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Abstract. This paper introduces a wide generalization of a family of integral

lattices defined by Coxeter, which share with the Coxeter lattices the following

properties: they are perfect, with often an odd minimum, and have no non-
trivial perfect sections with the same minimum.

Let E be an n-dimensional Euclidean space with scalar product x · y and norm
N(x) = x · x. A lattice in E is a discrete subgroup Λ of E of rank n. We set
m = minΛ = minN(x), x ∈ Λr{0} (the minimum of Λ), S = S(Λ) = {x ∈ Λ |
N(x) = m} (the sphere of Λ), and s = 1

2 |S| (its (half ) kissing number).
In his 1951 paper [Cox], Coxeter considered the lattices L defined for odd n ≥ 5

by the conditions An ⊂ L ⊂ A∗
n and [A∗

n : L] = 2, where An stands as usual for
the root lattice generated by the root system of type An. He determined their
minimum and proved that they are perfect, with s = n(n+1)

2 , the smallest possible
kissing number for a perfect lattice. In the sequel, we denote by Coxn their scaled
copy to the smallest minimum m which makes them integral (2(n − 1) if n ≡ 1
mod 4, n−1

2 if n ≡ 3 mod 4; see [M], Section 5.2).

In her paper [Be], the first author proved that these lattices are hollow for all
n ≥ 7 in the sense that they do not have any perfect r-dimensional sections with
the same minimum in the range 1 < r < n. (Cox5, which has hexagonal sections of
minimum m, is an exception.) Her method relies on the fact that S(A∗

n) is of the
form {±v0,±v1, . . . ,±vn} with vectors vi which add to zero, and that the minimal
vectors of Coxn (up to sign) are then the sums vi + vj for 0 ≤ i < j ≤ n.

In relation with his recent joint paper [M-V] with Boris Venkov, the second
author tried to construct in various dimensions integral perfect lattices Λ having
an odd minimum, using a construction going back to Watson ([W]; see also [M1]):
one starts with a lattice Λ′ having a basis (e1, . . . , en) of minimal vectors, and then
considers lattices of the form Λ = 〈Λ′, e〉 for a vector e = e′

d , e′ ∈ Λ′, d ≥ 2. chosen in
such a way that the minimal vectors of Λ lie in the set S0 = {±ei}∪{±(e−ei−ej)}.
It appeared that S0 could be viewed as a set {±(vi+vj)} where the vi, i = 0, 1, . . . , n
belong to a lattice M containing Λ to index 2 and are related by a single relation
c0v0 + c1v1 + · · · + cnvn = 0 with at most one null coefficient ci, an observation
which throws new light on Watson’s constructions. Using this device, we are able
to prove:

Theorem 0.1. For every n ≥ 10, there exist perfect, hollow n-dimensional lattices
having an odd minimum.

The mere existence of perfect lattices having an odd minimum (hollow or not)
for all large enough dimensions is new (the Coxeter family solves the problem only
for dimensions congruent to 3 modulo 4). The proof of Theorem 0.1 will be given
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in Section 3. That these lattices are actually hollow lattices is proved following
closely the arguments of [Be].

To guess systems (ci) which ensure that all vectors in S0 have the same odd
norm is rather easy. As usual, the difficult problem is to show that these vectors
are minimal. The theorem below (chosen because the corresponding lattices are
highly symmetric; their automorphism group contains the symmetric group on
n letters) is an instance of such a result. To state it, we introduce some more
notation. We consider positive integers a1, . . . , an, d and a lattice Λ = 〈Λ′, e〉 for
which e = (a1e1 + · · · + anen)/d. We shall prove that there is a unique system of
scalar products (ei ·ej) such that all vectors in S0 have a given common norm m > 0.
Set A = a1 + · · · + an and q = A − 2d. For the system (vi), we then have c0 = q
and ci = ai if i ≥ 1, and thus C :=

∑n
i=0 ci = 2A − 2d is even, as well as A − q,

and the transition between Coxeter-like and Watson-like constructions is given by
the formulae ei = v0 + vi and e = 2v0, whence e− ei − ej = −(vi + vj), and in the
other direction, v0 = e

2 and vi = −( e
2 − ei).

Theorem 0.2. If n ≥ 10 and a1 = · · · = an = 1, the vectors of S0 are minimal
if and only if 0 ≤ q ≤

√
n + 1 − 1, and S(Λ) reduces to S0 if and only if these

inequalities are strict.
(
If q = 0, S(Λ) = S0 ∪ {±(e − ei)}; if q =

√
n + 1 − 1, S(Λ) =

S0 ∪ {±(ei − ej)}.
)

The proof will be given in Section 2. This suffices to prove Theorem 0.1 for
all dimensions n ≥ 21 not divisible by 8 (and indeed for all n outside a set of
density zero). The missing dimensions will be dealt with using systems (ai) with
a1 = · · · = an−2 = 1, an−1 = 1 or 2, and an = 2, see Section 3 and the appendix.

1. A perfect system

In this section, we assume that E has dimension n ≥ 5. We denote by Ends(E)
the space of symmetric endomorphisms of E, and for any x ∈ E, by px ∈ End the
orthogonal projection onto the line spanned by x (and set p0 = 0). The perfection
rank of a subset S of E is the rank of the system {px, x ∈ S}, and we say that S

is perfect if this perfection rank is equal to dim Ends(E) = n(n+1)
2 . As usual, a

lattice Λ in E is perfect if the set of its minimal vectors is perfect.
We now give a method of construction of perfect lattices, starting from a system

of n + 1 vectors of E.

Theorem 1.1. Let V = {vi, 0 ≤ i ≤ n} ⊂ E be a set of n + 1 distinct, non-zero
vectors of E, of rank n, satisfying a non-trivial relation with integral coefficients.
If the set

SV = {vi + vj , 0 ≤ i < j ≤ n} ⊂ E

consists of minimal vectors of the lattice ΛV = 〈SV〉 it spans, then the set SV and
the lattice ΛV are perfect.

We first establish a more general property of perfection for the set SV .

Lemma 1.2. Let
∑

0≤i≤n ci vi = 0, ci ∈ R be a non-trivial relation between the
vi ∈ V. Set C =

∑
0≤i≤n ci. Then, if the coefficients ci satisfy the hypotheses

ci 6=
C

4
for 0 ≤ i ≤ n and

∑
0≤i≤n

C

C − 4ci
− (n− 3) 6= 0 ,
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the set SV is perfect. This is true in particular when ci < C
4 for all i, which implies∑

0≤i≤n

C

C − 4ci
− (n− 3) > 8 .

Proof. Since |{(i, j), 0 ≤ i < j ≤ n}| = n(n+1)
2 , it suffices to prove that the px, x ∈

SV are linearly independent in Ends(E). Consider in Ends(E) an endomorphism∑
0≤i<j≤n

N(vi + vj)λij pvi+vj
with (λij) ∈ R

n(n+1)
2 .

We suppose for example c0 6= 0, and use the basis B = (v1, . . . , vn) and its dual
basis B∗. For convenience, we set

∀ i ≥ 1, ∀ j < i, λij = λji, µi =
λ0i

c2
0

and µ =
∑

1≤i≤n

µi .

The n × n matrix (ahk) of the endomorphism
∑

λijN(vi + vj) pvi+vj in the bases
(B∗,B) is given by

ahk =


λhk + chckµ− c0(ckµh + chµk) if h 6= k∑
l 6=k

λlk + c2
k µ− c0(2ck − c0)µk if h = k. (1.1)

This implies that
∑

h6=k ahk − akk = ck(C − 2c0 − 2ck)µ − c0(C − 4ck)µk for all
k ≥ 1. Using now the hypothesis C − 4ck 6= 0 for all k, we obtain∑

h6=k ahk − akk

C − 4ck
=

ck(C − 2c0 − 2ck)
C − 4ck

µ− c0 µk , (1.2)

and thus ∑
1≤k≤n

∑
h6=k ahk − akk

C − 4ck
=

( ∑
1≤k≤n

ck(C − 2c0 − 2ck)
C − 4ck

− c0

)
µ , (1.3)

where∑
1≤k≤n

ck(C − 2c0 − 2ck)
C − 4ck

− c0 =
C − 4c0

8

( ∑
0≤i≤n

C

C − 4ci
− (n− 3)

)
6= 0 .

Now, suppose that
∑

N(vi + vj)λij pvi+vj
is zero, i.e. that ahk = 0 for all h, k. It

follows from (1.3) that µ = 0, hence by (1.2) that λ0k = µk = 0 for all k ≥ 1, and
finally by (1.1) that λhk = 0 for all 1 ≤ h < k ≤ n. Hence SV is perfect.

Suppose now that C − 4ci > 0 for all i ≥ 0, which implies C > 0, and thus

ui =
C

C − 4ci
> 0. We have

∑ 1
ui

= n− 3, hence

∑
0≤i≤n

C

C − 4ci
− (n− 3) =

∑
0≤i≤n

ui −
∑

0≤i≤n

1
ui

.

Multiplying side by side the arithmetic-geometric inequalities∑
i

ui ≥ (n + 1)(
∏

i

ui)
1

n+1 and
∑

i

1
ui
≥ (n + 1)(

∏
i

1
ui

)
1

n+1 ,
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we obtain
( ∑

i ui

)( ∑
j

1
uj

)
≥ (n + 1)2 , where equality holds if and only if all ui

are equal. In particular,∑
ui −

∑ 1
ui
≥

(n + 1)2 − (
∑

1
ui

)2∑
1
ui

,

i.e.
∑

0≤i≤n
C

C−4ci
− (n− 3) ≥ 8(n−1)

n−3 > 8 . �

Proof of Theorem 1.1. We prove that the coefficients of the relation
∑

0≤i≤n civi =
0, where without loss of generality we may suppose C =

∑
ci ≥ 0, satisfy the

hypotheses of Lemma 1.2, under the mere assumptions{
for 0 ≤ i ≤ n : N(2vi) ≥ m

for 0 ≤ i < j ≤ n : N(vi − vj) ≥ N(vi + vj) = m > 0 .
(1.4)

[Indeed the lattice ΛV contains the non-zero vectors 2vi = (vi + vj) + (vi + vk)− (vj + vk)

and vi − vj = vi + vj − 2vj , and the hypothesis min ΛV = m implies conditions (1.4).]

For i = 0, . . . , n, let
αi = vi · vi .

It results from the hypotheses (1.4) that for i 6= j, we have

αi + αj −m = −2vi · vj =
N(vi − vj)−N(vi + vj)

2
≥ 0 . (1.5)

We now use the relation
∑

j 6=i cj(vi · vj) = vi ·
∑

j 6=i cjvj = −ciαi. By performing
linear combinations on the equalities in (1.5), we obtain the n + 1 Watson-like
identities ∑

j 6=i

cj

(
N(vi − vj)−N(vi + vj)

)
︸ ︷︷ ︸

≥0

= ci N(2vi) , (W(i))

and the relations
∑

j 6=i(αi −m) +
∑

j 6=i cjαj = 2αici, which also read

(C − 4ci)
(
αi −

m

4

)
= K where K =

m C

2
−

∑
j

cj

(
αj −

m

4

)
. (1.6)

We now prove that K is strictly positive. Since 2vi ∈ ΛV is non-zero and 4αi =
N(2vi), we have αi ≥ m

4 for all i, and the inequalities in (1.5), namely αi +αj ≥ m
for all i 6= j, show that there exists at most one index i0 such that αi0 ≤ m

4 , and
then αi0 = m

4 by condition (1.4). Thus K ≤ 0 would imply by (1.6) ci ≥ C
4 ≥ 0

for all i 6= i0, and Watson’s identity (W(i0)) then implies ci0 ≥ 0. Since the ci

are non-negative and not all zero, their sum C is strictly positive and satisfies the
inequality C =

∑
i 6=i0

ci + ci0 ≥ n C
4 , a contradiction for n ≥ 5. From (1.6) and

K > 0, it follows that C > 4ci (and αi > m
4 ) for all i, and then, by Lemma 1.2 the

set SV is perfect, and so is the lattice ΛV if m is its minimal norm. (Actually, this
last condition is fulfilled under the hypotheses (1.4) at least in the cases studied in
Section 2.) This completes the proof of the theorem. �

From Formula (1.6) we can now make explicit K and the Gram matrix for the
set V. For further use, we state these results as a lemma.



A GENERALIZATION OF SOME LATTICES OF COXETER 5

Lemma 1.3. Under the hypotheses of Theorem 1.1, one has

K =
2m C∑
i

C
C−4ci

− (n− 3) ,

and

∀ i, j, vi · vj =


m

4
+

K

C − 4ci
(= αi) if j = i,

m− αi − αj

2
if j 6= i.

[As above,
∑n

i=0 civi = 0 and C =
∑n

i=0 ci.]

Proof. By (1.6) we have αi − m
4 = K

C−4ci
for all i, hence K = m C

2 −K
∑

i
ci

C−4ci
,

where
∑

i
ci

C−4ci
= 1

4

( ∑
i

C
C−4ci

− (n + 1)
)
; this shows that aK = 2m C where

a =
∑

i
C

C−4ci
− (n − 3) is > 8 by Lemma 1.2. This gives K and the αi, and the

other scalar products stem from Formula (1.5). �

Incidentally, we have proved the upper bound K < mC
4 , from which one can

derive some other properties of the ci, namely:
(i) ∀ i, ci ≥ 0, and ci = 0 for at most one index i0 (note that from (W(i0)), ci0 = 0 ⇔
N(vi − vi0) = m for all i 6= i0).
(ii) C =

∑
ci is even; see the introduction.

2. Calculation of minima

In this section, we prove Theorem 0.2 and then sketch the proof of an analogous
result that we shall also need in the next section to prove Theorem 0.1. The basic
idea is to use a “decomposition into many squares” of the quadratic form N(x).

Proof of Theorem 0.2. The notation is that of Lemma 1.2, with c0 = q and ci = 1
for i ≥ 1, where 0 ≤ q ≤

√
n + 1 − 1. Thus C = n + q satisfies the conditions

C > 4ci. Lemma 1.3 shows that the scalar products vi ·vj take at most four values,
namely (with 1 ≤ i < j ≤ n)

α0 = v0 · v0, α = vi · vi, β0 = −v0 · vi, β = −vi · vj ,

uniquely determined by the value of m = N(vi + vj). For convenience, we give m
the value

m =
n2 − 2n(q + 1) + 4q − q2

2
,

a strictly positive (and even) integer (note that A = n ≡ q mod 2). We then have

α0 =
1
4
(n2 − 3n), α =

1
4
(
n2 − n(2q + 1) + 2q − 2q2

)
,

β0 =
1
4
(n− 3)q, β =

1
4
(n− 2q − q2) ,

and the bounds we assumed for q are equivalent to conditions (1.5): for all i 6= j,
vi · vj ≤ 0 ⇐⇒ N(vi − vj) ≥ m.

We first suppose q ≥ 1, and use the basis B = (v1, . . . , vn) for E. The vector
x =

∑
1≤i≤n xivi belongs to the lattice ΛV = 〈vi + vj〉 if and only if its components



6 A.-M. BERGÉ, J. MARTINET

have the form xi = ai

q where the integers ai are pairwise congruent modulo q and
have an even sum. Its norm is

N(x) =
(
α− (n− 1)β

) ∑
i

x2
i + β

∑
i<j

(xi − xj)2,

where α−(n−1)β = 1
4 (n−3)q2. Note that m = 2α−2β = 2(α−(n−1)β)−2(n−2)β,

and hence

N(x)−m =
(
α− (n− 1)β

)(
Q1 − 2

)
+ β

(
Q2 − 2(n− 2)

)
, (2.1)

where Q1 =
∑

i x2
i and Q2 =

∑
i<j(xi − xj)2 . We consider three cases according

to whether max|xi − xj | is 0, 1 or ≥ 2.
(i) One value case. Then x = −a(v1 + · · · + vn)/q = −av0, a ∈ Z, a 6= 0, lies in

the lattice if and only if a is even, which implies N(x) ≥ 4α0 > m.
(ii) Two values case, say, x1 = · · · = xk, xk+1 = · · · = xn = x1+1. We then have

Q2 = k(n−k) ≥ 2(n−2) except for k = 1 or n−1, and Q1 = nx2
1+(n−k)(2x1+1) ≥

k(n−k)/n. If k(n−k) ≥ 3(n−3), then Q1 > 2 (because n ≥ 10), hence N(x) > m
by (2.1). It remains to discuss the cases k(n− k) = (n− 1) or 2(n− 2).

Suppose first that (xi) ∈ Zn. Then we have Q1 ≥ 2, with equality on the
sequence (12, 0n−2) (up to sign and permutations), for which Q2 = 2(n−2), N(x) =
m, and x is one of the vectors ±(vi + vj), 1 ≤ i < j ≤ n. When Q1 > 2 and
k(n − k) ≥ 2(n − 2), we have N(x) > m by (2.1). Next suppose that k(n − k) =
(n− 1). We then have Q1 ≥ n− 1, with equality attained on (1n−1, 01), and (2.1)
shows that N(x)−m ≥ (n− 3)(α− nβ), where α− nβ = (q− 1)(nq + n− 2q) ≥ 0.
This implies N(x) > m except when q = 1 and Q1 = n− 1, in which case we find
the vectors x = ±(vi + v0) of a Coxeter lattice.

Consider now the case where x1 = a
q , with a 6≡ 0 mod q (which excludes the

Coxeter lattices, for which q = 1). We then have Q1 = n(x1 + 1 − k
n )2 + k(n−k)

n ,
where we may assume (exchanging x1 and x1 + 1 if need be) that k = 1 or k = 2.
From our hypotheses we have q

n < 1
4 ; this shows that Q1 has minimum

n− 2kq + kq2

q2
= 2 +

n− 2kq + (k − 2)q2

q2
,

attained only on x1 = 1
q − 1. For k = 2, we have Q1 > 2, hence N(x) > m by (2.1).

For k = 1, formula (2.1) gives

N(x)−m ≥
(
α− (n− 1)β

) n− 2q − q2

q2
−

(
(n− 3)β

)
=

n− 2q − q2

q2
(α− (n− 1)β − n− 3

q2
) = 0 ,

and N(x) = m occurs only on (( 1
q − 1)1, 1

q

n−1), which corresponds to the vectors
±(v0 + vi).

(iii) Case when there is a difference |xi − xj | ≥ 2 with, say, x1 ≤ x2 ≤ · · · ≤ xn.
We have

Q1 ≥ x2
1 + x2

n =
(x1 − xn)2 + (x1 + xn)2

2
≥ 2 ,

and equality holds only on the sequence (−11, 0n−2, 11).
Now from the identity Q2 = nQ1 − (

∑
xi)2, it follows Q2 ≥ 2n: indeed Q2 is

invariant under translation, and we may assume
∑

xi = 0, and then Q2 = nQ1 ≥
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2n. Formula (2.1) shows that N(x) − m ≥ 4β ≥ 0. Hence we have N(x) > m,
except if β = 0 (i.e. n = 2q+q2) and Q1 = 2, i.e. for x = ±(vi−vj), 1 ≤ i < j ≤ n.

So far, we left aside the case where q = 0, because v1, . . . , vn then no longer con-
stitute a basis for E. To deal with this special case, we considered the less symmetric
basis (v0, v1, . . . , vn−1). The theorem was proved using calculations analogous to
the previous ones. Since we do not need this special case in the remaining of the
paper, we leave the details to the reader. �

The theorem we have just proved does not suffice to prove Theorem 0.1. For
this reason, we give below the analogous statement for systems (ai) = (1n−1, 2), for
which A = n + 1, hence q = n + 1 − 2d. The proof follows the same pattern, and
we shall restrict ourselves to the case where q = 3 and n ≡ 0 mod 4, which suffices
for our applications.

Theorem 2.1. If n ≥ 10 and (a1, . . . , an) = (1, . . . , 1, 2), the vectors of S0 are
minimal if and only if 1 ≤ q ≤

√
n − 1, and S0 is then the set of all minimal

vectors of Λ.
[Recall that S0 = {±ei} ∪ {±(e− ei − ej)} = ±SV .]

Proof (sketch for q = 3 and n ≡ 0 mod 4). We work in the basis (v0, v1, . . . , vn−1)
for E. Then x =

∑n−1
i=0 xivi belongs to Λ if and only if the xi are either all integral

or all halves of integers, and add to an even number. As above, for 1 ≤ i < j ≤ n−1,
we set α0 = v0 · v0, α = vi · vi, β0 = −v0 · vi, and β = −vi · vj , and give m the value

m =
n3 − 10n2 + 24n− 16

16
.

This gives the scalar products vi · vj the values

α0 =
1
32

(n3 − 5n2 + 4n− 8), α =
1
32

(n3 − 9n2 + 4n + 56),

β0 =
1
32

(3n2 − 20n + 40), β =
1
32

(n2 − 20n + 72) ,

We write the norm in the form

α0N(x) = (α0x0 − β0

n−1∑
i=1

xi)2 + B
n−1∑
i=1

x2
i + C

∑
1≤i<j≤n−1

(xi − xj)2

where B = α0(α−(n−2)β)−(n−2)β2
0 and C = (α0β+β2

0). Using arguments similar
to those we used in the proof of Theorem 0.2, we show that minΛ = m, attained
on the sequences (up to permutation and sign) ( 1

2 , . . . , 1
2 ), ( 3

2 ,− 1
2 , 1

2 , . . . , 1
2 ) and

(0, 1, 1, 0, . . . , 0), which correspond to v0 + vn, v1 + vn and v1 + v2 respectively. �

3. Hollow lattices having an odd minimum

In this section, we consider as in the previous sections lattices Λ = 〈Λ′, e〉 with
e = a1e1+···+anen

d , such that S(Λ) = S0.

Theorem 3.1. A lattice of the form Λ = 〈Λ′, a1e1 + · · ·+ anen

d
〉 such that

S(Λ) = S0 and dim Λ ≥ 7 is hollow.
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Proof. We refer the reader to [Be], whose combinatorial methods used in the case
where ci = 1 for all i (that of the Coxeter lattices) extend in a straightforward
way to non-necessarily equal strictly positive coefficients ci. These methods in-
deed show that for any r-dimensional subspace F of E with 1 < r < n, we have
|S0 ∩ F | ≤ r(r−1)

2 + 1 < r(r+1)
2 (and even s(Λ ∩ F ) ≤ r(r−1)

2 if r ≤ n− 2). �

We now prove two lemmas on lattices Λ constructed with systems (ai) = (1n)
and (1n−1, 2) respectively, from which Theorem 0.1 will follow easily.

Lemma 3.2. If one of the following three conditions holds:
(1) n ≡ 1 mod 4 and n ≥ 17;
(2) n ≡ 2 mod 4 and n ≥ 10;
(3) n ≡ 3 mod 4 and n ≥ 7,

there exists an integral lattice of the form Λ = 〈Λ′, e1 + · · ·+ en

d
〉 with an odd

minimum and S(Λ) = S0.

Proof. We use the notation we introduced in the proof of Theorem 0.2 and start
with the scale defined there, for which the vectors of S0 have norm

m =
n2 − 2n(q + 1) + 4q − q2

2
.

(Here, A = n hence q = n−2d.) We shall first choose q ≡ n mod 2 in [1,
√

n + 1−1)
which ensures by Theorem 0.2 the existence of a lattice Λ with minΛ = m and
S(Λ) = S0, then divide out m by the highest power a of 2 it contains, and check
that the scalar products on a−1/2Λ remain integers. Since Λ is generated by the
vectors ei = v0 + vi and e = 2v0, this last condition holds if and only if the three
scalar products (v0 + v1) · (v0 + v2), 2v0 · 2v0 and 2v0 · (v0 + vi) are divisible by a.
These are α0 − 2β0 − β, 4α0 and 2(α0 − β0) respectively.

If n ≡ 1 (resp. 2) mod 4, we take q = 3 (resp. q = 2), and n ≥ 17 (resp. n ≥
10). In both cases, we have m ≡ 2 mod 4. Theorem 0.2 ensures that min Λ = m
and S(Λ) = S0, and it is easily checked using the explicit values for α0, β0, β given
in the proof of Theorem 0.2 that the three scalar products above are even.

If n ≡ 3 mod 4, we take q = 1. Then Λ is proportional to Coxn, which is known
to be integral when scaled to minimum n−1

2 ; see [M], Proposition 2.5.3.
[If n ≡ 2k mod 2k+1, there exists n(k) such that some Λ can be rescaled to an integral

lattice having an odd minimum if and only if n ≥ n(k), for instance, n(4) = 28, n(8) = 88.

But dimensions in an infinite set of density zero are excluded, so that we cannot handle

all large enough n ≡ 0 mod 4.] �

Lemma 3.3. If n ≡ 0 mod 4 and n ≥ 16, there exists an integral lattice of the

form Λ = 〈Λ′, e1 + · · ·+ en−1 + 2en

d
〉 with an odd minimum and S(Λ) = S0.

Proof. We use the data given for q = 3 in the proof of Theorem 2.1. This time, it is
easily verified that the value chosen there for m is odd, an that all scalar products
(v0+vi) ·(v0+vj), 2v0 ·2v0 and 2v0 ·(v0+vi) are integral (and incidentally odd). �

Proof of Theorem 0.1. If n 6= 12, 13, Theorem 0.1 is an immediate consequence of
Lemma 3.3 if n is divisible by 4 and of Lemma 3.2 otherwise. If n = 12 or n = 13,
we consider explicit Gram matrices relative to systems (1n−2, 22); see the appendix
below. �
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Appendix 1: Numerical data

We first list for each dimension n ∈ [10, 25] one perfect, hollow lattice which
can be used to prove Theorem 0.1, giving the minimum m, the index d = [Λ : Λ′],
and the vector A = (a1, . . . , an) in the usual symbolic form (1x, 2y, . . . ). We have
considered vectors (1n−k, ak+1, . . . , an) for small values of k and of the ai, i > k.
(When the sum ak+1 + · · · + an becomes too large, low-dimensional examples no
more exist.) We have listed below the smallest minimum m we could find and then
for given m, the smallest denominator d. For n ≡ 3 mod 4, our lattice is Coxn, for
which m = d = n−1

2 and a1 = · · · = an = 1.

n = 10 m = 11 d = 4 (110) n = 18 m = 11 d = 8 (118)
n = 11 m = 5 d = 5 (111) n = 19 m = 9 d = 9 (119)
n = 12 m = 31 d = 6 (110, 22) n = 20 m = 91 d = 10 (118, 22)
n = 13 m = 15 d = 7 (111, 22) n = 21 m = 15 d = 10 (120, 2)
n = 14 m = 29 d = 6 (114) n = 22 m = 89 d = 10 (122)
n = 15 m = 7 d = 7 (115) n = 23 m = 11 d = 11 (123)
n = 16 m = 57 d = 8 (114, 22) n = 24 m = 19 d = 12 (122, 22)
n = 17 m = 39 d = 7 (117) n = 25 m = 107 d = 11 (125)

We list below experimental results for lattices with A ≤ n+2, giving an interval
I such that S(Λ) = S0 ⇐⇒ q ∈ I except for a few special values of n. The data
below have been checked for all dimensions n ≤ 100. Of course, q must moreover
satisfy the congruence q ≡ A mod 2.
A = n, A = (1n) : 1 ≤ q <

√
n + 1− 1 ; n ≥ 7, n 6= 8.

A = n + 1, A = (1n−1, 2) : 1 ≤ q ≤
√

n− 1 ; n ≥ 10.

A = n + 2, A = (1n−1, 3) : 1 ≤ q ≤
√

n− 3− 1 ; n ≥ 16, n 6= 19.

A = n + 2, A = (1n−2, 22) : 1 ≤ q ≤
√

n− 1− 1 ; n ≥ 11.

The minima we found are sometimes very large: 107 (see above) for n = 25,
but also 241 for n = 32, 791 for n = 65, 1121 for n = 70, or 2257 for n = 96.
It would be interesting to construct integral perfect lattices (maybe, non-hollow)
having a much smaller minimum, and in particular minimum m = 3, for which our
knowledge is very poor.
[Besides Cox7, we know examples for 15 ≤ n ≤ 23, using cross-sections of the unimodular

lattice O23 listed in [Bt-M]). Using the classification of unimodular lattices of minimum 3

up to n = 28 (due to Bacher and Venkov in [Bc-V], extending previous works of Borcherds

and of Conway), we see that for n = 24 to 28, perfect unimodular lattices of minimum 3

exist for n = 27 (1 lattice out of 3) and n = 28 (28 lattices out of 38). Finally, two perfect

lattices (in dimensions 29 and 31) can be found in Nebe and Sloane’s catalogue [N-S].

Note that it is proved in [M-V] that integral perfect lattices of minimum 3 do not exist in

dimensions 8 and 9.]

Appendix 2: Extreme Lattices

Recall that a eutaxy relation among vectors of a finite set T ⊂ E is an equality

Id =
∑
x∈T

λx px ,

that T is eutactic if there exists a eutaxy relation with strictly positive coeffi-
cients λx, and that a lattice Λ is eutactic if S(Λ) is. Note that eutaxy relations
exist if T is perfect, that such a relation is then unique if and only if |T | = n(n+1)

2 ,
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and that a lattice is extreme (i.e., the density its corresponding canonical sphere
packing is a local maximum) if and only if it is both perfect and eutactic.

We have considered our set S0 in the case where Λ is of the form

〈Λ′, e1 + · · ·+ en

d
〉

and S(Λ) contains S0 (i.e., setting as usual n = 2d + q, when 0 ≤ q ≤
√

n + 1− 1).
Due to the action of the symmetric group Sn, the eutaxy relation has the form

Id = λ
∑

1≤i<j≤n

pvi+vj
+ µ

∑
1≤k≤n

pv0+vk
.

Calculating the trace and the image of v0, we obtain

λ=
n2 − 2(q + 2)n + q2 + 8q

(n− 3)(n + q)(n− 3q)
and µ=

n2 − 2(q2 + q + 1)n + 5q2 + 8q

(n− 3)(n + q)(n− 3q)
,

with which easily characterize the eutaxy property. Using Theorem 3.6.2 of [M]
when q = 0 and a direct calculation when q =

√
n + 1− 1, we have proved:

Theorem. Let Λ be of the form 〈Λ′, e1+···+en

d 〉, with S(Λ) ⊃ S0. Then Λ is extreme

if and only if q ≤
√

2n+1−1
2 or q =

√
n + 1− 1. �

Note that λ and µ are equal if and only if q = 1. This proves that for 1 < q <√
n + 1− 1, there are exactly two orbits of minimal vectors in Λ (those of v0 + v1

and of v1 + v2), then that Aut(Λ) ' {± Id} × Sn. If q = 1, Λ = Coxn, there is a
unique orbit, and Aut(Λ) ' {± Id} × Sn+1. (If q = 0 or q =

√
n + 1− 1, there are

three orbits.)

Appendix 3: The Watson Identity

A perfection relation on a finite subset S of E is a dependence relation∑
x∈S

ax px = 0

in Ends(E) between the orthogonal projections px onto the vectors x ∈ S.
Given a lattice Λ written in the form Λ = 〈Λ′, e〉 for a lattice Λ′ having a basis

(e1, . . . , en) and a vector

e =
a1e1 + · · ·+ anen

d
, ai, d ∈ Z , d ≥ 2 ,

Watson’s identity is
n∑

i=1

ai

(
N(e− ei)−N(ei)

)
= (A− 2d)N(e) (∗)(∗)(∗)

(or a slightly modified form involving the absolute values of the ai). In the language
of Section 1, there are n+1 “Watson’s identities”, one for each choice of a ci, exactly
one of which is equivalent to the identity displayed above.

With this identity is associated a unique perfection relation between the 2n + 1
vectors ei, e′i = e − ei, and e. Setting mi = N(ei) and m′

i = N(e′i), and denoting
by pi, p′i and p the projections onto ei, e′i and e respectively, it reads

n∑
i=1

ai (mi pi −m′
i p′i) = −(A− 2d)N(e) p . (∗ ∗)(∗ ∗)(∗ ∗)
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The proof, whose details will be left to the reader, consists in writing a perfection
relation of the type above with indeterminate coefficients, then evaluating both
sides on two vectors ei, ej and on a basis of the space orthogonal to the span of
ei, ej .

As a consequence, we obtain:

Proposition. The perfection rank of the system {pi, p′i} is equal to 2n if A 6= 2d,
but only to 2n− 1 when “Watson’s condition” A = 2d holds. �

In the applications, it is generally assumed that e1, . . . , en are minimal. Then
(∗) shows that the vectors e′i = e− ei also are minimal, and (∗ ∗) then shows that
the perfection rank of Λ is strictly smaller that its kissing number s. We could show
that in dimensions n ≤ 6, all perfection relations stam from a relation of type (∗ ∗),
with a denominator d equal to 2 or 3. This is no longer true if n ≥ 8, where for
instance perfection relations related to an identity of Zahareva (see[M1], proof of
Proposition 9.1) occur. It would be interesting to deal with the case of dimension 7,
where denominators d = 2, 3, 4 must be considered.
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[Be] A.-M. Bergé, On certain Coxeter lattices without perfect sections, J. Algebraic Combina-

torics (2004, to appear).

[Cox] H.S.M. Coxeter, Extreme forms, Canad. J. Math. 3 (1951), 391–441.
[PARI] H. Cohen et al. (C. Batut, K. Belabas, D. Bernardi, M. Olivier), User’s Guide to PARI ,

http://www.parigp-home.de.

[M] J. Martinet, Perfect Lattices in Euclidean Spaces, Grundlehren 327, Springer-Verlag,
Heidelberg (2003).
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