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1. Introduction

Fix an integer n � 2, and a �nite subgroup G of GL

n

(Z). We denote by S

G

the

space of real n� n symmetric matrices A which are G-invariant, i. e. such that

t

gAg = A for all g 2 G:

The centralizer SL

G

(Z) of G in SL

n

(Z)

SL

G

(Z) = fu 2 SL

n

(Z) j g

�1

ug = u for all g 2 Gg

acts on S

G

by equivalence, and we say that A and B 2 S

G

are G-integrally equiv-

alent if there exists u 2 SL

G

(Z) such that

t

uAu = B.

For a positive de�nite matrix A 2 S

G

(there exist such matrices, for instance

P

g2G

t

gg) we denote by minA = min(

t

x

x

xAx

x

x; x

x

x 2 Z

n

rf0g) the arithmetic minimum

of the associated quadratic form, and by S(A) the set of its minimal vectors (for

which

t

x

x

xAx

x

x = minA). We denote by P

G

� S

G

the variety of positive de�nite A's

in S

G

scaled so as to have minimum minA = 1. We classify these matrices by

their minimal vectors. More explicitly, the G-cell of A 2 P

G

is the set of matrices

M 2 P

G

such that S(M) = S(A); this is a convex polyhedron, bounded if and

only if the set S(A) spans R

n

. This cellular decomposition of P

G

, �rst introduced

by

�

Stogrin in [S] for the usual case (i.e. when G is trivial), was extended to the

general case by J. Martinet and the author (cf. [BM2]). We also proved in [BM2]

that up to G-integral equivalence, there are only �nitely many bounded G-cells. In

section 2 of the present paper we make explicit the splitting of a class of integrally

equivalent G-matrices into several classes of G-equivalence, and we give the \mass

formula with signs" for bounded G-cells due to C. Bavard ([Ba]). The remainder

of this paper is devoted to the case of the regular representation of a cyclic group.

Section 3 gives a description of the corresponding arithmetic groups, and their Euler

characteristic. Tables in section 4 show the complete classi�cation up to dimension

5, providing checks on Bavard's formula.

To describe a given G-cell, we generally use an outstanding representative con-

nected to the study on this cell of the Hermite function

(A) = minA (detA)

�1=n

:

Let A 2 P

G

be a G-invariant matrix: its inverse A

�1

as well as the matri-

ces (x

x

x

t

x

x

x, x

x

x 2 S(A)) are invariant under the group

t

G = f

t

g; g 2 Gg. We say

that A is eutactic (resp. weakly eutactic) if A

�1

belongs to the convex hull

(resp. the linear span) of (x

x

x

t

x

x

x,x

x

x 2 S(A)). In a given G-cell c, there exists

at most one matrix A where the strictly log-convex Hermite function  attains

its minimum; in a joint work with Martinet ([BM3]) we characterized this A

in its cell by the property of weak eutaxy. Note that if A is weakly eutactic,

1
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the set S(A) spans the space R

n

. So, in order to enumerate the weakly eutac-

tic G-matrices, we only need classify bounded cells. Among the weakly eutactic

G-matrices, the eutactic ones and the G-perfect ones (whose cells have a�ne di-

mension 0) are of particular interest, as eutaxy plus G-perfection characterizes the

local maxima on P

G

of the Hermite function ([BM1]). In the case of the cyclic

group investigated in sections 3 and 4, we note that G-perfect matrices are indeed

perfect, except for one quintic matrix (which �rst appeared in [BM1]), and that the

root lattice D

4

does not appear since it does not a�ord the right representation.

I thank J.-P. Serre for his helpful correspondance about the computation of

Euler characteristic. I also thank C. Bavard, J. Martinet and F. Sigrist for useful

discussions.

2. Euler formula for G-cells

Let c be a bounded G-cell, and S the set of minimal vectors of the matrices

A 2 c. By assumption, S spans R

n

, so the stabilizer Aut

G

c of c in GL

n

(Z), which

also stabilizes S, is �nite.

Lemma. Let k = jAut

G

cj be the order of this group. Then up to G-integral

equivalence there are at most k

jGj

G-cells integrally equivalent to c.

Proof. Let u 2 SL

n

(Z). Then the group G acts on the cell

t

ucu if and only if

ugu

�1

belongs to Aut

G

c for all g 2 G. On the other hand, if u and v in SL

n

(Z)

satisfy ugu

�1

= vgv

�1

for all g 2 G, then v

�1

u belongs in the centralizer SL

G

(Z),

and the cells

t

ucu and

t

vcv are G-integrally equivalent.

Remark. The estimate k

jGj

is very rough, and can be replaced by k in the cyclic

case, and by 2 in the cases of section 4.

In the following, we denote by Aut

+

G

c = fu 2 SL

G

(Z) j

t

ucu = cg the stabilizer

in SL

G

(Z) of the G-cell c, and by dim c its a�ne dimension.

Theorem (Bavard). Let B

G

be a full set of representatives of the bounded G-cells

modulo G-integral equivalence. Then

X

c2B

G

(�1)

dim c

jAut

+

G

cj

= �(SL

G

(Z));

where � stands for the Euler characteristic.

In the case of the whole set of positive matrices, this formula has been checked

up to dimension 5, together with the Ash formula (cf. [A]) for eutactic matrices:
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for 2 � n � 4 there are 25 inequvalent cells, all of them but one with a weakly-

eutactic representative (cf. [BM2]). Beyond, the combinatorics seemed untractable,

but C. Batut recently developped in [B] an algorithm, which produced 136 cells in

dimension 5, among which 127 contain a weakly eutactic representative.

3. Application to the case of the regular representation of the cyclic

group of order n

The group G is generated by the permutation matrix

� =

0

B

B

B

@

0 0 : : : 0 1

1 0 : : : 0 0

0 1 : : : 0 0

: : : : : : : : : : : : : : :

0 0 : : : 1 0

1

C

C

C

A

;

the G-invariant matrices are circulant matrices (i.e. with a constant diagonal and

whose rows are deduced from the �rst one by circular permutation). The space

S

G

of the symmetric invariant matrices is of dimension 1 + bn=2c, as the �rst row

(a

1

; a

2

; � � � ; a

n

) of such a matrix satis�es a

i

= a

j

if i+ j = n+ 2.

We now discuss the Euler characteristic of the centralizer SL

G

(Z) of G in SL

n

(Z).

We denote by I

n

the unit matrix in SL

n

(Z). For even n, we denote by G

+

the

subgroup of SL

n

(Z) generated by �I

n

and �

2

.

Proposition.

(1) �(SL

G

(Z)) =

8

<

:

1

n

if n = 2; 3; 4 or 6;

0 if n = 5 or n � 7:

(2) SL

G

(Z) = G

+

(resp. G) for n = 2; 4; 6 (resp. n = 3). For n = 5, SL

G

(Z)

is generated by G and the circulant matrix � with �rst row (�1; 0; 1; 1; 0).

(3) Let c be a bounded G-cell. Then Aut

+

G

c = G

+

(resp. G) for n = 2; 4; 6

(resp. n = 3; 5).

Proof. The group SL

G

(Z) is abelian, and has positive Euler characteristic if and

only if it is �nite. Explicitly, the centralizer of G in GL

n

(Z) is isomorphic to the

group of units in some order of the semi-simple algebra Q [G], and its rank is that

of the group of units U

n

'

Q

djn

E

d

of the maximal order, where E

d

denotes the

group of units of the d th cyclotomic �eld. As the rank of E

n

is positive except

for n � 4 and n = 6, the part of (1) concerning these values of n is done. For the

exceptional values of n, the group SL

G

(Z) is isomorphic to the group �

n

of the n th

roots of unity, it follows that it has order n, which completes the proof of (1) and
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transforms the obvious inclusions of G (for n = 3) or G

+

(for even n's) in SL

G

(Z)

into equalities. For n = 5, SL

G

(Z) is isomorphic to �

5

� Z, and � corresponds to

the unit

1�

p

5

2

in Q (

p

5). To prove (3), we use obvious inclusions and (for n = 5) a

�niteness argument.

Remark. For n = 2; 3; 4; 6, the group SL

G

(Z) acts trivially on the G-matrices

(in other words G-integral equivalence is plain equality).

The rest of the paper is devoted to the complete explicit enumeration of G-cells

up to dimension 5. We made use of the previous classi�cations of the whole set of

matrices ([BM3], [B]). To �nd whether the regular representation (up to integral

conjugacy) acts on a given class c, we used a rational matrix E 2 c �xed by the

stabilizer Aut c of the class. Such a matrix can be constructed from any rational

matrix A 2 c by the usual averaging formula:

E =

1

Aut c

X

g2Aut c

t

gAg;

(see [B], prop. 2.4). We then proceeded in the following way, that we explain

for n = 4 (the most tedious case). Let detE and m be the determinant and

minimum of E rescaled so as to be integral. A circulant matrix with �rst row

(a; b; c; b) has determinant (a � c)

2

(a + 2b + c)(a � 2b + c), where a, 2(a � c),

4(a+ 2b+ c) et 4(a� 2b+ c) are values of the quadratic form on integral vectors.

In order to identify this matrix with E, we have to solve in integers the equation

(a� c)

2

(a+2b+ c)(a� 2b+ c) = detE, with a � m, a� c �

m

2

and a� 2b+ c �

m

4

.

And eventually we test the integral equivalence of E with the invariant matrix

associated to each solution (a; b; c). The computations were carried out with the

PARI system.

4. Tables

In the following we give, for n � 5, the full lists of bounded G-cells up to

equivalence, and the checks on Bavard's formula. In the tables, there is one line

for each cell c, displaying its dimension d = dim c, its eutactic representative E (as

it turned out that they all possess one), described by the �rst 1 + b

n

2

c entries of

its top row; we sometimes name the corresponding lattice L (up to rescalation),

making use of the usual notation (A

n

; D

n

for the root lattices, A

r

n

for the Coxeter

lattices, L

�

for the dual lattice of L). We also indicate the number s of pairs �x

x

x

of minimal vectors, and the number o of G-orbits of them. In the second column

we indicate the \weight"w of the cell in the mass formula, namely the number of

matrices integrally equivalent to E which are not G-integrally equivalent.
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� n = 2

d w E L s o

0 2 (1;

�1

2

) A

2

3 2

1 1 (1; 0) (A

1

)

2

2 1

Mass formula : (2� 1)

1

2

=

1

2

:

� n = 3

d w E L s o

0 1 (1;

1

2

) A

3

6 2

0 1 (1;

�1

3

) A

�

3

4 2

1 1 (1; 0) (A

1

)

3

3 1

Mass formula : (1 + 1� 1)

1

3

=

1

3

:

� n = 4

d w E L s o

0 2 (1;

1

2

;

1

2

) A

4

10 3

0 2 (1;

1

2

;

1

4

) L

2

4

9 3

0 2 (1;

1

8

;

�1

2

) 7 3

1 2 (1;

1

2

;

p

3�1

2

) 8 2

1 2 (1; 0;

1

2

) (A

2

)

2

6 2

1 2 (1;

�1

4

;

�1

4

) A

�

4

5 2

2 1 (1; 0; 0) (A

1

)

4

4 1

Mass formula: (6� 6 + 1)

1

4

=

1

4

:
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� n = 5

d w E L s o

0 1 (1; 0;

1

2

) D

5

20 4

0 1 (1;

�1

2

;

1

4

) A

3

5

15 3

0 1 (1;

1

2

;

1

2

) A

5

15 3

0 2 (1;

�1

2

;

1

10

) 11 3

1 2 (1;

1

2

;

p

5�1

4

) 10 2

1 2 (1;

�1

2

;

p

13�3

4

) 10 2

1 1 (1;

1

3

;

�1

3

) A

2

5

10 2

1 1 (1;

�1

5

;

�1

5

) A

�

5

6 2

1 1 (

13

10

;

�4

5

;

1

4

) 6 2

2 1 (

5

4

;

1

4

;

�3

4

) D

�

5

5 1

2 1 (1; 0; 0) (A

1

)

5

5 1

Mass formula: (5� 4� 3 + 2)

1

5

= 0:
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