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Abstract. In this paper, we describe the sublattices of some
lattices, extending previous results of [Ber]. Our description makes
intensive use of graphs.
Résumé. Dans cet article, nous décrivons les sous-réseaux de cer-
tains réseaux de Coxeter, prolongeant les résultats de [Ber]. Notre
description utilise des graphes.

In his 1951 paper Extreme forms ([Cox]), the late Coxeter studied
lattices Λ which satisfy inclusions Λ0 ⊂ Λ ⊂ Λ∗

0 for some root lattice L.
(As usual, L∗ stands for the dual of a lattice L, and a root lattice is an
integral lattice generated by norm 2 vectors.) We shall more specially
consider the root lattice Λ0 = An, the section of Zn+1 endowed with its
canonical basis B0 = (ε0, ε1, . . . , εn) by the hyperplane x0 + x1 + · · ·+
xn = 0. Then Λ∗

0/Λ0 is cyclic of order n + 1, so that there exists for
every divisor r of n+1 a well defined lattice Ar

n such that An ⊂ Ar
n ⊂ A∗

n

and [Ar
n : An] = r. We denote by Coxn (n odd) the lattice A(n+1)/2

n

scaled to the minimum which makes it integral and primitive. The
lattices Coxn are perfect lattices which have various curious properties.
In particular, they are hollow in the sense of [Ber], and their minimum
is odd whenever n ≡ 3 mod 4. This paper is a continuation of [Ber],
which was devoted to the classification of cross-sections of Coxn, but
this time we consider sublattices of finite index (or more generally, of
finite index in a cross-section). As [Ber], our paper makes intensive use
of graphs to describe the possible sublattices of Coxn.

As in [Ber], Euclidean properties play only a modest rôle: the mini-
mal vectors of A∗

n are vectors ±v0,±v1, . . . ,±vn where the vi satisfy the
unique (up to proportionality) dependence relation v0+v1+· · ·+vn = 0.
We set

S = {vi + vj, 0 ≤ i < j ≤ n} .

Key words and phrases. eutactic lattices, spherical designs, kissing number,
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The lattice Coxn is generated by S, which is actually the set of its
minimal vectors (up to sign). We then essentially deal with submodules
of the Z-module generated by the vi: the Euclidean structure is only
used in the last section where we consider some spherical 2-designs
related to Coxn (this is the property called strong eutaxy in [Ven]).

Notation. We denote by E the span of the vi, assuming that
n = dim E ≥ 5, and of course that n is odd (for the notation Coxn

to make sense). We denote by L (resp. M) the Z-module generated in
E by v0, . . . , vn (resp. by S). Note that [L : M ] = 2.

In Section 1, we characterize in terms of graphs the submodules N
of L generated by subsets of S. We then determine in Section 2 the
structure of the quotient modules L/N and M/N . Finally, Section 3
is “the Euclidean section”. We construct here a new infinite sequence
of strongly eutactic sublattices of Coxn having the same minimum.

1. Graph of subsets of S

Definition 1.1. With a subset B of S we associate the following graph
ΓB. Its vertex set is V = {0, 1, · · · , n}, and ij is an edge of ΓB if and
only if vi + vj lies in B.

In order to study such a graph, some more notation is needed.

Notation. For every graph G with vertex set VG ⊂ V , put

eG =
∑
i∈VG

vi ,

BG = {eij = vi + vj, ij edge of G} ,

and

LG = 〈vi, i ∈ VG〉 and MG = 〈BG〉 ⊂ LG ,

where for a subset X of E, the notation 〈X〉 stands for the Z-module
generated by X.

If G is a tree with bipartition (V0, V1), we define the excess of the G
to be

dG = ||V1| − |V0|| .
In the case of an isolated vertex G = {i}, dG = 1.
[Recall that a tree is a connected graph without cycle; two vertices i and j

of the tree are in the same vertex set Vk, (k = 0, 1), if the length of the path
from i to j is even; see [Bo].]
Eventually, we say that two graphs G and G′ with the same vertex set
are equivalent if the corresponding modules MG and MG′ coincide.



SUBLATTICES OF CERTAIN COXETER LATTICES 3

Theorem 1.2. Let Γ be a graph with vertex set V = {0, 1, . . . , n} and
p ≤ n edges, and let

Γ =
⋃
C∈C

C

be its partition into connected components. Then the p vectors
eij = vi + vj, ij edge of Γ, are linearly independent if and only if the
following conditions hold:

(1) every C ∈ C contains at most one odd cycle, and no even cycle,
(2) there exists exactly n + 1− p trees in C,
(3) at least one of the trees has a strictly positive excess.

Before proving the theorem, let us discuss the modules associated
with the type of subgraphs occurring in its statement. It may be con-
venient to use some canonical graphs. The shapes we have in mind (see
Figure 1) are those of a kite (triangle linked to a path), of a double star
(two stars with adjacent centres) or of a shooting star (a star linked to
an even path). (A star may reduce to a single vertex.)
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Figure 1

Our basic tool is the following, where we keep the notation eij =
vi + vj.

Lemma 1.3. Let i0 i1 i2 . . . im−1 im be a walk of length m in Γ (a cycle
if im = i0, a path otherwise). Then

vi0 + (−1)m−1vim = ei0 i1 − ei1 i2 + · · ·+ (−1)m−1eim−1 im .

Proof. Clear. �

Proposition 1.4. Let C be a connected graph with vertex set VC strictly
included in V , containing one odd cycle and no even cycle. Then the
following holds for the set BC = {eij, ij edge of C}, its Z-span MC,
and the vector eC =

∑
i∈VC

vi.

(1) For all vertices i, j of C, the vectors vi ± vj belong to MC.
(2) C is equivalent to any kite with vertex set VC.
(3) MC admits BC as a Z-basis, and rank (MC) = |C|.
(4) For all i ∈ VC, the vector 2vi is an indivisible element of MC.



4 ANNE-MARIE BERGÉ AND JACQUES MARTINET

(5) The vector eC belongs to MC if and only if |C| is even.

Proof. Since C contains an odd cycle, two vertices i and j are joined
by a path of odd length and by a path of even length (one of them
including the cycle). Assertion 1 follows by applying Lemma 1.3 to
these paths. This implies that MC = 〈eij, (i, j) ∈ VC×VC〉 only depends
on its vertex set; assertion 2 follows immediately. In particular, MC

contains the vectors 2vi, i ∈ VC , and from 2LC ⊂ MC ⊂ LC it follows
that rank (MC) = rank (LC) = |C| (because |C| < n + 1). Since
C contains a unique cycle, BC has |C| elements, and therefore is a
Z-basis for its span. Let iC be a vertex of the cycle γ contained in
C. By Lemma 1.3, we obtain 2viC =

∑
jk edges of γ ±ejk, where the ejk

belong to the basis BC for MC ; thus 2viC is a primitive element of MC ,
and by assertion 1, this extends to all vertices of C. Eventually, from
assertion 1 again it follows that the vector eC is congruent to |C|viC

modulo MC , and the fifth assertion results from the fourth one. �

Proposition 1.5. Let C be a non-trivial tree with vertex set VC ⊂ V ,
bipartition (V0, V1) (|V1| ≥ |V0|), and excess dC = |V1| − |V0|. For
i ∈ VC, define σ(i) ∈ {0, 1} by i ∈ Vσ(i).

(1) For all i, j in VC we have (−1)σ(j)vj ≡ (−1)σ(i)vi mod MC.
(2) C is equivalent to a double star with the same bipartition.
(3) BC is a basis for MC if and only if (|C|, dC) 6= (n + 1, 0).
(4) If (|C|, dC) 6= (n+1, 0), for all i ∈ VC there exists an indivisible

element wi ∈ MC such that dC vi = wi − (−1)σ(i)eC .
[In the case of an isolated vertex C = {i}, the relation of assertion 4
is still valid with wi = 0 (and dC = 1).]

Proof. Let i, j ∈ VC . Lemma 1.3 applied to the path i ↔ j, whose
length is congruent to σ(i)−σ(j) modulo 2, proves assertion 1. Choose
a pair (i0, i1) ∈ V0×V1 of neighbours in C, and let µ1 (resp. µ0) be the
maximal length of the paths i0 ↔ j, j ∈ V1 (resp. i1 ↔ i, i ∈ V0). We
reduce first µ1, and then µ0, to be equal to 1, by successive applications
of the following lemma:

Lemma 1.6. Let i j k ` ⊂ C be a path of length 3. Then replacing the
edge k ` by the edge i ` we obtain a tree equivalent to C.

Proof of Lemma 1.6. By substituting vi + v` = eij − ejk + ek` to ek` in
BC we obtain a new generator system for MC = 〈BC〉. �

For the remaining assertions, only depending on the bipartition and
on the module MC , we may suppose that C is a double star with edges
i0j and i1i, (i, j) ∈ V0 × V1. The discussion of the linear independence
of the |C| − 1 vectors of BC is then straightforward. For assertion 4



SUBLATTICES OF CERTAIN COXETER LATTICES 5

we may restrict ourselves to the case i = i0 (see assertion 1). We then
have eC + dCvi0 = wi0 with

wi0 =
∑
x∈BC

x + (1− |V0|)ei0i1 ∈ MC .

Note that at least one coefficient of wi0 over BC is equal to 1. Thus, if
BC is a basis for MC , wi0 is primitive as required. This completes the
proof of Proposition 1.5. �

Proof of Theorem 1.2. In the case when Γ is a tree, this results from
Proposition 1.5. From now on we discard this case. The partition of
Γ gives rise to a partition BΓ = ∪BC and to a sum MΓ =

∑
MC (for

every C ∈ C, BC is the set of vectors vi + vj, ij edge of C, and MC is
its span).

First note that if the vectors of BΓ are linearly independent, Γ con-
tains no even cycle (otherwise, Lemma 1.3 applied to this cycle would
provide a dependence relation between them). In the following we
suppose that this condition holds. We now discuss the number kC of
cycles contained in a given component C ∈ C. Such a component has
|BC | = |C|+ kC − 1 edges; on the other hand, the inclusion MC ⊂ LC

implies rk(MC) ≤ |C|. We then have the equivalences

BC is a basis for MC ⇐⇒ rk(MC) = |BC | ⇐⇒ kC = 0 or 1

(the last equivalence makes use of Propositions 1.4 and 1.5). From now
on, we assume kC = 0 or 1 for each C ∈ C, i.e. that condition (1) of
Theorem 1.2 holds. Then

∑
C(1− kC) = −|BΓ|+ |V | is the number of

trees in C, as asserted in (2).
Now, BΓ will be a basis for its span MΓ =

∑
MC if and only if

this sum is direct. Since any dependence relation between the vi is
proportional to v0 + v1 + · · ·+ vn = 0, we have, for (xC) ∈

∏
C MC , the

equivalence∑
C

xC = 0 ⇐⇒ ∃a ∈ R such that ∀C ∈ C, xC = a eC .

So, the sum MΓ =
∑

MC is direct if and only if there exists C ∈ C such
that eC does not belong to the space RMC . Using the propositions
above, one sees that this condition is equivalent to condition (3) of
Theorem 1.2. This completes the proof of Theorem 1.2. �

Remark 1.7. It can be convenient to use, as a reference tree, a shooting
star instead of a double star. The degree of the centre of the star is then
equal to d + 1, where d is the excess of the tree. In particular, the shooting
star is a path if and only if d = 0 or 1.
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2. Quotient structures.

In this section we assume that B ⊂ S is a basis for E and we will de-
scribe the additive structures of the quotient groups L/MB and M/MB,
using the partition ΓB =

⋃
C∈C C into components. By Theorem 1.2,

there is a unique tree T ∈ C, whose excess d ≥ 1 is called excess of
B. The indices [L : MB] and [M : MB] only depend on the number of
the components and on the excess of B, but the actual structures also
depends on the type of the graph:

Definition 2.1. The basis B is of odd type if its graph ΓB contains
a component C with |C| odd, and of even type if there is no such
component.

Remark 2.2. Note that the type, as well as the number of components
and the excess of the basis, may depend of the choice of the basis B for a
given submodule N of M . In particular, certain odd types can be reduced
to even types: a graph ΓB = T ∪ C0 ∪ G where G is a union of kites of
even order and T a tree of excess 1 is equivalent to the graph obtained by
replacing T ∪ C0 by a tree of excess 2 (see Figure 2).
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Figure 2

Theorem 2.3. Let B be a basis for E contained in S, let d ≥ 1 be its
excess and let c = |C| be the number of components of its graph. Put
A = Z/2dZ (resp. Z/dZ×Z/2Z) if B is of odd (resp. even) type. Then

(1) the group L/MB is isomorphic to A× (Z/2Z)c−2;
(2) the group M/MB has order d 2c−2 and is isomorphic to Z/(d/2)Z

if c = 1, and to A× (Z/2Z)c−3 if c ≥ 2.

Proof. To lighten the notation, we assume B of odd type, leaving to the
reader the few changes needed for the even case. Let C = {T} ∪O ∪ E
be the set of components of the graph of B, where T denotes the tree,
and E (resp. O) denotes the set of components C 6= T of even (resp.
odd) order |C|. Let us fix a component C0 ∈ O, and vertices iT ∈ V1

(the biggest vertex class of the tree) and iC ∈ VC for each C 6= T .

Let x =
∑i=n

i=0 aivi be a vector of L, with (ai) ∈ Zn+1 well defined
up to translation. Put AT = −

∑
i∈VT

(−1)σ(i)ai (with σ as in Propo-
sition 1.5), and AC =

∑
i∈VC

ai for C 6= T . We consider the following
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integers (bC)C 6=C0 :

bT = AT + dAC0 , bC = AC for C ∈ E , bC = AC − AC0 for C ∈ O .

[Note that, under the translation ai 7→ ai + 1, bC is invariant modulo
2d (resp. 2) for C = T (resp. C 6= T ).] By Propositions 1.4 and 1.5,
and using in particular the relation dviT = wT −

∑
C 6=T eC for some

wT ∈ MT , we obtain:

x ≡ AT viT +
∑
C 6=T

AC viC ≡ y mod MB ,

with y = bT

2d
(2wT − 2

∑
C 6=T eC) +

∑
C 6=T,C0

bC

2
2viC . Since the vectors

2wT − 2eC0 ∈ MT ⊕MC0 and 2viC ∈ MC (C 6= T,C0) are indivisible, y
belongs to the module MB = (MT ⊕MC0)⊕C 6=T,C0 MC if and only if bT

2d

and, for C 6= T,C0,
bC

2
are integers. Let us denote by ã (resp. a) the

residue class modulo 2d (resp. 2) of an integer a. Then, the map

φ : x 7→ (b̃T , (bC)C 6=T,C0)

from L to Z/2dZ × (Z/2Z)c−2 induces an additive isomorphism
L/MB ' Z/2dZ× (Z/2Z)c−2 as required for assertion 1.

To prove assertion 2 we need only describe the image φ(M) in
Z/2dZ× (Z/2Z)c−2 of the submodule

M =
{∑

i

aivi ∈ L such that
∑

i

ai = 0
}

.

With the notation of the beginning of this proof, we have∑
i

ai =
∑
C∈C

AC = (bT − dAC0) + (
∑
C∈E

bC) + AC0 +
∑

C∈OrC0

(bC + AC0)

=
∑

C 6=C0

bC ,

because, since
∑

C |C| = (2|V1| − d) +
∑

C 6=T |C| = n + 1 is even,

so is |O| + d. The canonical homomorphism f : Z/2dZ → Z/2Z
gives rise to a homomorphism τ : (uC)C 6=C0 7→ f(uT ) +

∑
C 6=C0,T uC of

Z/2dZ×(Z/2Z)c−2 onto Z/2Z. We can now state that the isomorphism
L/MB ' Z/2dZ× (Z/2Z)c−2 gives rise to an exact sequence

0 −→ M/MB−→Z/2dZ× (Z/2Z)c−2 τ−→ Z/2Z −→ 0 ,

from which assertion 2 is a straightforward consequence. This com-
pletes the proof of Theorem 2.3. �

By the actual construction of graphs ΓB one can determine the pos-
sible quotient structures M/MB. For instance, the possible orders of
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cyclic quotients are the integers a ≤ max(n−1
2

, n− 4) and moreover the
even integers b ≤ 2(n − 7). Apart from the usual exceptions in low
dimensions, the cyclic structure does not provide the maximal index
[M : MB], which is equal to 5× 2

n−9
3 , 6× 2

n−10
3 or 7× 2

n−11
3 according

as n is congruent to 0, 1 or 2 modulo 3 (and equal to 2 for n = 5).

A finer invariant for the module MB is the set of vectors vi +vj, i 6= j
it contains.

Proposition 2.4. Let B ⊂ S be a basis for E with graph Γ = T ∪C 6=T C
reduced in the sense of Remark 2, and excess d. Then the Z-module
MB with basis B contains the vectors vi + vj where i and j are distinct
vertices in a same component and moreover at odd distance if this com-
ponent is the tree. There are no other vectors vi + vj in MB except if
d = 1 or d = 2 and Γ is of even type, and then MB also contains the
vi + vj for all vertices i, j in the tree.

Proof. This follows directly from Propositions 1.4 and 1.5; we leave the
details to the reader. �

In particular, one can determine the maximal values of sB = |MB∩S|
for a given dimension n. Apart from the case MB = M , i.e. when

the reduced graph Γ is a tree of excess 2 (and then sB = n(n+1)
2

),
the maximum value sn of sB in a given dimension n is attained when
[M : MB] = 2: for n = 5, 7, 9, sn = n2+2n−15

4
(Γ is a tree of excess 4);

for n ≥ 7, sn = n2−7n+24
2

(Γ = T ∪C, where T is a tree of excess 2 and
of order 4 or n− 3).

3. Application to Coxeter lattices.

In this section, E is an n-dimensional Euclidean space of odd dimen-

sion n ≥ 5. Recall that Coxn is a scaled copy of A(n+1)/2
n ⊂ E. As in

the previous sections, A∗
n is generated by n + 1 vectors v0, v1, . . . , vn

which add to zero. For a non-zero x ∈ E, let px ∈ Ends(E) be the
orthogonal projection to the line R x. Recall that a lattice Λ with set
of minimal vectors S(Λ) is weakly eutactic if there exists in Ends(E) a
linear relation

Id =
∑

x∈S(Λ)/±1

ρx px ,

eutactic if there exists such a relation with strictly positive eutaxy
coefficients ρx, and strongly eutactic if there exists such a relation with
equal ρx (which are then equal to n

s
> 0). This last condition amounts

to saying that the set S(Λ) is a spherical 2-design (or 3-design); see
[Mar], Sections 3.1 and 16.1, and [Ven], Section 6.
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An easy averaging argument shows that if Λ is weakly eutactic, there
exist systems of eutaxy coefficients which are constant on the orbits of
the automorphism group of Λ. In particular, if the automorphism group
of Λ acts transitively on S(Λ), weak eutaxy implies strong eutaxy.

The lattice Coxn is strongly eutactic. Various strongly eutactic lat-
tices related to Coxn have been constructed in [B-M], using the equi-
variant Voronoi algorithm for the symmetric group Sn or for its sub-
group (Sm × Sm) o C2, m = n−1

2
. Using such a deformation of the

Euclidean structure, we obtained lattices denoted there by Cn (n ≥ 5)
and Bn (n ≥ 5 odd). In the scale which make them integral and prim-
itive, Cn has minimum n− 2 (n odd) or 2(n− 2) (n even), and Bn, a
section of Cn+2, has minimum n.

The two theorems below will allow us to recover the lattices above
as cross-sections of Coxeter lattices having a much larger dimension.

Theorem 3.1. Let n, p be integers with n ≥ 7 odd and 3 ≤ p ≤ n− 2.
Let Fn,p be the span in E of v1, . . . , vp and set Coxn,p = Coxn ∩Fn,p.
The following conditions are equivalent:

(1) Coxn,p is weakly eutactic.
(2) Coxn,p is strongly eutactic.
(3) p = n+3

2
.

[It results from [Ber] that for p ≥ 6, the p-dimensional sections of Coxn

generated by minimal vectors whose kissing number is maximal (indeed,
equal to p(p−1)

2 ) are the images of Coxn,p under an automorphism of Coxn.]

Theorem 3.2. Let n, p be integers with n ≥ 7 odd and 3 ≤ p ≤ n− 2
odd. Let F ′

n,p be the span in E of the vectors vi + vj, 1 ≤ i, j ≤ p,
i odd, j even, and set Cox′n,p = Coxn ∩F ′

n,p. The following conditions
are equivalent:

(1) Cox′n,p is weakly eutactic.
(2) Cox′n,p is strongly eutactic.

(3) p = n−1
2

.

Figure 3 below displays the graphs corresponding to the lattices
Cox11,7 and Cox′11,5:
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Figure 3
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Proof. We shall only prove Theorem 3.1, leaving to the reader the proof
of Theorem 3.2, which follows the same pattern.

For the proof, we work with A(n+1)/2
n (recall that Coxn is a scaled

copy of A(n+1)/2
n ). Its minimal vectors are the ±(vi + vj), i < j, and

it has minimum m = 2n−2
n+1

. Due to the transitive action of Sp on
S(Coxn,p), the assertions (1) and (2) are equivalent. To prove that
(1) and (3) are equivalent, we evaluate

∑
1≤i<j≤p pvi+vj

. Taking into
account the action of Sp, it suffices to evaluate this sum on v1.

Using a Gram matrix for A∗
n, it is not difficult to check that∑

i<j

pvi+vj
(v1) =

∑
1≤i<j≤p

(vi + vj) · v1

m
(vi + vj)

=
∑

2≤i<j≤p

−2

m(n + 1)
(vi + vj) +

∑
2≤j≤p

n− 1

m(n + 1)
(v1 + vj) .

Writing this sum as
∑

1≤k≤p aivi and replacing m by its value, we obtain∑
i<j

pvi+vj
(v1) =

p− 1

2
v1 +

n− 2p + 3

2(n− 1)

∑
2≤j≤p

vj .

This formula clearly shows that
∑

i<j pvi+vj
is proportional to the

identity if and only if n− 2p + 3 = 0. �

Proposition 3.3. The lattice defined in Theorem 3.1 (resp. Theo-
rem 3.2) is isometric to Cp (resp. Bp).

Proof. We make use the notion of a minimal class and its equivariant
version as defined in [Mar], Sections 9.1 and 11.9.

The Sp-equivariant minimal class of the lattice C ′
p = Cox 2p− 3, p

defined in Theorem 3.1 has dimension 1, which shows that it is an
equivariant Voronoi path, whose minimal vectors can be extracted from
those of Coxn. In Theorem 4.3 of [B-M] it is proved that Cp lies on an
equivariant Voronoi path connecting Coxp and the root lattice Dp. This
allows us to identify the Sp-equivariant minimal classes of Cp and C ′

p.
Since a minimal class contains at most one weakly eutactic lattice (up
to similarity), the (strongly) eutactic lattices Cp and C ′

p are similar,
hence isometric since they have the same minimum. (They are even
Sp-isometric, i.e. isometric under an isometry which commutes with
the action of Sp.)

The case of Bp is dealt with by a similar argument. �
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Remark 3.4. In Theorem 3.1, when n = 5, we have p = 4 and the lattice
is only semi-eutactic (its eutaxy coefficients are non-negative, but some of
them are zero). However, the 4-dimensional section having the largest pos-
sible kissing number is again a strongly eutactic lattice (similar to A2

⊗
A2,

with s = 9).

Remark 3.5. The lattice Bp can be also defined for any even p ≥ 6. Then
it is only semi-eutactic, but it nevertheless has only one non-zero eutaxy
coefficient. In such a situation, the subset of its minimal vectors whose
corresponding eutaxy coefficient is non-zero constitutes a spherical 2-design.

We could show that for n ≥ 7 odd, the lattices B(n−1)/2 and C(n+3)/2

are the only weakly eutactic cross-sections of Coxn having the same
minimum as Coxn.
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[Ven] B. Venkov, Réseaux et designs sphériques (notes by J. Martinet), in Réseaux
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