4) 136 45 16
9 (1,1,1,2,2,3,3,4,4) 53 37 10
9 (1,1,1,2,3,3,3,4,4) 31 27 9
9 (1,1,2,2,3,3,3,4,4) 15 14 9
10 (1,1,2,2,2,2,3,3,5) 136 45 16
10 (1,1,2,2,2,2,3,4,5) 136 45 16
10 (1,1,2,2,2,3,3,4,5) 64 40 10
10 (1,1,1,2,2,3,4,4,5) 136 45 13
10 (1,1,2,2,2,3,4,4,5) 51 36 9
10 (1,1,2,2,3,3,4,4,5) 43 39 9
10 (1,1,1,2,3,4,4,4,5) 84 43 12
10 (1,1,2,2,3,4,4,4,5) 53 37 9
12 (1,1,2,3,3,4,4,5,6) 136 45 12
12 (1,1,3,3,4,4,5,5,6) 136 45 12
12 (1,2,2,3,3,3,4,4,5) 136 45 13
12 (1,2,2,3,3,4,4,5,6) 87 42 10

yi,j . These parameters are omitted if mi = 0, 1, respectively, mj = 0, 1, except of
yi,j in the case mi = mj = 1. For even d, we can additionally set xd/2 = yd/2,j = 0,
as we can average the two Gram matrices resulting from a base change, which
replaces only ek by −ek.

By this kind of averaging argument, we assume that Gram matrices for a lattice
type depend only on a short list of parameters. In particular, only on x1 if d = 3 or
d = 4 (and then x1 = 0 if m1 = 4), at most three parameters x1, x2, y1,2 if d = 5 or
d = 6. In practice, for large enough mi, the existence and the equalities s = r = n
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hold taking pairwise orthogonal vectors ei, so that a finite number of verifications
will suffice, which need difficult arguments only in low dimensions.

Index 2. For ı = 2, there is one lattice, namely Λ = 〈Λ′, f〉 where f = e1+···+en
2 ,

which can be constructed for n ≥ 4 using an orthogonal basis for Λ′. We have
(s, r) = (12, 10) and Λ ∼ D4 if n = 4. For n ≥ 5 we get s = r = n.

Index 3. Here, we have Λ = 〈Λ′, f〉 and f = e1+···+en
3 . By Corollary 5.2, we must

have n ≥ 6 and s ≥ 12 when n = 6 (because the vectors ei and e′i = f − ei are
minimal; this also shows that the index system of S6 = {ei, e′i : i = 1, . . . , 6} is
I(S6) = {1, 2, 3}), and [BM09, Proposition 3.5] shows that perf(S6) = 11. The
result is: Lattices exist if and only if n ≥ 6, and we have (s, r) = (12, 11) if n = 6,
s = r = n if n ≥ 7. For the proof, it suffices to find convenient values for the
common value x1 of scalar products ei ·ej . We may clearly choose x1 = 0 for n ≥ 10,
and we check that for x1 = 1

5 , we have s = 12 if n = 6 and s = n if n = 7, 8, 9.

Index 4. Here we have Λ = 〈Λ′, f〉 and f =
e1+···+em1

+2(em1+1+···+en)

4 . The result
is: Lattices exist if and only if m1 ≥ 4, n ≥ 7 and (m1,m2) �= (7, 0), and we have
(s, r) = (n+8, n+6) if m1 = 4 and s = r = n if m1 ≥ 5, except in the following three
cases: (s, r) = (23, 19) if (m1,m2) = (4, 3), (s, r) = (21, 19) if (m1,m2) = (6, 1),
and (s, r) = (16, 15) if (m1,m2) = (8, 0). For the proof, it suffices to choose x1 = 0
if m1 = 4 or m1 + 4m2 ≥ 17 and x1 = 1/5 otherwise.

Index 5. Recall that we assume that m1 ≥ n
2 . The result is: Lattices exist if and

only if n = 8 and m1 = 4, 5, 6, or n = 9 and m1 = 5, 6, 7, 8, or n ≥ 10 and we then
have s = r = n except in the four cases (m1,m2) = (4, 4), (6, 2), (8, 1) and (10, 0)
where (s, r) = (2n, 2n − 1). Watson’s conditions together with n ≥ 8 suffice to
ensure the existence of lattices, and the special values for (s, r) occur exactly when
equality holds in Watson’s Proposition 5.1 and an analogue of Zahareva (see [Mar01,
proof of Proposition 9.1]).

Index 6. Here the statement of the result is much more complicated, and for the sake
of simplicity, we consider separately the case of dimension 8. Lattices exist if and
only if n = 8 and (m1,m2,m3) is one of the six sets listed in [Mar01, Table 11.1];
see the list below, or

n = 9, m1 +m2 ≥ 6 and m1 +m3 ≥ 4.
When these conditions are satisfied, one has (s, r) = (n+6, n+5) if m1 +m2 = 6,
(s, r) = (n + 8, n + 6) if m1 + m3 = 4, and s = r = n otherwise, except in the
following exceptions, for which we list (m1,m2,m3) and (s, r):

n = 8: (3, 4, 1): (31, 26); (4, 3, 1): (27, 25); (5, 2, 1): (120, 36) (Λ = E8); (2, 4, 2):
(28, 22); (4, 2, 2): (36, 28).

n = 9: (4, 5, 0): (23, 20); (6, 3, 0): (18, 17); (7, 1, 1): (27, 25); (1, 5, 3): (23, 20);
(5, 1, 3): (23, 20).

n = 10: (8, 2, 0): (20, 19); (9, 0, 1): (30, 28).
n = 11: (10, 1, 0) ,(22, 21).
n = 12: (12, 0): (24, 23).

7. Classifying non-cyclic quotients

In this section we give complete results on non-cyclic quotients for dimension 9.
For non-cyclic cases one only needs to consider cases with d being a product of
k ≥ 2 numbers d1, . . . , dk that share a common divisor greater 1. Otherwise we
could reduce the minimal number k of necessary generators. By Proposition 2.1
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together with bound (1) on γ9, we only need to consider products d ≤ 30. We
shall consider for all dimensions, quotients of type 2k, 3k, and 4 · 2k, which we have
been able to compute by hand. This leaves us with the following list of additional
possible cases: 6 · 2, 8 · 2, 10 · 2, 12 · 2, 14 · 2, 42, 6 · 3, 6 · 22, 52 and 9 · 3.

The case 14 ·2 can be excluded directly from our classification of cyclic quotients
in Section 6, as there exists no cyclic quotient of order 14. The cyclic quotients of
order 12 occur either on the similarity class of Λ9 or on a minimal class containing
that of the lattice that we baptized L87 in Section 6.1.

This lattice is weakly eutactic (an easily checked linear condition) so that γ(L87)
is minimal among all lattices containing its class, hence among all classes having
a cyclic quotient of order 12, since γ(L87) is smaller than γ(Λ9). Doubling its
density would produce a lattice in dimension 9 with Hermite invariant 2.16..., which
contradicts the Cohn-Elkies bound (1).

Using massive computer calculations to be explained below, we were able to
exclude the cases 8 · 2, 10 · 2, 6 · 3, 9 · 3, 5 · 5, and classifying all possible codes for
6 · 2 and 42. From the classification of 6 · 2, the last remaining case 6 · 22 can be
excluded, as we shall explain.

For the convenience of the reader, as in the cyclic case, all of the existing cases
are listed in tables (see Tables 3, 4, 5, 6, 7, 8, 9, and 10) with coordinates for the
generators, together with the three basic invariants s = s(Λ), r = perf(Λ) and
s′ = s(Λ′) of lattices Λ in the corresponding minimal class.

7.1. 2-elementary quotients: preliminary remarks. Consider a lattice Λ′ of
minimum 1 equipped with a basis (e1, . . . , en) of minimal vectors. Quotients Λ/Λ′

which are 2-elementary are of the form Λ = 〈Λ′, x/2 : x ∈ C〉, where the compo-
nents of x modulo 2 run through the set of words of a binary code C. The condition
minΛ = minΛ′ (= 1) implies that C is of weight w ≥ 4 (because index 2 is impossi-
ble in dimensions 1, 2, 3) and that the scalar products ei · ej must be zero whenever
i, j belong to the support of some word of weight 4 (because the centered cubic
lattice L ∼ D4 is the only 4-dimensional lattice with ı(L) = 2). Under these condi-
tions, the averaging argument of Remark 6.1 shows that we may choose Λ′ = Z

n.
We denote the unique lattice Λ obtained in this way by ΛC . Its minimal vectors are
the ±ei ∈ Λ′ and the vectors of the form

±ei±ej±ek±e�
2 for sets {i, j, k, �} which are

the support of a weight 4 word of C. For the basic terminology of coding theory
used here and in the sequel, we refer to [CS99].

Remark 7.1. Let C �= 0. Then ΛC is not integral, and the smallest minimum which
makes it integral is 2 if C is even and the intersections of the support of its words
are even sets; then ΛC scaled to minimum 2 is even if and only if C is doubly even,
and 4 otherwise; when scaled to minimum 4, ΛC is even if and only if C is.

Proposition 7.2. Let C be a binary code of weight w ≥ 4. Denote by w4 the
number of its weight-4 words and by t the number of sets {i, j} such that i and j
do not belong to the support of the same weight-4 word. Then

s(ΛC) = n+ 8w4 and r(ΛC) =
n(n+ 1)

2
− t .

Proof. Write ΛC as a union
⋃

w Λ′ + xw

2 where xw runs through a set of represen-
tatives with components 0, 1 of the words of C. It is clear that the minimum of

Λ′ + x is equal to weight(w)
4 , which gives the result for s.
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For ε > 0 small enough, let Vε be the set of lattices of the form 〈e1, . . . , en〉 with
|N(ei) − 1| ≤ ε (1 ≤ i ≤ n) and |ej · ek| ≤ ε (1 ≤ j < k ≤ n). Then the set Vε is
a neighborhood of Λ′ in the set En of similarity classes of well-rounded lattices of
minimum 1. The set of lattices obtained from lattices Λ′ ∈ Vε by adjunctions of the
vectors xw

2 as above also is a neighborhood of Λ in En, and these neighbor lattices
will not have minimum 1 unless ei ·ej = 0, whenever i, j lie in the support of a same
weight-4 word. When this condition holds, one has S(L) = S(Λ) for all L ∈ Vε

and small enough ε. This proves that lattices in Vε depend up to similarity on t
independent parameters, which shows that the perfection co-rank of every L ∈ Vε

is equal to t. �

Definition 7.3. We say that a binary code C of weight 4 is complete if every 2-set
{i, j} belongs to at least one weight-4 word of C.

Remark 7.4. Lattices generated by Z
n, together with vectors of the form v =

ei1+···+eik
2 with k ≥ 4 are eutactic. Indeed, vectors with k ≥ 5 may be disregarded.

When k = 4, we have the relation∑
p ei1

±···±ei4
2

= 2(pei1 + · · ·+ pei4 ).

Thus we may modify the basic eutaxy relation
∑

pei = Id of Zn by inserting a
coefficient 1− ε in front of pei1 + · · ·+ pei4 and adding ε

2 times the eight terms sum
above; we conclude the proof by induction on the number of vectors with k = 4,
after having chosen a small enough ε.

As a consequence, lattices constructed with a complete binary code are not
merely perfect, but also extreme by a theorem of Voronoi.

Note that we avoid the tempting notion of a perfect code as it already exists in
coding theory. As was pointed out to us by Gilles Zémor, complete codes are the
codes having covering radius 2. He suggested also the following first examples to
us: Extend the definition of a complete code to codes of weight 3. Then:

(1) the extension of such a code by the parity check is a complete code of
weight 4, and

(2) the Hamming code with parameters (2p − 1, p, 3) is complete as a weight-3
code, so that the extended code with parameters (2p, p, 4) is a complete
code of weight 4.

Applied to the Hamming code H7, we obtain the extended Hamming code H8,
for which ΛC � E8. The easy proposition below gives a method for constructing
complete codes.

Proposition 7.5. Let C be a binary (n, k, 4) code, and let C ′ be its extension to
length n+ 2 by the vector (0n−2, 14). Then C ′ is an (n+ 2, k + 1, 4) code, and C ′

is complete if and only if C is complete and for every i < n− 1, there exists j �= i
such that (i, j, n−1, n) is the support of a weight-4 word of C; in particular, n must
be even.

We omit the proof, as it is not essential for our classification. Applying the
proposition, we see that the (2m,m−1, 4) code generated by the words (14, 02m−4),
(02, 14, 02m−6),. . . , (02m−4, 14) is complete; the corresponding lattice ΛC is isomet-
ric to D2m. Together with H8 and its (7, 3, 4) subcode, this exhausts the list of
complete codes of length � ≤ 8.
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7.2. 2-elementary quotients: classification. The classification of lattices ΛC

up to dimension n = 9 amounts to that of binary codes of weight w ≥ 4 and length
� ≤ 9.

For type 22, we state the result for all dimensions. Binary codes C of dimension 2
contain 3 non-zero words c1, c2, c3 of weights w1, w2, w3 ≥ 4, and since ΛC must non-
trivially extend a lattice of lower dimension, the supports of two words must cover
the set {1, . . . , n}. Codes are described by a basis c1, c2, which may be assumed to
satisfy 4 ≤ w1 ≤ w2 ≤ w3 = 2n− w1 − w2. It is then easily checked that quotients
of type 22 come from 2-dimensional codes which are classified by the rules

4 ≤ w1 ≤ 2n

3
and max(w1, 4) ≤ w2 ≤ n− w1

2
.

Here is the list of weight systems for codes of dimension 2 and length � ≤ 9, from
which we can read s(ΛC) of the corresponding lattices ΛC and find with little effort
their perfection rank (using Proposition 7.2).

n = 6: (43).
n = 7: (42, 6), (4, 52).
n = 8: (42, 8), (4, 5, 7), (4, 62), (52, 6).
n = 9: (4, 5, 9), (4, 6, 8), (4, 72), (5, 5, 8), (5, 6, 7), (63).

In Table 3 we give a list with generators and the associated basic invariants for
the n = 9 cases.

Table 3. Non-cyclic cases for n = 9 and d = 22

generators s r s′

(1,1,1,1,0,0,0,0,0),(0,0,0,0,1,1,1,1,1) 17 15 9
(1,1,1,1,0,0,0,0,0),(0,0,0,1,1,1,1,1,1) 17 15 9
(1,1,1,1,0,0,0,0,0),(0,0,1,1,1,1,1,1,1) 17 15 9
(1,1,1,1,1,0,0,0,0),(0,0,0,0,1,1,1,1,1) 9 9 9
(1,1,1,1,1,0,0,0,0),(0,0,0,1,1,1,1,1,1) 9 9 9
(1,1,1,1,1,1,0,0,0),(0,0,0,1,1,1,1,1,1) 9 9 9

It is easily checked that the unique code of length 8 and weight 5 has no extension
of dimension 3 and weight 5 to length 9. We may thus from now on restrict ourselves
to codes of weight 4, when considering binary codes of dimension at least 3.

Table 4. Non-cyclic cases for n = 9 and d = 23

generators aside from (1,1,1,1,0,0,0,0,0) s r s′

(0,0,1,1,1,1,0,0,0),(0,0,0,0,0,1,1,1,1) 41 30 9
(0,0,1,1,1,1,0,0,0),(0,0,0,0,1,1,1,1,1) 33 24 9
(0,0,1,1,1,1,0,0,0),(0,0,0,1,0,1,1,1,1) 33 24 9
(0,0,1,1,1,1,0,0,0),(0,1,0,1,0,1,1,1,1) 33 24 9
(0,0,0,1,1,1,1,0,0),(0,0,1,0,0,0,1,1,1) 33 27 9
(0,0,0,1,1,1,1,0,0),(0,0,1,0,0,1,1,1,1) 25 21 9
(0,0,1,1,1,1,1,0,0),(0,0,0,0,0,1,1,1,1) 25 21 9
(0,0,1,1,1,1,1,0,0),(0,1,0,1,0,0,1,1,1) 17 15 9
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Table 5. Non-cyclic cases for n = 9 and d = 24

generators aside from (1,1,1,1,0,0,0,0,0),(0,0,1,1,1,1,0,0,0) s r s′

(0,1,0,1,0,1,1,0,0),(1,1,0,0,0,0,0,1,1) 89 43 9
(0,1,0,1,0,1,1,0,0),(1,1,0,0,0,0,1,1,1) 65 30 9
(0,0,0,0,1,1,1,1,0),(0,1,0,1,0,1,0,1,1) 57 37 9
(0,0,0,1,0,1,1,1,0),(1,0,1,0,0,0,0,1,1) 81 45 9

Next we turn to binary codes of dimension 3. As shown in [Mar01], there is one
code if n = 7, and three new codes if n = 8. From the list of codes of dimension 2 of
length � ≤ 8 above, one easily proves that there are eight new codes in dimension 9.
See Table 4. The basic invariants can be easily computed using Proposition 7.2.

Extending the four codes of dimension 3 and length � ≤ 8, we prove that there
are four codes in dimension 9 besides the trivial extension of the (8, 4, 4) extended
Hamming code H8. See Table 5. Again, the basic invariants can be easily computed
using Proposition 7.2.

Since the automorphism of H8 is 3-fold transitive on the coordinates, it does not
extend to a code of dimension 5 and length 9, which completes the classification
of 2-elementary codes for n = 9. Note that the latter code extends to a code of
dimension 5 and length 10, which lifts to the lattice 〈E8,D10〉; see Appendix A.

7.3. 3-elementary quotients. Quotients of Λ/Λ′ of type 3k are constructed using
ternary codes of weight w ≥ 6 and dimension k, but the existence of a code C does
not imply the existence of a pair (Λ,Λ′) defining C, as shown by the lemma and
the comment below.

Lemma 7.6. There do not exist 9-dimensional pairs (Λ,Λ′) with Λ/Λ′ 3-elementary
of order 27.

Proof. A ternary code C of length 9 and dimension 3 extends a ternary code C0 of
length 8 and dimension 2. There is a unique code C0, and the lattice Λ0 defined
by C0 is the E8 lattice. Hence Λ must contain to index 3 a lattice having an E8

cross-section, which contradicts Lemma 3.3. �

Note that despite this lemma, there exists a (unique) ternary code with param-
eters (9, 3, 6), given by the generating matrix⎛

⎝1 1 1 1 1 1 0 0 0
0 0 −1 −1 1 1 1 1 0
0 1 1 −1 −1 0 1 0 1

⎞
⎠ .

Its weight system is (9, 612).
It is easily checked that there are three ternary codes with parameters (9, 2, 6)

and one with parameters (8, 2, 6). Their respective weight systems are (63, 9),
(62, 7, 8), (6, 73) and (64); generating matrices for the first three can be read in
Table 6; the latter one, referred to in Lemma 7.6, extends a code of length 8.

The averaging argument of Remark 6.1 applied to the first three codes produces
matrices depending on two, zero, and three parameters. In the first and third
case, we find lattices in this way for which s(Λ) takes the smallest possible value
compatible with Watson’s conditions (see Proposition 5.1). Hence the minimal
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Table 6. Non-cyclic cases for n = 9 and d = 32

generators s r s′

(1,1,1,1,1,1,0,0,0),(0,0,0,1,1,1,1,1,1) 27 23 9
(1,1,1,1,1,1,0,0,0),(1,1,2,0,0,0,1,1,1) 50 37 10
(1,1,1,1,1,1,0,0,0),(1,1,0,0,2,2,1,1,1) 15 14 9

classes of our three lattices are the smallest possible, with invariants s, r and s′ as
displayed in Table 6.

Below we give Gram matrices for the three lattices Λ, obtained by replacing e1
and e9 in a basis (e1, . . . , e9) for Λ

′, by vectors with denominators 3 and with there
numerators containing representatives obtained from two code words in Table 6:

⎛
⎜⎜⎜⎝

94 47 47 47 47 47 0 0 47
47 90 18 5 5 5 −5 −5 0
47 18 90 5 5 5 −5 −5 0
47 5 5 90 18 18 5 5 47
47 5 5 18 90 18 5 5 47
47 5 5 18 18 90 5 5 47
0 −5 −5 5 5 5 90 18 47
0 −5 −5 5 5 5 18 90 47
47 0 0 47 47 47 47 47 94

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

18 9 9 9 9 9 −3 −3 0
9 18 3 3 0 0 −2 −2 −3
9 3 18 3 0 0 −2 −2 −3
9 3 3 18 0 0 −3 −3 −9
9 0 0 0 18 9 0 0 9
9 0 0 0 9 18 0 0 9
−3 −2 −2 −3 0 0 18 3 9
−3 −2 −2 −3 0 0 3 18 9
0 −3 −3 −9 9 9 9 9 18

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

120 60 60 60 60 60 0 0 0
60 108 9 9 9 9 0 0 0
60 9 108 36 9 9 0 0 42
60 9 36 108 9 9 0 0 42
60 9 9 9 108 36 0 0 −42
60 9 9 9 36 108 0 0 −42
0 0 0 0 0 0 108 27 54
0 0 0 0 0 0 27 108 54
0 0 42 42 −42 −42 54 54 110

⎞
⎟⎟⎟⎠ .

Index systems for the Gram matrices, hence also for the corresponding minimal
classes are:

{1, 2, 3, 4, 22, 6, 32}, {1, 2, 3, 4, 22, 5, 6, 7, 8, 4 · 2, 9, 32}, {3, 6, 22} .

7.4. Quotients of type 4·2. Here, n = 9. We define integers ai, bi, 1 ≤ i ≤ n,
m1, m2, such that m1 ≥ 4, m := m1 + m2 ∈ {7, 8, 9}, writing Λ in the form
Λ = 〈Λ′, e, f〉, where

e =
a1e1 + · · ·+ anen

4
and f =

b1 e1 + · · ·+ bn en
2

with ai ∈ {0, 1, 2}, bi ∈ {0, 1}, ai = 1 for i ≤ m1, ai = 2 for m1 +1 ≤ i ≤ m1 +m2,
ai = 1 for i > m. We also consider

e′ =
a′1e1 + · · ·+ a′nen

4
and f ′ =

b′1 e1 + · · ·+ b′n en
2

,

e′ ≡ e + f mod Λ′, f ′ ≡ 2e + f mod Λ′, a′i = ±1 for i ≤ m1, a
′
i = 0 or 2 for

i > m1, and b′i = 0 or 1. Note that m1, namely the number of components ±1 of
words attached to denominator 4, is an invariant for all codes of the form 4 · 2k.

We first prove that m1 = 9 is impossible. This shows that minimizing m1 +m2

by exchanging e and e′ if needed, we may assume that m1 +m2 ≤ 8, i.e., that all
codes extend some 7- or 8-dimensional Z/4Z-code. Then we must have b9 = 1.

All together, there are 26 new codes in dimension 9 displayed in Table 7 (thus
with the extensions of the three 8-dimensional codes, there exist 29 codes). They
have been classified by first choosing m, then m1 as small as possible, then choos-
ing f as short as possible. The numbers of codes for given pairs (m1,m2) as above
are

(4, 3): 6; (5, 2): 6; (6, 1): 5; (4, 4), (5, 3): 1; (6, 2), (7, 1): 3; (8, 0): 1 .
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Table 7. Non-cyclic cases for n = 9 and d = 4 · 2

generators s r s′

(1,1,1,1,2,2,2,0,0),(0,0,0,0,0,1,1,1,1]) 41 30 9
(1,1,1,1,2,2,2,0,0),(0,0,0,1,0,1,1,1,1) 33 27 9
(1,1,1,1,2,2,2,0,0),(0,0,1,1,0,1,1,1,1) 33 27 9
(1,1,1,1,2,2,2,0,0),(0,0,0,1,0,0,1,1,1) 33 27 9
(1,1,1,1,2,2,2,0,0),(0,0,1,1,0,0,1,1,1) 25 21 9
(1,1,1,1,2,2,2,0,0),(0,0,1,1,0,0,0,1,1) 41 30 9
(1,1,1,1,1,2,2,0,0),(0,0,0,0,0,1,1,1,1) 17 15 9
(1,1,1,1,1,2,2,0,0),(0,0,0,0,1,1,1,1,1) 23 22 9
(1,1,1,1,1,2,2,0,0),(0,0,0,1,1,1,1,1,1) 56 37 12
(1,1,1,1,1,2,2,0,0),(0,0,0,0,1,0,1,1,1) 17 15 9
(1,1,1,1,1,2,2,0,0),(0,0,0,1,1,0,1,1,1) 9 9 9
(1,1,1,1,1,2,2,0,0),(0,0,0,1,1,0,0,1,1) 24 21 9
(1,1,1,1,1,1,2,0,0),(0,0,0,0,1,1,0,1,1) 46 34 9
(1,1,1,1,1,1,2,0,0),(0,0,0,1,1,1,0,1,1) 23 21 9
(1,1,1,1,1,1,2,0,0),(0,0,0,0,0,1,1,1,1) 35 28 9
(1,1,1,1,1,1,2,0,0),(0,0,0,0,1,1,1,1,1) 42 34 10
(1,1,1,1,1,1,2,0,0),(0,0,0,1,1,1,1,1,1) 23 21 9
(1,1,1,1,2,2,2,2,0),(0,0,1,1,0,0,0,1,1) 33 24 9
(1,1,1,1,1,2,2,2,0),(0,0,1,1,0,0,0,1,1) 17 15 9
(1,1,1,1,1,1,2,2,0),(0,0,0,0,1,1,0,1,1) 17 15 9
(1,1,1,1,1,1,2,2,0),(0,0,0,1,1,1,0,1,1) 9 9 9
(1,1,1,1,1,1,2,2,0),(0,0,0,1,1,1,0,0,1) 38 29 9
(1,1,1,1,1,1,1,2,0),(0,0,0,0,1,1,1,0,1) 37 32 9
(1,1,1,1,1,1,1,2,0),(0,0,0,0,0,1,1,1,1) 41 35 9
(1,1,1,1,1,1,1,2,0),(0,0,0,0,1,1,1,1,1) 9 9 9
(1,1,1,1,1,1,1,1,0),(0,0,0,0,1,1,1,1,1) 32 29 9

They define only 22 minimal classes, as the two codes with (s, r) = (41, 30), those
with (s, r) = (33, 27) in lines 2 and 4 of Table 7, and the three codes with (s, r) =
(9, 9) define the same minimal classes.

7.5. Quotients of type 4·22. Here we may write Λ = 〈Λ′, f, f ′, f ′′〉 where f, f ′, f ′′

have denominators 4, 2, and 2. By the results above for quotients of type 4 · 2, we
know that we may assume that f has component zero on e9, and then replacing f ′ by
f ′′ or f ′+f ′′, that f ′ also have the same property. Hence the 8-dimensional section
Λ0 = 〈e1. . . . , e8, f, f ′〉 is of one of three types, characterized by (m1,m2) = (4, 3),
(5, 2) or (6, 1) (see [Mar01, Section 10 and Table 11.1]).

The third type defines only E8, and thus does not extend to a quotient (4, 2) in
dimension 9 by Lemma 3.3. For the second one, the eutactic lattice in its minimal
class is the 8-dimensional Watson lattice, that is, the unique integral lattice of
minimum 4, with s = 75. (We refer to it as the “Watson lattice”, as Watson proved
that for n = 8, either s = 120, attained only by the root lattice E8, or s ≤ 75;
see [Wat71a]). Watson’s lattice is the unique weakly eutactic lattice in its minimal
class. It has determinant 512, which implies γ(Λ) ≥ 2 = γ(Λ9) by Proposition 3.2.
Thus conjecturally, Λ is similar to Λ9, and indeed, we do find only one code, hence
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Table 8. Non-cyclic cases for n = 9 and d = 4 · 22

generators s r s′

(1,1,1,1,2,2,2,0,0),(0,0,1,1,0,0,1,1,0),(0,0,1,1,0,1,0,0,1) 89 43 9
(1,1,1,1,2,2,2,0,0),(0,0,1,1,0,0,1,1,0),(0,1,0,1,0,1,0,0,1) 81 45 9
(1,1,1,1,2,2,2,0,0),(0,0,1,1,0,0,1,1,0),(0,1,0,1,0,0,1,0,1) 89 43 9
(1,1,1,1,1,2,2,0,0),(1,1,0,0,0,1,0,1,0),(0,0,0,0,0,1,1,1,1) 136 45 12

only the class of Λ9. Finally, we find three codes extending the first type. Two
of them again define the minimal class with (s, r) = (89, 43) already found for
quotients of type 24 and 4 · 2, and one the perfect class with s = 81, already found
for quotients of type 24. The Ryshkov polyhedron of the class with (s, r) = (89, 43)
is a square with edges belonging to a same minimal class having (s, r) = (90, 44)
and vertices belonging to the minimal class of Λ9. Our findings are subsumed in
Table 8.

7.6. Computer calculations. As mentioned at the beginning of Section 7, the full
classification for n = 9 relies on computer calculations, using an implementation
of Algorithm 1. In order to keep the necessary computations as low as possible,
we used a program to systematically generate a list of possible cases. It uses the
classification of codes for cyclic quotients for n = 9. Note that for a type d1 · · · dk
(with the di having a common divisor greater than 1) to be realizable in dimension n,
all of the k types d1 · · · di−1 · di+1 · · · dn have to be realizable.

For the cases to be treated, it suffices to consider k = 2, say types d1 · d2, with
cyclic types d1 and d2 both existing. We can run through all combinations of
possible codes generated by a = (a1, . . . , an) ∈ (Z/d1Z) and by b = (b1, . . . , bn) ∈
(Z/d2Z). From our classification of cyclic cases, the ai and bi are assumed to be
in {0, . . . , 
d1

2 �}, respectively, {0, . . . ,±
d2

2 �}. This is due to the fact that we could
exchange ei and −ei in a basis. For one of the given vectors, say a, we may assume
that this property holds; we may, moreover, assume that the ai are in non-decreasing
order. For the bi, however, we cannot make this assumption, as we already used
possible sign changes and changes of order of the vectors ei for “the normalization”
of a. With each bi, we therefore need to consider also d2−bi (except when bi = 0 or
bi =

d2

2 and d2 is even). Moreover, we need to consider all orderings of the bi — up
to some symmetry within equal ai entries. For example, if ai = ai+1 . . . = ai+l, we
may assume that bi, . . . , bi+l are in non-decreasing order. Note that we may still be
faced with quite a lot of possibilities, depending on the given choice of a and b. Note
also, that it may be advisable to change the roles of a and b. Another possibility
is to reduce the number of cases to be considered: For each case we can consider
linear combinations f = xa1e1+···+anen

d1
+ y b1e1+···+bnen

d2
with x, y ∈ Z and check

(based on the classification of cyclic types) if a corresponding lattice Λ = 〈Λ′, f〉
could exist.

Using the strategy sketched above, we were able to exclude the types 8 · 2, 10 · 2,
6 · 3, 9 · 3 and 5 · 5 in dimension 9. For the types 6 · 2 and 42 we were able to
show existence. Moreover, we obtained a complete classification of corresponding
codes. See Tables 9 and 10. From the classification of 6 · 2, we can exclude the
last remaining type 6 · 22, as we explain below. Our results were obtained using an
implementation of Algorithm 1, using MAGMA scripts in conjunction with lrs. Our
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Table 9. Non-cyclic cases for n = 9 and d = 6 · 2

generators s r s′

(0,1,1,1,1,2,2,2,3),(1,0,0,0,1,0,0,1,1) 136 45 37
(0,1,1,1,1,2,2,2,3),(1,0,0,1,1,0,0,1,0) 136 45 46
(0,1,1,1,1,2,2,3,3),(1,0,0,1,1,0,1,0,1) 99 45 33
(0,1,1,1,1,2,2,3,3),(1,0,0,1,1,1,1,0,1) 99 45 33
(0,1,1,1,1,2,2,3,3),(1,0,0,1,1,0,0,0,1) 87 42 23
(0,1,1,2,2,2,2,3,3),(1,0,1,0,0,0,1,0,1) 72 35 22
(0,1,1,1,2,2,2,2,3),(1,0,0,1,0,0,0,1,1) 64 40 33
(0,1,1,1,2,2,2,2,3),(1,0,1,1,0,0,0,1,0) 64 40 33
(0,1,1,1,2,2,2,3,3),(1,0,0,1,0,0,1,0,1) 41 34 23

Table 10. Non-cyclic case for n = 9 and d = 42

generators s r s′

(1,1,1,1,2,2,2,0,0),(0,1,-1,2,2,0,1,2,1) 81 45 9

source code can be obtained from the online appendix of this paper, contained in
the source files of its arXiv version arXiv:0904.3110. We used a C++ program that
systematically generated a list of possible cases as sketched above.

For codes of type d = 6 · 2, the computer assisted calculation output was 23
codes, which we had to check for equivalence. Write Λ = 〈Λ′, e, f〉 with

e =
a1e1 + · · ·+ a9e9

6
and f =

b1e1 + · · ·+ b9e9
2

,

and with ai ∈ {0, 1, 2, 3} and bi ∈ {0, 1}. Replacing e by e+ f or 2e+ f , we obtain
(after reduction modulo 6 and sign changes of some ei) three sets (ti) where ti is
the number of aj equal to i in the numerator of e. Two equivalent Z/6Z-codes must
have the same sets (ti). For codes having the same sets (ti), we were able to make a
canonical choice of an e′ among e, e+ f and 2e+ f , constructing this way, two new
Z/6Z-codes (if one of them is defined by a pair (e′, f ′), the other one corresponds to
(e′, 3e′+f ′)). Given two pairs (e′, f ′) and (e′, f ′′), we checked whether a convenient
permutation of the coordinates could transform f ′′ or f ′′+3e′ into e′. The result is
that the 23 codes found by the computer were classified up to equivalence by their
three sets (a, b, c, d), which reduced our list to only 9 classes of codes.

In this list, there are three pairs of lattices having the same kissing number
(s = 136, s = 99, s = 64). In each case, the matrices found by the computer define
lattices which are isometric, thus defining the same minimal class.

Quotients of type 6 · 22 can be easily ruled out by the classification of type 6 · 2.
Now, writing Λ = 〈Λ′, e, f, f ′〉, we see in Table 9 that we may choose e such that
a1 = 0. Then replacing if necessary f by f ′ or f + f ′, we may assume that b1 = 0.
But this implies the existence of an 8-dimensional lattice having a quotient of type
6 · 2, a contradiction.
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The 42 case is very special. There is only one lattice L81 in the minimal class,
which therefore is perfect. A Gram matrix is, for example,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 1 1 1 2 2 2 0 2
1 4 0 0 0 0 0 0 1
1 0 4 0 0 0 0 0 −1
1 0 0 4 0 0 0 0 2
2 0 0 0 4 0 0 0 2
2 0 0 0 0 4 0 0 0
2 0 0 0 0 0 4 0 1
0 0 0 0 0 0 0 4 2
2 1 −1 2 2 0 1 2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The lattice L81 and its dual lattice are strongly eutactic, that is, their sets of
minimal vectors are spherical 3-designs (see [Mar03]). Since it is perfect, it is also
extreme and dual-extreme by Voronoi’s theorem. The complete index system of L81

is described in Appendix B.

8. Universal lattices

In this section, we consider lattices Λ which are universal (for their dimension n)
in the following sense: with our usual notation, every quotient L/L′ which exists in
dimension n exists with L = Λ for a convenient choice of Λ′ generated by minimal
vectors of Λ.

Theorem 8.1. For dimensions n = 1, . . . , 9, the universal lattices in the sense
above are as follows (as usual up to similarity):

(1) All lattices if n = 1, 2 or 3.
(2) The root lattice D4 if n = 4.
(3) All lattices L with ı(L) = 2 and s(L) ≥ 6 if n = 5.
(4) None if n = 6 or n = 9.
(5) The lattices E7, E8 if n = 7, 8.

Proof. n ≤ 3. There is nothing to prove since the maximal index is 1.

n = 4. The maximal index is equal to 2 only for D4, which also admits index 1
since D4 has bases of minimal vectors.

n = 5. The maximal index is again 2 in dimension 5, so that we must have ı(L) = 2.
This implies that Lmay be written in the form L = L′∪(f+L′) where f = e1+···+e�

2 ,
� = 4 or 5, and L′ = 〈e1, . . . , e5〉 has index 2 in L.

If � = 4, then both the conditions “s ≥ 6” and “1 is an index” are satisfied.
If � = s(L) = 5, then S(L) = S(L′) and 2 is the only index for L. If � = 5 and

s(L) ≥ 6, there exists some minimal vector f �= ±ei. If f ∈ L′, then � < 5. Hence
f belongs to f +L′, and is of the form f = a1e1+···+a5e5

2 . We have |ai| ≤ 2 because
ı(L) ≤ 2, and ai �= 0,±2 because � = 5. Hence (f, e2, e3, e4, e5) is a basis for L.

n = 6. The maximal index is 4, attained uniquely on D6. This lattice has index
system {1, 2, 22}. Since there exist lattices with ı = 3 (e.g. E6), there is no universal
lattice in this dimension.

n = 7, 8. It results from Table 11.1 of [Mar01] that index 8 for n = 7 and index 16
for n = 8 occur only for En. Using the classification of root systems, it is then
easy to list all well-rounded sublattices of minimum 2 of E7 and E8 (see [Mar01],
Section 6) and then to check that they realize all quotients in their dimensions.
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n = 9. Quotients 42 occur only on the similarity class of the perfect lattice L81

described at the end of the previous section, whereas cyclic quotients of order 12
occur only on similarity classes with s ≥ 87, as described in Section 6.1. See also
Table 11 in Appendix B. �

Remark 8.2. The lattice Λ9 is almost universal. It realizes all types in dimension 9,
except 42.

Proof. We must show that all quotients listed in Theorem 1.1, except 42, do occur as
quotients of Λ9. This is clear for those which belong to the index system of E8 since
Λ9 has a cross-section proportional to E8. It thus remains to consider quotients
which are either cyclic of order 7, 8, 9, 10 and 12 or of type 6 · 2 or 4 · 22. Luckily,
this problem can be solved by a mere inspection of the codes found for dimension 9:
indeed, for each of these quotients, there exists at least one code for which Λ9 is
the only admissible lattice. Here is a list of such codes, given with the notation of
5.3 in cyclic cases and by the components of generators otherwise.
Type (7) : (6, 1, 2)7 ;
Type (8) : (4, 3, 2, 0)8 ;
Type (9) : (4, 1, 2, 2)9 ;
Type (10) : (2, 4, 2, 0, 1)10 ;
Type (12) : (2, 1, 2, 2, 1, 1)12 ;
Type (6 · 2) : (0, 14, 23, 3)6, (1, 03, 1, 02, 12)2 ;
Type (4 · 22) : (15, 22, 02)4, (12, 03, 1, 0, 1, 0)2, (12, 04, 1, 0, 1)2 . �

We do not know any result of this kind for larger dimensions. Note that Re-
mark 2.3 shows that a 24-dimensional universal lattice, if any, must be the Leech
lattice. In dimension 10, a possible universal lattice is provided by the lattice
〈E8,D10〉, which has quotients of order 32 and of the three types 25, 4 ·23 and 42 ·2;
it has a cross-section Λ9, but we do not even know whether all quotients of Λ10

occur for this lattice.

Appendix A: Some perfect lattices

As usual, the notation An, Dn, En, n = 6, 7, 8 stands for the standard irreducible
root lattices, the definitions of which we recall below. Their importance stems from
Witt’s theorem, which asserts that integral lattices generated by vectors of norm 2
are orthogonal sums of lattices isometric to An, n ≥ 1, Dn, n ≥ 4, or En, n = 6, 7, 8.
Denoting by (ε0, ε1, . . . , εn) the canonical basis for Z

n+1 and by (ε1, . . . , εn) that
of Zn, we set

An =

{
x ∈ Z

n+1 |
n+1∑
i=0

xi = 0

}
and Dn =

{
x ∈ Z

n |
n∑

i=1

xi ≡ 0 mod 2

}

(we consider An for n ≥ 1 and Dn for n ≥ 2, but D2 � A1 ⊥ A1 and D3 � A3). For
all n ≥ 8 even, we then set

D
+
n = 〈Dn,

ε1 + · · ·+ εn
2

〉 = Dn ∪
(
ε1 + · · ·+ εn

2
+ Dn

)
,

and E8 = D
+
8 (but D+

n is not a root lattice for n > 8), and finally define E7 and E6

as the orthogonal complement in E8 of the spans of ε7 + ε8 and {ε6 + ε7, ε7 + ε8},
respectively.
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Note that An has a nice characterization in terms of its index system, by an 1877

theorem of Korkine and Zolotareff: it is the n-dimensional lattice with s ≥ n(n+1)
2

and maximal index 1. For Dn, we quote the following property:

Proposition. For all n ≥ 2, the index system of Dn is

I(Dn) = {1, 2, . . . , 2t} ,

where t = 
n−2
2 �.

Sketch of proof. By the classification of root systems, a strict sublattice of Dn of
rank n is an orthogonal sum of irreducible root lattices L1, . . . , Lk of dimensions
n1, . . . , nk < n which add to n. Embeddings Em ↪→ Dn are impossible (see [Mar02,
Section 4.6]). For m �= 1, 3, embeddings Am ↪→ Dn are equivalent modulo an
automorphism of Dn to Am → L = 〈ε1−ε2, . . . , εm−εm+1〉, and must be discarded
because L⊥ is not a root sublattice of Dn. Form = 3, there is a second orbit, namely
that of A3 → L = 〈ε1 − ε2, ε2 − ε3, ε1 + ε3〉, for which we have L⊥ � Dn−3; we
denote by D3 this kind of embedding of A3. Finally, A1 ⊥ A1 embeds as 〈εi ± εj〉,
which yields an orthogonal decomposition D2 ⊥ Dn−2 where we denote by D2 any
A1 ⊥ A1 embedded as 〈εi + εj , εi − εj〉. With these definitions of D2 and D3, we
prove inductively that root sublattices of Dn are obtained taking Li = Di, and the
proof of the proposition is now easily completed. �

The laminated lattices Λn were defined inductively by Conway and Sloane; see
[CS99, Chapter 6]. They have minimum 4, they are integral in the range 1 ≤ n ≤ 24,
uniquely defined except for n = 11, 12, 13, and for n ≤ 8, they are scaled copies of
A1, A2, A3, D4, D5, E6, E7, E8.

For all even m ≥ 8 and all n ≥ m, the lattices 〈D+
m,Dn〉 (Barnes’s lattices Dn,m;

see [Mar03, Section 5.5]) have minimum 2. They are integral if m = n ≡ 0 mod 4,
and only half-integral otherwise, hence become integral in the scale which gives
them minimum 4. In particular,

Λ9 = 〈D+
8 ,D9〉 = 〈E8,D9〉 scaled to minimum 4 .

Here are unified constructions for the three perfect lattices which were found
directly in our classification. There are four [10, 5, 4]-codes. They lift over Z

10 to
four 10-dimensional lattices: La ∼ D

+
10 (s = 90), Lb ∼ 〈E8,D10〉 (s = 154), Lc

(s = 138, not K10), and Ld ∼ Q10 (s = 130, the Souvignier lattice).
Among the densest cross-sections of Lb, Lc, Ld we find the lattices Λ9, L99 and

L81, respectively. (For La we obtain the lattice with s = 57 of Table 5.)
The three perfect lattices above are indeed eutactic and hence extreme by

Voronoi’s theorem; this is clear for Λ9, which contains D9 scaled to minimum 4
and for L81, which is strongly eutactic. For the lattice L99 we have verified eutaxy
by using a computer calculation; see Section 6.1.

The laminated lattice Λ24 is known as the Leech lattice and has many remarkable
properties. By a recent theorem of Cohn and Kumar [CK09], we have γ24 = 4 and
the only lattice attaining γ24 (up to similarity) is the Leech lattice Λ24, an integral
lattice of minimum 4 and determinant 1, whence γ12

24 = 224. It follows that Λ24 is
the unique lattice in dimension 24 that satisfies the index bound of Proposition 2.1
with equality: By the proof of Conway’s uniqueness theorem for the Leech lattice
(see [CS99, Chapter 12]), every class of Λ24 mod 2 has a representative of norm
at most 2minΛ24 = 8, and norm 8 vectors occur in 24 pairs ±x, which implies
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by [Mar02, Theorem 2.5] that Λ24 contains a sublattice L which is a scaled copy
with minimum 4 of D24. We have det(L) = 4 · 224, hence [Λ24 : L] = 213. Now the
root lattice Dn, n = 2m even, contains orthogonal frames, which span lattices of
index 2m−1 in Dn. This shows that L contains to index 211 a lattice Λ′ generated
by minimal vectors of Λ24, and we have [Λ24 : Λ′] = 213 ·211 = 224 showing that the
bound ı(Λ) ≤ 
γ12

24� is tight. This implies the known result (see [BCS95]) that the
Leech lattice can be constructed as the pull-back of a code of length 24 over Z/4Z.

Appendix B: Enumerating independent subsets of shortest vectors,

by Mathieu Dutour Sikirić

In the present paper, the authors consider a pair (Λ,Λ′) of a 9-dimensional lattice
Λ and one of its Minkowskian sublattices, and classify all the Z/dZ codes associated
with the quotient Λ/Λ′. In particular, they obtain all possible structures of Λ/Λ′

as an Abelian group. However, given a lattice Λ, the question of how to compute
its index system I(Λ) (in the sense of Definition 2.2) is left aside.

For a given lattice Λ of dimension n and (half) kissing number s, a straightfor-
ward approach would be to consider all of the

(
s
n

)
possible bases of Minkowskian

sublattices. Except for the lattice E8, this approach works for all perfect lattices
for n ≤ 8, where s ≤ 75 (see [Mar01]). In dimension 9 however, several interesting
lattices cannot be handled by this naive approach. This is, in particular, true for
the interesting lattices L81 and L99 described in Sections 6 and 7.

In this appendix, I shall describe shortly an algorithm which outputs the index
system of some lattices with a large kissing number. The results I obtained for L81

and L99 are displayed in Table 11. I also consider the non-perfect lattice L87 of
perfection rank 42 and maximal index 12 (see Section 6). The minimal class of L87

lies below that of L99, so that every index which occurs for L99 already occurs for
L87.

We denote by Aut(Λ) the group of lattice automorphisms of Λ. We split S(Λ)
(the set of minimal vectors of Λ) into pairs of antipodal vectors {v1,−v1}, . . . ,
{vs,−vs} and define S1/2(Λ) = {v1, . . . , vs}. The group Aut(Λ) induces an action

on the s antipodal pairs and thus defines a permutation group Aut1/2(Λ) on s
elements of S1/2(Λ). If Λ does not admit a decomposition Λ1 ⊥ Λ2 into two

orthogonal sublattices, then the order of Aut1/2(Λ) is half the order of Aut(Λ).
Denote by Ik(Λ) the list of inequivalent representatives of orbits of independent

subsets with k elements of S1/2(Λ) under Aut1/2(Λ).
We need to determine In(Λ), but it turns out that the only known method

requires enumerating Ik(Λ) for k ≤ n as well. Given Ik(Λ), for all S ∈ Ik(Λ) we
consider all possible ways to add one vector to S and get an independent system.
By keeping only inequivalent representatives, we get in this way Ik+1(Λ). The
basic problem is to be able to test if two subsets of S1/2(Λ) are equivalent under

the group Aut1/2(Λ). There exist backtracking methods for this purpose, that are
known to work well in practice (see [Ser03, Chapter 9]). Using these techniques,
we find |I8(E8)| = 1943 for the highly symmetric E8 lattice.

The basic problem of this method is that we have to store Ik(Λ) in memory
and that the number of equivalence tests grows quadratically in the size of Ik(Λ).
To overcome these difficulties we use an “orderly generation” approach, a classic
technique of combinatorial enumeration (see for example [McK98]).
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Table 11. The number of orbits of bases of Minkowskian sublat-
tices, for each of the 19 possible index types in dimension 9 and
for the special lattices L81, L87 and L99

lattice Λ L81 L87 L99

|Aut1/2(Λ)| 18432 6144 9216

1 3774844 16730092 49301288
2 474881 2657720 8271400
3 28768 198528 681759
4 6634 46390 163090
22 4579 28560 88407
5 348 2859 12126
6 205 2171 8462
7 3 59 230
8 7 49 169
4, 2 57 212 597
23 32 132 309
9 – 4 4
32 – 1 12
10 – 5 5
12 – 1 1
6, 2 – 1 10
42 1 – –
4, 22 1 – –
24 1 – –

If S ∈ In(Λ), then we choose S to be lexicographically minimal in its orbit

under Aut1/2(Λ) and write it as S = {x1, . . . , xn} with x1 < x2 < · · · < xn. Then
the sets Sk = {x1, . . . , xk} for 1 ≤ k ≤ n are lexicographically minimal in their
respective orbits as well. Reversely, suppose we have all lexicographically minimal
representatives in Ik(Λ), then for all Sk = {x1, . . . , xk} ∈ Ik(Λ) we consider all sets

Sk(t) = Sk ∪ {t} for t ∈ {xk + 1, . . . , s},

and we test for all of them if they are minimal in their orbit O(Sk(t)) under

Aut1/2(Λ) by computing all elements of O(Sk(t)). If they are minimal, then they
are added to the set Ik+1(Λ). Obviously, this method is limited by the size of the
group and is not appropriate for E8 or Λ9.

Once the sets In(Λ) are built, we use the Smith Normal Form for each element
(basis of a Minkowskian sublattice Λ′), to determine the invariant of the Abelian
group Λ/Λ′.

In our, obviously non-optimal, implementation we store the sets Ik(Λ) on disk
and we use the GMP library for exact arithmetic and a C program that builds Ik+1(Λ)
from Ik(Λ). The Smith Normal Form computation is done in GAP. The running time
is always less than 1 week. The program is part of the GAP package polyhedral

[Polyhedral].
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[MS10] J. Martinet and A. Schürmann, Bases of minimal vectors in lattices III, in prepara-
tion.

[McK98] B. McKay, Isomorph-free exhaustive generation, J. Algorithms, 26 (1998), 306–324.
MR1606516 (98k:68132)
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