Classication of positive forms having prescribed automorphisms

by A.-M. Berge

1. Introduction

Fix an integer $n \geq 2$, and a finite subgroup G of $GL_n(\mathbb{Z})$. We denote by S_G the space of real n - n symmetric matrices A which are G-invariant, i. e. such that i. e. such that

$$
{}^t\!gAg=A \text{ for all } g\in G.
$$

The centralizer $SL_G(\mathbb{Z})$ of G in $SL_n(\mathbb{Z})$

$$
SL_G(\mathbb{Z}) = \{ u \in SL_n(\mathbb{Z}) \mid g^{-1}ug = u \text{ for all } g \in G \}
$$

acts on S_G by equivalence, and we say that A and $B \in S_G$ are G-integrally equivalent if there exists $u \in SL_G(\mathbb{Z})$ such that $u\Lambda u = B$.

^P For a positive definite matrix $A \in \mathcal{S}_G$ (there exist such matrices, for instance $\mathcal{L}_{g\in G}\mathit{~}^t\!gg)$ we denote by $\min A=\min({}^t\!{\bm{x}} A {\bm{x}},\;{\bm{x}}\in\mathbb Z^n\!\smallsetminus\!\{0\})$ the arithmetic minimum of the associated quadratic form, and by $S(A)$ the set of its minimal vectors (for which ${}^{\bm{t}}\bm{x}A\bm{x} = \min A$). We denote by $\mathcal{P}_G \subset \mathcal{S}_G$ the variety of positive definite A 's in S_G scaled so as to have minimum min $A = 1$. We classify these matrices by their minimal vectors. More explicitly, the G-cell of $A \in \mathcal{P}_G$ is the set of matrices $M \in \mathcal{P}_G$ such that $S(M) = S(A)$; this is a convex polyhedron, bounded if and only if the set $S(A)$ spans \mathbb{R}^n . This cellular decomposition of \mathcal{P}_G , first introduced by Stogrin in $[S]$ for the usual case (i.e. when G is trivial), was extended to the general case by J. Martinet and the author (cf. [BM2]). We also proved in [BM2] that up to G -integral equivalence, there are only finitely many bounded G -cells. In section 2 of the present paper we make explicit the splitting of a class of integrally equivalent G-matrices into several classes of G-equivalence, and we give the "mass formula with signs" for bounded G-cells due to C. Bavard ([Ba]). The remainder of this paper is devoted to the case of the regular representation of a cyclic group. Section 3 gives a description of the corresponding arithmetic groups, and their Euler characteristic. Tables in section 4 show the complete classication up to dimension 5, providing checks on Bavard's formula.

To describe a given G-cell, we generally use an outstanding representative connected to the study on this cell of the Hermite function

$$
\gamma(A) = \min A (\det A)^{-1/n}.
$$

Let $A \in \mathcal{P}_G$ be a G-invariant matrix: its inverse A^{-1} as well as the matrices $\{x \cdot x, x \in S(A)\}$ are invariant under the group $G = \{y, y \in G\}$. We say that A is eutactic (resp. weakly eutactic) if A^{-1} belongs to the convex hull (resp. the linear span) of $\bm{x} \ \bm{x}, \bm{x} \ \in \ \mathcal{S}(A))$. In a given G-cell c , there exists at most one matrix A where the strictly log-convex riefunce function γ attains its minimum; in a joint work with Martinet ([BM3]) we characterized this A in its cell by the property of weak eutaxy. Note that if A is weakly eutactic,

the set $S(A)$ spans the space \mathbb{R}^n . So, in order to enumerate the weakly eutactic G-matrices, we only need classify bounded cells. Among the weakly eutactic G-matrices, the eutactic ones and the G-perfect ones (whose cells have affine dimension 0) are of particular interest, as eutaxy plus G-perfection characterizes the local maxima on \mathcal{P}_G of the Hermite function ([BM1]). In the case of the cyclic group investigated in sections 3 and 4, we note that G-perfect matrices are indeed perfect, except for one quintic matrix (which first appeared in $[BM1]$), and that the root lattice \mathbb{D}_4 does not appear since it does not afford the right representation.

I thank J.-P. Serre for his helpful correspondance about the computation of Euler characteristic. I also thank C. Bavard, J. Martinet and F. Sigrist for useful discussions.

2. Euler formula for G-cells

Let c be a bounded G -cell, and S the set of minimal vectors of the matrices $A \in c$. By assumption, S spans \mathbb{R}^n , so the stabilizer Aut_G c of c in $GL_n(\mathbb{Z})$, which also stabilizes S , is finite.

Lemma. Let $k = |\text{Aut}_G c|$ be the order of this group. Then up to G-integral equivalence there are at most $k^{|G|}$ G-cells integrally equivalent to c.

Proof. Let $u \in SL_n(\mathbb{Z})$. Then the group G acts on the cell tucu if and only if ugu^{-1} belongs to Aut_G c for all $g \in G$. On the other hand, if u and v in $SL_n(\mathbb{Z})$ satisfy $ugu^{-1} = vgv^{-1}$ for all $g \in G$, then $v^{-1}u$ belongs in the centralizer $SL_G(\mathbb{Z})$, and the cens ucu and vcv are G-integrally equivalent.

Remark. The estimate κ_{tot} is very rough, and can be replaced by κ in the cyclic case, and by 2 in the cases of section 4.

In the following, we denote by $\mathrm{Aut}^+_G c = \{ u \in \mathrm{SL}_G(\mathbb{Z}) \mid {}^t\!ucu = c \}$ the stabilizer in $SL_G(\mathbb{Z})$ of the G-cell c, and by dim c its affine dimension.

Theorem (Bavard). Let \mathcal{B}_G be a full set of representatives of the bounded G-cells modulo G-integral equivalence. Then

$$
\sum_{c \in \mathcal{B}_G} \frac{(-1)^{\dim c}}{|\mathrm{Aut}_G^+ c|} = \chi(\mathrm{SL}_G(\mathbb{Z})),
$$

where χ stands for the Euler characteristic.

In the case of the whole set of positive matrices, this formula has been checked up to dimension 5, together with the Ash formula (cf. $[A]$) for eutactic matrices: for $2 \leq n \leq 4$ there are 25 inequvalent cells, all of them but one with a weaklyeutactic representative (cf. [BM2]). Beyond, the combinatorics seemed untractable, but C. Batut recently developped in [B] an algorithm, which produced 136 cells in dimension 5, among which 127 contain a weakly eutactic representative.

3. Application to the case of the regular representation of the cyclic group of order n

The group G is generated by the permutation matrix

$$
\pi = \left(\begin{array}{ccccc} 0 & 0 & \ldots & 0 & 1 \\ 1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & 1 & 0 \end{array}\right);
$$

the G-invariant matrices are circulant matrices (i.e. with a constant diagonal and whose rows are deduced from the first one by circular permutation). The space \mathcal{S}_G of the symmetric invariant matrices is of dimension $1+|n/2|$, as the first row (a_1, a_2, \dots, a_n) of such a matrix satisfies $a_i = a_j$ if $i + j = n + 2$.

We now discuss the Euler characteristic of the centralizer $SL_G(\mathbb{Z})$ of G in $SL_n(\mathbb{Z})$. We denote by I_n the unit matrix in $SL_n(\mathbb{Z})$. For even n, we denote by G^+ the subgroup of $\mathrm{SL}_n(\mathbb{Z})$ generated by $\pm I_n$ and π^2 .

Proposition.

(1)
$$
\chi(\text{SL}_G(\mathbb{Z})) = \begin{cases} \frac{1}{n} & \text{if } n = 2, 3, 4 \text{ or } 6, \\ 0 & \text{if } n = 5 \text{ or } n \ge 7. \end{cases}
$$

- (2) $SL_G(\mathbb{Z}) = G^+$ (resp. G) for $n = 2, 4, 6$ (resp. $n = 3$). For $n = 5$, $SL_G(\mathbb{Z})$ is generated by G and the circulant matrix σ with first row $(-1, 0, 1, 1, 0)$.
- (3) Let c be a bounded G-cell. Then $\mathrm{Aut}^+_G c = G^+$ (resp. G) for $n = 2, 4, 6$ (resp. $n = 3, 5$).

Proof. The group $SL_G(\mathbb{Z})$ is abelian, and has positive Euler characteristic if and only if it is finite. Explicitly, the centralizer of G in $GL_n(\mathbb{Z})$ is isomorphic to the group of units in some order of the semi-simple algebra $\mathbb{Q}[G]$, and its rank is that of the group of units $U_n \simeq \prod$ $d\mid n$ equal order, where $\frac{d\mid n}{2}$ is the maximal order, where $\frac{d\mid n}{2}$ is the maximal order the $\frac{d\mid n}{2}$ group of units of the dth cyclotomic field. As the rank of E_n is positive except for $n \leq 4$ and $n = 6$, the part of (1) concerning these values of n is done. For the exceptional values of n, the group $SL_G(\mathbb{Z})$ is isomorphic to the group μ_n of the n th roots of unity, it follows that it has order n , which completes the proof of (1) and

transforms the obvious inclusions of G (for $n=3$) or G^+ (for even n's) in $SL_G(\mathbb{Z})$ into equalities. For $n = 5$, $SL_G(\mathbb{Z})$ is isomorphic to $\mu_5 \times \mathbb{Z}$, and σ corresponds to the unit $\frac{1-\sqrt{5}}{2}$ $\frac{\sqrt{5}}{2}$ in $\mathbb{Q}(\sqrt{2})$ 5). To prove the prove (3), we use obvious inclusions and (for n 5) and (finiteness argument.

Remark. For $n = 2, 3, 4, 6$, the group $SL_G(\mathbb{Z})$ acts trivially on the G-matrices (in other words G -integral equivalence is plain equality).

The rest of the paper is devoted to the complete explicit enumeration of G-cells up to dimension 5. We made use of the previous classications of the whole set of matrices ($[BM3]$, $[B]$). To find whether the regular representation (up to integral conjugacy) acts on a given class c, we used a rational matrix $E \in c$ fixed by the stabilizer Aut c of the class. Such a matrix can be constructed from any rational matrix $A \in c$ by the usual averaging formula:

$$
E = \frac{1}{\text{Aut }c} \sum_{g \in \text{Aut }c} {}^t\!gAg,
$$

(see [B], prop. 2.4). We then proceeded in the following way, that we explain for $n = 4$ (the most tedious case). Let $\det E$ and m be the determinant and minimum of E rescaled so as to be integral. A circulant matrix with first row (a, b, c, b) has determinant $(a - c)^2(a + 2b + c)(a - 2b + c)$, where a, $2(a - c)$, $4(a + 2b + c)$ et $4(a - 2b + c)$ are values of the quadratic form on integral vectors. In order to identify this matrix with E , we have to solve in integers the equation $(a-c)^2(a+2b+c)(a-2b+c) = \det E$, with $a \ge m$, $a-c \ge \frac{m}{2}$ and $a \pm 2b+c \ge \frac{m}{4}$. And eventually we test the integral equivalence of E with the invariant matrix associated to each solution (a, b, c) . The computations were carried out with the PARI system.

4. Tables

In the following we give, for $n \leq 5$, the full lists of bounded G-cells up to equivalence, and the checks on Bavard's formula. In the tables, there is one line for each cell c, displaying its dimension $d = \dim c$, its eutactic representative E (as it turned out that they all possess one), described by the first $1 + \lfloor \frac{1}{2} \rfloor$ entries of its top row; we sometimes name the corresponding lattice L (up to rescalation), making use of the usual notation (A_n, \mathbb{D}_n) for the root lattices, \mathbb{A}_n^r for the Coxeter fattices, L for the dual lattice of L). We also indicate the number s of pairs $\pm\bm{x}$ of minimal vectors, and the number o of G -orbits of them. In the second column we indicate the "weight" w of the cell in the mass formula, namely the number of matrices integrally equivalent to E which are not G -integrally equivalent.

Mass formula : $(1+1-1)\frac{1}{3} = \frac{1}{3}$.

Mass formula:
$$
(6-6+1)\frac{1}{4} = \frac{1}{4}
$$

 \bullet n = 5

Mass formula:
$$
(5-4-3+2)\frac{1}{5} = 0.
$$

REFERENCES

- [A] A. Ash, On the existence of eutactic forms, Bull. London Math. Soc. (1980), 192-196.
- [B] C. Batut, *Classification of quintic eutactic forms*, Math. Comp., to appear.
- [Ba] C. Bavard, Une formule d'Euler pour les classes minimales de reseaux, preprint.
- [BM1] A.-M. Berge, J. Martinet, Reseaux extr^emes pour un groupe d'automorphismes, Asterisque 198-200 (1992), 41-66.
- [BM2] A.-M. Bergé, J. Martinet, *Densité dans des familles de réseaux. Application aux réseaux* $isoduaux, L'enseignement Mathématique 41 (1995), 335-365.$
- [BM3] A.-M. Bergé, J. Martinet, Sur la classification des réseaux eutactiques, J. London Math. Soc 53 (1996), 417-432.
- [S] M.I. Štogrin, Locally densest lattice packings of spheres, Soviet Math. Dokl. 15 (1974).

Laboratoire A2X, Université Bordeaux 1,

cours de la Liberation, F33405 Talence FRANCE.

e-mail berge@math.u-bordeaux.fr