Classification of positive forms
having prescribed automorphisms

by A.-M. Bergé

1. Introduction

Fix an integer n > 2, and a finite subgroup G of GL,,(Z). We denote by Sg the
space of real n x n symmetric matrices A which are G-invariant, i. e. such that

tgyAg= A for all g € G.
The centralizer SLg(Z) of G in SL,,(Z)
SLg(Z) = {u € SL,(Z) | g~ 'ug = u for all g € G}

acts on Sg by equivalence, and we say that A and B € Sg are G-integrally equiv-
alent if there exists u € SLg(Z) such that wAu = B.

For a positive definite matrix A € Sg (there exist such matrices, for instance
> gcc '99) we denote by min A = min(‘zAz, z € Z"\ {0}) the arithmetic minimum
of the associated quadratic form, and by S(A) the set of its minimal vectors (for
which Az = min A). We denote by Pg C Sg the variety of positive definite A’s
in Sg scaled so as to have minimum min A = 1. We classify these matrices by
their minimal vectors. More explicitly, the G-cell of A € Pg is the set of matrices
M € Pg such that S(M) = S(A); this is a convex polyhedron, bounded if and
only if the set S(A) spans R™. This cellular decomposition of Pg, first introduced
by Stogrin in [S] for the usual case (i.e. when G is trivial), was extended to the
general case by J. Martinet and the author (cf. [BM2]). We also proved in [BM2]
that up to G-integral equivalence, there are only finitely many bounded G-cells. In
section 2 of the present paper we make explicit the splitting of a class of integrally
equivalent G-matrices into several classes of G-equivalence, and we give the “mass
formula with signs” for bounded G-cells due to C. Bavard ([Ba]). The remainder
of this paper is devoted to the case of the regular representation of a cyclic group.
Section 3 gives a description of the corresponding arithmetic groups, and their Euler
characteristic. Tables in section 4 show the complete classification up to dimension
5, providing checks on Bavard’s formula.

To describe a given G-cell, we generally use an outstanding representative con-
nected to the study on this cell of the Hermite function

v(A) = min A (det A)_l/".
Let A € Pg be a G-invariant matrix: its inverse A~! as well as the matri-
ces (x'z, x € S(A)) are invariant under the group ‘G = {%, g € G}. We say
that A is eutactic (resp. weakly eutactic) if A~! belongs to the convex hull
(resp. the linear span) of (z'z,z € S(A)). In a given G-cell ¢, there exists
at most one matrix A where the strictly log-convex Hermite function « attains
its minimum; in a joint work with Martinet ([BM3]) we characterized this A
in its cell by the property of weak eutaxy. Note that if A is weakly eutactic,
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the set S(A) spans the space R™. So, in order to enumerate the weakly eutac-
tic G-matrices, we only need classify bounded cells. Among the weakly eutactic
G-matrices, the eutactic ones and the G-perfect ones (whose cells have affine di-
mension 0) are of particular interest, as eutaxy plus G-perfection characterizes the
local maxima on Pg of the Hermite function ([BM1]). In the case of the cyclic
group investigated in sections 3 and 4, we note that G-perfect matrices are indeed
perfect, except for one quintic matrix (which first appeared in [BM1]), and that the
root lattice Dy does not appear since it does not afford the right representation.

I thank J.-P. Serre for his helpful correspondance about the computation of
Euler characteristic. I also thank C. Bavard, J. Martinet and F. Sigrist for useful
discussions.

2. Euler formula for G-cells

Let ¢ be a bounded G-cell, and S the set of minimal vectors of the matrices
A € ¢. By assumption, S spans R", so the stabilizer Autg ¢ of ¢ in GL,(Z), which
also stabilizes S, is finite.

Lemma. Let k = |Autgc| be the order of this group. Then up to G-integral
equivalence there are at most kIG! G-cells integrally equivalent to c.

Proof. Let u € SL,(Z). Then the group G acts on the cell ucu if and only if
ugu~! belongs to Autgc for all ¢ € G. On the other hand, if v and v in SL, (%)
satisfy ugu=1! = vgv~1! for all ¢ € G, then v~'u belongs in the centralizer SLg(Z),
and the cells fucu and 'cv are G-integrally equivalent.

Remark. The estimate k!¢ is very rough, and can be replaced by k in the cyclic
case, and by 2 in the cases of section 4.

In the following, we denote by Autl c = {u € SLg(Z) | fucu = ¢} the stabilizer
in SLg(Z) of the G-cell ¢, and by dimc its affine dimension.

Theorem (Bavard). Let Bg be a full set of representatives of the bounded G-cells
modulo G-integral equivalence. Then

DT (SLe()),

— =
ol | Auts ¢
where x stands for the Euler characteristic.

In the case of the whole set of positive matrices, this formula has been checked
up to dimension 5, together with the Ash formula (cf. [A]) for eutactic matrices:
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for 2 < n < 4 there are 25 inequvalent cells, all of them but one with a weakly-
eutactic representative (cf. [BM2]). Beyond, the combinatorics seemed untractable,
but C. Batut recently developped in [B] an algorithm, which produced 136 cells in
dimension 5, among which 127 contain a weakly eutactic representative.

3. Application to the case of the regular representation of the cyclic
group of order n

The group G is generated by the permutation matrix

0 0O ... 0 1

1 0O ... O 0
™= 0 1 ... 0 0 ;

0 0o ... 1 0

the G-invariant matrices are circulant matrices (i.e. with a constant diagonal and
whose rows are deduced from the first one by circular permutation). The space
Sg of the symmetric invariant matrices is of dimension 1+ [n/2], as the first row
(a1, a2, -+ ,an) of such a matrix satisfies a; = a; if i + j =n + 2.

We now discuss the Euler characteristic of the centralizer SLg(Z) of G in SL,,(Z).
We denote by I,, the unit matrix in SL,(Z). For even n, we denote by G the
subgroup of SL,(Z) generated by £1I,, and 72

Proposition.

1
— 4 =2,3,40r6
(1) xSLa@) =4 n T mEBBLG
0 i mn=>5orn>T.
(2) SLg(Z) = G* (resp. G) forn = 2,4,6 (resp. n =3). Forn =5, SLg(Z)
is generated by G and the circulant matriz o with first row (—1,0,1,1,0).
(3) Let ¢ be a bounded G-cell. Then Authc = Gt (resp. G) forn = 2,4,6
(resp. n = 3,5).

Proof. The group SLg(Z) is abelian, and has positive Euler characteristic if and
only if it is finite. Explicitly, the centralizer of G' in GL,(Z) is isomorphic to the
group of units in some order of the semi-simple algebra Q[G], and its rank is that
of the group of units U, =~ [];,, Eq of the maximal order, where E4 denotes the
group of units of the dth cyclotomic field. As the rank of FE,, is positive except
for n < 4 and n = 6, the part of (1) concerning these values of n is done. For the
exceptional values of n, the group SLg(Z) is isomorphic to the group p, of the nth
roots of unity, it follows that it has order n, which completes the proof of (1) and
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transforms the obvious inclusions of G (for n = 3) or G+ (for even n’s) in SLg(Z)
into equalities. For n = 5, SLg(Z) is isomorphic to us X Z, and o corresponds to
the unit 1_T\/5 in Q(v/5). To prove (3), we use obvious inclusions and (for n = 5) a
finiteness argument.

Remark. For n = 2,3,4,6, the group SLg(Z) acts trivially on the G-matrices
(in other words G-integral equivalence is plain equality).

The rest of the paper is devoted to the complete explicit enumeration of G-cells
up to dimension 5. We made use of the previous classifications of the whole set of
matrices ([BM3], [B]). To find whether the regular representation (up to integral
conjugacy) acts on a given class ¢, we used a rational matrix F € c fixed by the
stabilizer Aut ¢ of the class. Such a matrix can be constructed from any rational
matrix A € ¢ by the usual averaging formula:

1
FE = E th A
Autc 949,
gEAute

(see [B], prop. 2.4). We then proceeded in the following way, that we explain
for n = 4 (the most tedious case). Let det E and m be the determinant and
minimum of E rescaled so as to be integral. A circulant matrix with first row
(a,b,c,b) has determinant (a — ¢)%(a + 2b + ¢)(a — 2b + ¢), where a, 2(a — c),
4(a+2b+ c) et 4(a — 2b + ¢) are values of the quadratic form on integral vectors.
In order to identify this matrix with E, we have to solve in integers the equation
(a—c)*(a+2b+c)(a—2b+c)=det E, witha >m,a—c> 2 and a£2b+c¢ > 2.
And eventually we test the integral equivalence of E with the invariant matrix

associated to each solution (a,b,c). The computations were carried out with the
PARI system.

4. Tables

In the following we give, for n < 5, the full lists of bounded G-cells up to
equivalence, and the checks on Bavard’s formula. In the tables, there is one line
for each cell ¢, displaying its dimension d = dim ¢, its eutactic representative E (as
it turned out that they all possess one), described by the first 1+ |5 ] entries of
its top row; we sometimes name the corresponding lattice L (up to rescalation),
making use of the usual notation (A, , D, for the root lattices, A} for the Coxeter
lattices, L* for the dual lattice of L). We also indicate the number s of pairs +z
of minimal vectors, and the number o of G-orbits of them. In the second column
we indicate the “weight”w of the cell in the mass formula, namely the number of
matrices integrally equivalent to E which are not G-integrally equivalent.



111 (1,0) [(A)? 21

1 1
Mass formula: (2 — 1)5 =5

en=23
d|lw FE L |s|o
01 (1,4)| As |62
01 (1,5 Ay |42
111 (1,0) [(A)3]311
11
Mass formula: (1+1—-1)- = .
3 3
en=4
d|lw E L s |o
02 (1,3,1) Ay |10]3
02 (1,3.%) L2 193
002 (1,43 73
1 V3-1
12](1,5,¥3~1) 8 |2
12 (1,0,4) (Ag)?) 6 2
1}2 (17_717%1) AZ 5 |2
201 (1,0,0) |(A)*] 41

1 1
Mass formula: (6 — 6 + 1)1 =71



en=>5
d w E L S
01 (1,0,3) Ds |20
01 (1,341) A3 15
01 (1,5,3) As |15
-1 1
02 (1,35 4) 11
1]2] (1,4, 5= 10
L2 (1,54 Y= 10
11 (1,43 AZ 102
11 (1,35 Ar 602
13 —4 1
11 (1_07 5 Z) 6 2
5 1 =3 *
211 (Z’ I T) Dz 51
201 (1,0,0) | (A)®] 5|1
1
Mass formula: (5 —4—3+ 2)5 = 0.
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