Classification of positive forms having prescribed automorphisms

by A.-M. Bergé

1. Introduction

Fix an integer $n \geq 2$, and a finite subgroup G of $\operatorname{GL}_n(\mathbb{Z})$. We denote by \mathcal{S}_G the space of real $n \times n$ symmetric matrices A which are G-invariant, i. e. such that

$${}^t\!gAg = A \;\; ext{for all} \; g \in G$$

The centralizer $\mathrm{SL}_G(\mathbb{Z})$ of G in $\mathrm{SL}_n(\mathbb{Z})$

$$\operatorname{SL}_G(\mathbb{Z}) = \{ u \in \operatorname{SL}_n(\mathbb{Z}) \mid g^{-1}ug = u \text{ for all } g \in G \}$$

acts on \mathcal{S}_G by equivalence, and we say that A and $B \in \mathcal{S}_G$ are G-integrally equivalent if there exists $u \in \mathrm{SL}_G(\mathbb{Z})$ such that ${}^t\!uAu = B$.

For a positive definite matrix $A \in \mathcal{S}_G$ (there exist such matrices, for instance $\sum_{g \in G} {}^{t}gg$ we denote by min $A = \min({}^{t}\boldsymbol{x}A\boldsymbol{x}, \ \boldsymbol{x} \in \mathbb{Z}^{n} \setminus \{0\})$ the arithmetic minimum of the associated quadratic form, and by S(A) the set of its minimal vectors (for which ${}^{t}\boldsymbol{x}A\boldsymbol{x} = \min A$). We denote by $\mathcal{P}_{G} \subset \mathcal{S}_{G}$ the variety of positive definite A's in \mathcal{S}_G scaled so as to have minimum min A = 1. We classify these matrices by their minimal vectors. More explicitly, the G-cell of $A \in \mathcal{P}_G$ is the set of matrices $M \in \mathcal{P}_G$ such that S(M) = S(A); this is a convex polyhedron, bounded if and only if the set S(A) spans \mathbb{R}^n . This cellular decomposition of \mathcal{P}_G , first introduced by Stogrin in [S] for the usual case (i.e. when G is trivial), was extended to the general case by J. Martinet and the author (cf. [BM2]). We also proved in [BM2] that up to G-integral equivalence, there are only finitely many bounded G-cells. In section 2 of the present paper we make explicit the splitting of a class of integrally equivalent G-matrices into several classes of G-equivalence, and we give the "mass formula with signs" for bounded G-cells due to C. Bavard ([Ba]). The remainder of this paper is devoted to the case of the regular representation of a cyclic group. Section 3 gives a description of the corresponding arithmetic groups, and their Euler characteristic. Tables in section 4 show the complete classification up to dimension 5, providing checks on Bavard's formula.

To describe a given G-cell, we generally use an outstanding representative connected to the study on this cell of the Hermite function

$$\gamma(A) = \min A \, (\det A)^{-1/n}.$$

Let $A \in \mathcal{P}_G$ be a *G*-invariant matrix: its inverse A^{-1} as well as the matrices $(\boldsymbol{x}^{t}\boldsymbol{x}, \boldsymbol{x} \in S(A))$ are invariant under the group ${}^{t}G = \{{}^{t}g, g \in G\}$. We say that *A* is *eutactic* (resp. *weakly eutactic*) if A^{-1} belongs to the convex hull (resp. the linear span) of $(\boldsymbol{x}^{t}\boldsymbol{x}, \boldsymbol{x} \in S(A))$. In a given *G*-cell *c*, there exists at most one matrix *A* where the strictly log-convex Hermite function γ attains its minimum; in a joint work with Martinet ([BM3]) we characterized this *A* in its cell by the property of weak eutaxy. Note that if *A* is weakly eutactic, the set S(A) spans the space \mathbb{R}^n . So, in order to enumerate the weakly eutactic *G*-matrices, we only need classify bounded cells. Among the weakly eutactic *G*-matrices, the eutactic ones and the *G*-perfect ones (whose cells have affine dimension 0) are of particular interest, as eutaxy plus *G*-perfection characterizes the local maxima on \mathcal{P}_G of the Hermite function ([BM1]). In the case of the cyclic group investigated in sections 3 and 4, we note that *G*-perfect matrices are indeed perfect, except for one quintic matrix (which first appeared in [BM1]), and that the root lattice \mathbb{D}_4 does not appear since it does not afford the right representation.

I thank J.-P. Serre for his helpful correspondence about the computation of Euler characteristic. I also thank C. Bavard, J. Martinet and F. Sigrist for useful discussions.

2. Euler formula for *G*-cells

Let c be a bounded G-cell, and S the set of minimal vectors of the matrices $A \in c$. By assumption, S spans \mathbb{R}^n , so the stabilizer $\operatorname{Aut}_G c$ of c in $\operatorname{GL}_n(\mathbb{Z})$, which also stabilizes S, is finite.

Lemma. Let $k = |\operatorname{Aut}_G c|$ be the order of this group. Then up to G-integral equivalence there are at most $k^{|G|}$ G-cells integrally equivalent to c.

Proof. Let $u \in \mathrm{SL}_n(\mathbb{Z})$. Then the group G acts on the cell ${}^t\!ucu$ if and only if ugu^{-1} belongs to $\mathrm{Aut}_G c$ for all $g \in G$. On the other hand, if u and v in $\mathrm{SL}_n(\mathbb{Z})$ satisfy $ugu^{-1} = vgv^{-1}$ for all $g \in G$, then $v^{-1}u$ belongs in the centralizer $\mathrm{SL}_G(\mathbb{Z})$, and the cells ${}^t\!ucu$ and ${}^t\!vcv$ are G-integrally equivalent.

Remark. The estimate $k^{|G|}$ is very rough, and can be replaced by k in the cyclic case, and by 2 in the cases of section 4.

Theorem (Bavard). Let \mathcal{B}_G be a full set of representatives of the bounded G-cells modulo G-integral equivalence. Then

$$\sum_{c \in \mathcal{B}_G} \frac{(-1)^{\dim c}}{|\operatorname{Aut}_G^+ c|} = \chi(\operatorname{SL}_G(\mathbb{Z})),$$

where χ stands for the Euler characteristic.

In the case of the whole set of positive matrices, this formula has been checked up to dimension 5, together with the Ash formula (cf. [A]) for eutactic matrices: for $2 \le n \le 4$ there are 25 inequvalent cells, all of them but one with a weaklyeutactic representative (cf. [BM2]). Beyond, the combinatorics seemed untractable, but C. Batut recently developped in [B] an algorithm, which produced 136 cells in dimension 5, among which 127 contain a weakly eutactic representative.

3. Application to the case of the regular representation of the cyclic group of order n

The group G is generated by the permutation matrix

$$\pi = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix};$$

the *G*-invariant matrices are *circulant* matrices (i.e. with a constant diagonal and whose rows are deduced from the first one by circular permutation). The space S_G of the symmetric invariant matrices is of dimension $1 + \lfloor n/2 \rfloor$, as the first row (a_1, a_2, \dots, a_n) of such a matrix satisfies $a_i = a_j$ if i + j = n + 2.

We now discuss the Euler characteristic of the centralizer $\mathrm{SL}_G(\mathbb{Z})$ of G in $\mathrm{SL}_n(\mathbb{Z})$. We denote by I_n the unit matrix in $\mathrm{SL}_n(\mathbb{Z})$. For even n, we denote by G^+ the subgroup of $\mathrm{SL}_n(\mathbb{Z})$ generated by $\pm I_n$ and π^2 .

Proposition.

(1)
$$\chi(\mathrm{SL}_G(\mathbb{Z})) = \begin{cases} \frac{1}{n} & \text{if} \quad n = 2, 3, 4 \text{ or } 6, \\ 0 & \text{if} \quad n = 5 \text{ or } n \ge 7. \end{cases}$$

- (2) $\operatorname{SL}_G(\mathbb{Z}) = G^+$ (resp. G) for n = 2, 4, 6 (resp. n = 3). For n = 5, $\operatorname{SL}_G(\mathbb{Z})$ is generated by G and the circulant matrix σ with first row (-1, 0, 1, 1, 0).
- (3) Let c be a bounded G-cell. Then $\operatorname{Aut}_G^+ c = G^+$ (resp. G) for n = 2, 4, 6 (resp. n = 3, 5).

Proof. The group $\operatorname{SL}_G(\mathbb{Z})$ is abelian, and has positive Euler characteristic if and only if it is finite. Explicitly, the centralizer of G in $\operatorname{GL}_n(\mathbb{Z})$ is isomorphic to the group of units in some order of the semi-simple algebra $\mathbb{Q}[G]$, and its rank is that of the group of units $U_n \simeq \prod_{d|n} E_d$ of the maximal order, where E_d denotes the group of units of the d th cyclotomic field. As the rank of E_n is positive except for $n \leq 4$ and n = 6, the part of (1) concerning these values of n is done. For the exceptional values of n, the group $\operatorname{SL}_G(\mathbb{Z})$ is isomorphic to the group μ_n of the n th roots of unity, it follows that it has order n, which completes the proof of (1) and transforms the obvious inclusions of G (for n = 3) or G^+ (for even n's) in $\mathrm{SL}_G(\mathbb{Z})$ into equalities. For n = 5, $\mathrm{SL}_G(\mathbb{Z})$ is isomorphic to $\mu_5 \times \mathbb{Z}$, and σ corresponds to the unit $\frac{1-\sqrt{5}}{2}$ in $\mathbb{Q}(\sqrt{5})$. To prove (3), we use obvious inclusions and (for n = 5) a finiteness argument.

Remark. For n = 2, 3, 4, 6, the group $SL_G(\mathbb{Z})$ acts trivially on the *G*-matrices (in other words *G*-integral equivalence is plain equality).

The rest of the paper is devoted to the complete explicit enumeration of G-cells up to dimension 5. We made use of the previous classifications of the whole set of matrices ([BM3], [B]). To find whether the regular representation (up to integral conjugacy) acts on a given class c, we used a rational matrix $E \in c$ fixed by the stabilizer Aut c of the class. Such a matrix can be constructed from any rational matrix $A \in c$ by the usual averaging formula:

$$E = \frac{1}{\operatorname{Aut} c} \sum_{g \in \operatorname{Aut} c} {}^{t} g A g,$$

(see [B], prop. 2.4). We then proceeded in the following way, that we explain for n = 4 (the most tedious case). Let det E and m be the determinant and minimum of E rescaled so as to be integral. A circulant matrix with first row (a, b, c, b) has determinant $(a - c)^2(a + 2b + c)(a - 2b + c)$, where a, 2(a - c), 4(a + 2b + c) et 4(a - 2b + c) are values of the quadratic form on integral vectors. In order to identify this matrix with E, we have to solve in integers the equation $(a - c)^2(a + 2b + c)(a - 2b + c) = \det E$, with $a \ge m$, $a - c \ge \frac{m}{2}$ and $a \pm 2b + c \ge \frac{m}{4}$. And eventually we test the integral equivalence of E with the invariant matrix associated to each solution (a, b, c). The computations were carried out with the PARI system.

4. Tables

In the following we give, for $n \leq 5$, the full lists of bounded *G*-cells up to equivalence, and the checks on Bavard's formula. In the tables, there is one line for each cell *c*, displaying its dimension $d = \dim c$, its eutactic representative *E* (as it turned out that they all possess one), described by the first $1 + \lfloor \frac{n}{2} \rfloor$ entries of its top row; we sometimes name the corresponding lattice *L* (up to rescalation), making use of the usual notation $(\mathbb{A}_n, \mathbb{D}_n$ for the root lattices, \mathbb{A}_n^r for the Coxeter lattices, L^* for the dual lattice of *L*). We also indicate the number *s* of pairs $\pm \boldsymbol{x}$ of minimal vectors, and the number *o* of *G*-orbits of them. In the second column we indicate the "weight" *w* of the cell in the mass formula, namely the number of matrices integrally equivalent to *E* which are not *G*-integrally equivalent.

	d	w	E	L	s	0	
	0	2	$(1, \frac{-1}{2})$	\mathbb{A}_2	3	2	
	1	1	(1,0)	$(\mathbb{A}_1)^2$	2	1	
Mass formula : $(2-1)\frac{1}{2} = \frac{1}{2}$					$\frac{1}{2}$.		

• n = 3

d	w	E	L	s	0
0	1	$(1, \frac{1}{2})$	\mathbb{A}_3	6	2
0	1	$\left(1, \frac{-1}{3}\right)$	\mathbb{A}_3^*	4	2
1	1	(1,0)	$(\mathbb{A}_1)^3$	3	1

Mass formula : $(1+1-1)\frac{1}{3} = \frac{1}{3}.$

• n = 4

d	w	E	L	s	0
0	2	$(1,rac{1}{2},rac{1}{2})$	\mathbb{A}_4	10	3
0	2	$\left(1, \frac{1}{2}, \frac{1}{4}\right)$	L_4^2	9	3
0	2	$(1, \frac{1}{8}, \frac{-1}{2})$		7	3
1	2	$\left(1, \frac{1}{2}, \frac{\sqrt{3}-1}{2}\right)$		8	2
1	2	$(1,0,rac{1}{2})$	$(\mathbb{A}_2)^2$	6	2
1	2	$(1, \frac{-1}{4}, \frac{-1}{4})$	\mathbb{A}_4^*	5	2
2	1	(1, 0, 0)	$(\mathbb{A}_1)^4$	4	1

Mass formula:
$$(6 - 6 + 1)\frac{1}{4} = \frac{1}{4}$$
.

• n = 5

d	w	E	L	s	0
0	1	$(1,0,rac{1}{2})$	\mathbb{D}_5	20	4
0	1	$\left(1, \frac{-1}{2}, \frac{1}{4}\right)$	\mathbb{A}_5^3	15	3
0	1	$(1,rac{1}{2},rac{1}{2})$	\mathbb{A}_5	15	3
0	2	$(1, \tfrac{-1}{2}, \tfrac{1}{10})$		11	3
1	2	$(1, \frac{1}{2}, \frac{\sqrt{5}-1}{4})$		10	2
1	2	$(1, \frac{-1}{2}, \frac{\sqrt{13}-3}{4})$		10	2
1	1	$(1, \frac{1}{3}, \frac{-1}{3})$	\mathbb{A}_5^2	10	2
1	1	$\left(1, \frac{-1}{5}, \frac{-1}{5}\right)$	\mathbb{A}_5^*	6	2
1	1	$(\frac{13}{10}, \frac{-4}{5}, \frac{1}{4})$		6	2
2	1	$\left(rac{5}{4},rac{1}{4},rac{-3}{4} ight)$	\mathbb{D}_5^*	5	1
2	1	(1, 0, 0)	$(\mathbb{A}_1)^5$	5	1

Mass formula:
$$(5-4-3+2)\frac{1}{5} = 0.$$

References

- [A] A. Ash, On the existence of eutactic forms, Bull. London Math. Soc. 12 (1980), 192–196.
- [B] C. Batut, *Classification of quintic eutactic forms*, Math. Comp., to appear.
- [Ba] C. Bavard, Une formule d'Euler pour les classes minimales de réseaux, preprint.
- [BM1] A.-M. Bergé, J. Martinet, Réseaux extrêmes pour un groupe d'automorphismes, Astérisque 198-200 (1992), 41-66.
- [BM2] A.-M. Bergé, J. Martinet, Densité dans des familles de réseaux. Application aux réseaux isoduaux, L'enseignement Mathématique 41 (1995), 335-365.
- [BM3] A.-M. Bergé, J. Martinet, Sur la classification des réseaux eutactiques, J. London Math. Soc 53 (1996), 417–432.
- [S] M.I. Štogrin, Locally densest lattice packings of spheres, Soviet Math. Dokl. 15 (1974).

Laboratoire A2X, Université Bordeaux 1,

351 cours de la Libération, F33405 Talence FRANCE. e-mail berge@math.u-bordeaux.fr