
SYMMETRIC GROUPS AND LATTICES
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Abstract. This paper deals with various problems in lattice the-
ory involving local extrema. In particular, we construct infinite
series of highly symmetric spherical 3-designs which include some
of the examples constructed in [9] in dimensions 5 and 7. We also
construct new types of dual-extreme lattices.
Résumé. Quelques applications de l’algorithme de Voronöı équi-
variant. Nous considérons dans cet article divers problèmes de la
théorie des réseaux liés à des questions d’extrema locaux. En parti-
culier, nous construisons des séries infinies de 3-designs sphériques
qui englobent certains de ceux construits dans [9] en dimensions 5
et 7. Nous construisons également de nouveaux types de réseaux
dual-extrêmes.

1. Introduction.

Let E be an n-dimensional Euclidean space equipped with scalar
product x · y, and let L be the set of lattices (discrete subgroups of
rank n) in E. For a lattice Λ ∈ L, we denote by min Λ its minimal
norm min Λ = minx∈Λr{0} x · x, and by det Λ the determinant of the
Gram matrix (ei · ej) of any Z-basis (e1, e2, . . . , en) of Λ. The density
of the sphere packing associated with Λ is measured by the Hermite
invariant of Λ

γ(Λ) =
min Λ

det Λ1/n
;

another invariant attached to this packing is the sphere of Λ, i.e. the
set

S(Λ) = {x ∈ Λ | x · x = min Λ}
of minimal vectors of Λ, and its kissing number 2s = |S(Λ)|.

A lattice Λ is called extreme if it achieves a local maximum of γ
over L. In 1907, Voronoi showed that a lattice is extreme if and only
if it is both perfect and eutactic. Geometrical definitions of these no-
tions are as follows; we denote by Ends(E) the space of symmetric
endomorphisms of E and for any non-zero x ∈ E, px ∈ Ends(E) is the
orthogonal projection onto the line Rx.
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A lattice Λ is called perfect if the px, x ∈ S(Λ) span Ends(E) . This
notion belongs to linear algebra, as well as the following enlarged notion
of eutaxy.

A lattice Λ is weakly eutactic if there exists real numbers ρx, x ∈
S(Λ) such that IdE =

∑
x∈S(Λ) ρx px. We remark that this condition

implies that the sphere S(Λ) spans the space E, and also that any
system of eutaxy coefficients gives way, by averaging, to another such
system invariant under the automorphism group Aut(Λ) of Λ. Now
the lattice Λ is eutactic if it has a system of strictly positive eutaxy
coefficients; note that this classical notion of eutaxy involves convexity,
and coincides when s = n with the weaker one, characterized by the
pairwise orthogonality of the n lines R x, x ∈ S(Λ).

While revisiting Voronoi’s theory in the setting of spherical designs,
Venkov raised a more restrictive notion of eutaxy: the lattice Λ is called
strongly eutactic if we can choose a system of eutaxy coefficients that
are all equal . Strong eutaxy amounts to the property of S(Λ) to be a
spherical 2-design (or equivalently 3-design, since S(Λ) is symmetric);
see [10], Prop. 6.2. Empirical observations in low dimension allow us
to suspect that strong eutaxy is rare: for example in five dimensions,
there are 127 weakly eutactic lattices (the complete enumeration was
done by Batut in 2000, [1]), and only eight among them are strongly
eutactic. However, no systematic enumeration is so far done beyond
dimension 5; in [9], various examples of strongly eutactic lattices are
given in dimensions 6 and 7, most of them related to root lattices or
cubic lattices.

In Section 4, we construct, from the point of view of group rep-
resentations, two infinite sequences of strongly eutactic lattices which
include some of the “exotic” lattices in the lists above, and provide new
ones. In particular, we obtain in all odd dimension n ≥ 5 two integral
lattices Bn and Cn with minimal norms n− 2 and n respectively.

Another aim of this paper deals with duality, i.e. involves together
with the lattice Λ ∈ L its dual Λ∗ = {x ∈ E | ∀ y ∈ Λ, x · y ∈ Z} . In
1989, we introduced the dual-Hermite invariant

γ′(Λ) =
√

min Λ min Λ∗

and characterized dual-extremality , i.e. extremality with respect to γ′,
by the following notions of perfection and eutaxy: Λ is dual-perfect if
the px, x ∈ S(Λ) together with the py, y ∈ S(Λ∗) span Ends(E) ; Λ is
dual-eutactic if there exists a relation

∑
x∈S(Λ) ρx px =

∑
y∈S(Λ∗) ρ′y py

with strictly positive coefficients ρx, ρ′y (see [7], Ch. 2 and 3, § 8).
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Note that these conditions imply for the kissing numbers of Λ and Λ∗

the inequality

s + s∗ ≥ n(n + 1)

2
+ 1 . (1)

It is clear that a pair of dual lattices both eutactic and one of them
perfect is dual-extreme. At the time [8] was written, all known dual-
extreme lattices, to within the single exception of an extreme 7-dimen-
sional lattice whose dual is not eutactic, were obtained using this trick.
Hence they were rational, and moreover they satisfied the strongest

inequality s + s∗ ≥ n(n + 1)

2
+ n + 1 for all n ≥ 2. (Actually, these

properties hold in dimensions 2, 3, 4.) Examples of dual-extreme pairs
of dual lattices, none of them perfect, not both eutactic and with s +

s∗ =
n(n + 1)

2
+n were found for even n ≥ 8 in [8], then for n = 5 in [3].

The example of [3] is moreover the first example of an irrational dual-
extreme lattice (its field of definition is quadratic); a 7-dimensional
example, defined over a cubic field, can be obtained in the same way.

We prove in Section 2 that for each even n ≥ 8, the densest section

of the Coxeter lattice A(n+2)/2
n+1 is a dual-extreme, n-dimensional lattice

which realizes the lower bound of (1); then, (1) is optimal for infinitely
many dimensions.

Recall that a lattice Λ is symplectic if there is an isometry σ of E
such that σ(Λ) = Λ∗ and σ2 = − Id. Note that such an isoduality gives
E a complex structure; thus n must be even. Symplectic lattices are im-
portant in connection with complex and algebraic geometry, since they
correspond to principally polarized Abelian varieties (see [6]). There
is also a “Voronoi theory” for them: one can characterize symplectic-
extreme lattices (which achieve local maxima of density over all sym-
plectic lattices in E) by suitable notions of symplectic-perfection and
symplectic-eutaxy (see [7], Ch. 11, § 7). Obviously, among symplectic
lattices, we have

extreme =⇒ dual-extreme =⇒ symplectic-extreme .

We shall display in Section 5 an infinite series of rational non-perfect,
symplectic lattices which are nevertheless dual-extreme, that we shall
identify with the symplectic-extreme family Fn previously constructed
by Bavard in a Riemannian setting ([2]).

The method used is the equivariant version of the Voronoi algorithm
established in [5] and outlined in Section 3. Given a finite group G
of isometries of E, there are for the G-lattices in E natural notions of
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G-perfection and of G-neighbourhood. Our examples stem from conve-
nient neighbouring paths connecting G-perfect lattices. The groups G
we use are related to the symmetric group Sn acting as a permutation
group on an orthonormal basis of E: Sn itself, or some subgroups sta-
bilizing given subspaces. Root lattices play a key role in our examples.

2. A generalization of some Coxeter
lattices.

We describe now certain lattices related to the root lattice An, using
a basis Bn = (e1, e2, . . . , en) for its dual A∗

n with Gram matrix

Gram(Bn) =
1

n + 1

(
n −1 −1 ··· −1
−1 n −1 ··· −1
· · · ··· ·
−1 −1 −1 ··· n

)
= In −

1

n + 1
Jn ,

where In and Jn denote respectively the unit matrix and he all-ones
matrix. The dual basis B∗

n = (e∗i ) affords for An the Gram matrix

An = In + Jn .

The quotient A∗
n/An is cyclic of order n + 1, hence for n ≥ 1 and r

a divisor of n + 1, there is a unique sublattice of A∗
n which contains

An to index r; it was called Ar
n by Coxeter in 1951. The dual of Ar

n

is A
n+1

r
n . The Coxeter lattices are stable under the group Aut(An) '

{± Id} × Sn+1.
In this section we focus on the extreme odd-dimensional lattice Λ =

A(n+1)/2
n (n = 5, 7 . . . ). In order to define the densest (resp. the isodual)

hyperplane sections of Λ, we look for vectors of norm 2 (resp. n+1
4

) in
the dual lattice Λ∗ = A2

n. They constitute a single orbit under the

action of Aut Λ, for which we may choose e∗n (resp.
e∗1−e∗2+···−e∗n−1+e∗n

2
) as

a representative. Taking the sections of Λ orthogonal to these vectors,
we define two canonical series of even-dimensional lattices, isometric
only in dimension 6.

Definition 2.1. For n ≥ 4 the n-dimensional generalized Coxeter lat-

tice Coxn is A(n+1)/2
n if n is odd, and the section of A(n+2)/2

n+1 orthogonal
to e∗n+1 if n is even. Moreover, when n is even, we denote by Cox′n the

section of A(n+2)/2
n+1 orthogonal to

e∗1−e∗2+···+e∗n−e∗n+1

2
.
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More explicitly, for n ≥ 4 even:
Coxn =

{ n∑
i=1

xiei

∣∣∣ (xi) ∈ Zn and
∑

i

xi ≡ 0 mod 2
}

Cox′n =
{ n+1∑

i=1

xiei

∣∣∣ (xi) ∈ Zn+1 and
n+1∑
i=1

(−1)ixi = 0
}

,

where (e1, . . . , en+1) is a basis for A∗
n+1 whose Gram matrix is

In+1 − 1
n+2

Jn+1.

The lattice Cox′n is not the densest section of A
n+2

2
n+1, except in the

cases n = 4 and n = 6, where Cox′4 ' A2

⊗
A2 and Cox′6 ' Cox6 ' D+

6 .
It has nevertheless interesting properties of duality that we shall discuss
in Section 5 by inserting Cox′n in an equivariant family of symplectic,
n-dimensional lattices.

The remaining of the present section is devoted to the lattice Coxn,

n even, which except for n = 4 is the densest section of A
n+2

2
n+1. The

lattice Cox6 ' D+
6 has exceptional duality and symmetries. For n = 8

onwards, the sequence Coxn acquires a certain regularity.

Proposition 2.2. Let n ≥ 8 be even. The lattice Coxn and its dual
have minimal norms 2n

n+2
and 3

2
respectively, and spheres

S(Coxn) = {±(ei + ej), 1 ≤ i < j ≤ n ; ±(e1 + · · ·+ en)} ,

S(Cox∗n) = {±e′i, 1 ≤ i ≤ n} ,

where (e′1, . . . , e
′
n) is the basis dual to (e1, . . . , en). The automorphism

group Aut(Coxn) is isomorphic to {± Id} × Sn, acts transitively on

S(Cox∗n), and has two orbits on S(Coxn), with one and n(n−1)
2

pairs
(±x) of vectors respectively.

Proof. The minimal vectors of A
n+2

2
n+1, namely ±(ei + ej), 0 ≤ i < j ≤

n + 1 where e0 = −(e1 + e2 + · · ·+ en+1), belong to R Coxn if and only
if 1 ≤ i < j ≤ n or (i, j) = (0, n + 1). The sphere and minimum of its
section Coxn follow immediately.

The basis (e′i) has Gram matrix (In − 1
n+2

Jn)−1 = In + 1
2
Jn and

associated quadratic form

Q(xi) =
∑

x2
i + 1

2 (
∑

xi)
2 .

To determine the minimal norm of

Cox∗n = 〈e′1, . . . , e′n,
e′1 + · · ·+ e′n

2
〉 ,
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we must evaluate Q over half-integers congruent modulo Z. It takes
values ≥ 3

2
on Zn, with equality only on the canonical basis (up to

signs); if the xi are halves of odd integers, we have
∑

x2
i ≥ n

4
> 3

2
since

n ≥ 8. So, the minimum and sphere of Cox∗n are as stated in 2.2.
Definition 2.1 shows that Coxn is stable under the symmetric group

Sn permuting {e1, . . . , en}. It remains to prove that the group {± Id}×
Sn, whose action on S(Coxn) is as stated in 2.2, is for n ≥ 8 the full
automorphism group of Coxn. Since S(Cox∗n) = {±e′i} has rank n,
Aut(Coxn) = Aut(Cox∗n) is generated by some permutations and sign
changes of the e′i. Actually, the scalar products e′i · e′j displayed in
Gram(e′i) allow all permutations of the e′i, but just the negation of all
of them, which completes the proof of 2.2. �

Note that the statements in 2.2 about the minimum of Coxn, its
sphere and the action of Sn on it still hold in dimension 6. In con-
trast, the dual lattice Cox∗6 has exceptional minimal vectors, namely

all permutations of
e′1+e′2+e′3−e′4−e′5−e′6

2
. We conclude that the group S6

fixes one minimal vector of Cox6, but no minimal vector of its dual:
the similarities Cox6 ' Cox∗6 do not preserve the action of S6.

We now consider the extremal properties of the lattices Coxn. For the
sake of completeness, we state the results for all n, even or odd. How-
ever, the results are known for n odd: the lattices Coxn and their duals
are strongly eutactic (because their group acts irreducibly), and more-
over perfect except for Cox∗5. Let now n ≥ 8 be even. Then, the lattices

L = Coxn and L∗ are not perfect (because s(L∗) < s(L) < n(n+1)
2

), L∗

is not eutactic (its n pairs of minimal vectors are not pairwise orthog-
onal), and the proof of the theorem below will show that L is not
strongly eutactic.

Theorem 2.3. For all n ≥ 7, the lattices Coxn are eutactic and dual-
extreme.

Proof. We only need to consider even dimensions n ≥ 8. Eutaxy and
dual-perfection involve the orthogonal projections onto the minimal
vectors of L = Coxn and L∗, namely the projections p0 onto e1+· · ·+en,
pi,j onto ei + ej, 1 ≤ i < j ≤ n, and p′i onto e′i, 1 ≤ i ≤ n respectively.

For the proof of the dual-extremality, we shall establish that there
exists up to multiplication by a positive scalar a unique non-trivial
linear relation f = 0, where f has the form

a p0 +
∑

1≤i<j≤n

ai,j pi,j −
∑

1≤h≤n

a′h p′h ,
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and that all its coefficients a, ai,j, and a′h are strictly positive.
The matrix M = (f(e′i).e

′
j) has entries

mi,j =


1

µ
(a + ai,j)−

1

µ∗
(
a′i + a′j

2
+

∑
a′k

4
) if i 6= j ,

1

µ
(a +

∑
h

ai,h)−
1

µ∗
(2ai′+

∑
a′k

4
) if i = j ,

where µ = 2n
n+2

and µ∗ = 3
2

denote the minimal norms of L and L∗, and
where we consider that the ai,j are defined for all i 6= j, i, j ≤ n, and
are symmetric in i, j. For any fixed i 6= j we have∑

h(mi,h − mj,h) − 2mi,i + 2mj,j = n−6
2µ∗

(a′j − a′i); so, if n 6= 6 the

coefficients a′i in any relation f = 0 do not depend on i; it readily follows
that there is, up to scale, a unique relation between the projections
px, x ∈ S(L) ∪ S(L∗), which reads

n(n2 + 2n− 12) p0 + 4n
∑
i<j

pi,j = 3(n2 − 4)
∑

i

p′i .

Note that taking into account the action of Sn on both S(L) and S(L∗),
since the space of Sn-lattices has dimension 2 – see Section 4 below–
the existence of such a relation was evident; for dual-eutaxy the only
problem was that of the signs of its coefficients. The same remark
applies for the eutaxy relation Id = ap0 + b

∑
pi,j. In matrix form, it

reads µ(In + 1
2
Jn) = (n− 2)bIn + (a + b)Jn. That leads to the unique

system of eutaxy coefficients

(a, b) = (n(n−4)
n2−4

, 2n
n2−4

) ,

which are strictly positive, but distinct for n ≥ 7. �
As mentioned in the introduction, the pair (Coxn, Cox∗n) realizes in

all even dimension n ≥ 8 the lower bound s + s∗ = n(n+1)
2

+ 1 for the
kissing numbers of a dual-extreme pair.

Note that the eutaxy relation above for Coxn is still valid in dimen-
sions 4 and 6: the lattice Cox4 is semi-eutactic (the only one up to
dimension 4), and the lattice Cox6 ' D+

6 strongly eutactic (its group
W (D6) acts irreducibly). Note also that the proof of 2.3 shows that
for any n ≥ 4 the dimension of the span in Ends(E) of the projections

px, x ∈ S(L) is equal to s = n(n−1)
2

+ 1. But for n = 4 or n = 6, the
projections onto the minimal vectors of the dual belong to this span,
which excludes dual-extremality.
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3. Equivariant theory of lattices.

Let G ⊂ O(E) be a finite group of isometries for which E affords a
rational representation. The set LG of G-stable lattices in E consists
of orbits under the action of the centralizer of G in the linear group
GL(E). These orbits are in one-to-one correspondence with the integral
equivalence classes of integral representations of G. For the equivariant
Voronoi theory we replace Ends(E) by the commuting subspace

Ends
G(E) = {f ∈ Ends(E) | ∀σ ∈ G, fσ = σf}

of G, and the orthogonal projections px by their means

ωx =
1

|G|
∑
σ∈G

pσx .

A lattice Λ ∈ LG is said in [4] to be G-perfect if the ωx, x ∈ S(Λ) span
Ends

G(E). This notion arises in studying the density of G-lattices: a
G-lattice Λ is G-extreme, i.e. achieves a local maximum of γ over LG, if
and only if it is both G-perfect and eutactic, see [7], Chapters 3 and 11.

We described in the joint paper [5] with Sigrist a Voronoi algorithm
with group G, obtaining a connected Voronoi G-graph which classi-
fies all similarity classes of G-perfect lattices affording a given integral
representation of G; see also [7], Ch. 13. From now on we rather
adopt the point of view of quadratic forms. In the space Symn(R)
of n × n symmetric real matrices equipped with the scalar product
〈M, N〉 = Tr(M N), a lattice L ∈ L is represented by one of its
Gram matrices A. Its minimal norm is then the minimum min A
of the quadratic form A[x] = xAtx (= 〈A, txx〉) for integral vectors
x = (x1, x2, . . . , xn) 6= 0 ∈ Zn, and its sphere is represented in Zn by
S(A) = {x 6= 0, x ∈ Zn | A[x] = min A}.

Now, given an integral representation φ : G → GLn(Z) of G, we
denote by Sφ the space of φ-invariant matrices, i.e. matrices A ∈
Symn(R) such that for all σ ∈ G, tφσAφσ = A, and by Pφ the subset
of positive definite φ-invariant matrices. To a vector x ∈ Rn we attach
the matrix Ωx := 1

|G|
∑

σ∈G φσ
txx tφσ, which is invariant under the dual

representation of G. By definition, the G-Voronoi domain DA of a
matrix A ∈ Pφ is the convex hull, in the dual space S∗

φ, of the half-
lines generated by the Ωx, x ∈ S(A). We can now translate in matrix
form the notions above for G-lattices, keeping the same terminology:
a eutaxy relation reads A−1 =

∑
x∈G\S(A) ρxΩx, and A is G-perfect if

the dimension of its domain is maximal, i.e. equal to

NG = dim(Sφ) (= dim(Ends
G(E))) .



SYMMETRIC GROUPS AND LATTICES 9

We now describe the neighbouring of a G-perfect matrix A ∈ Sφ.
Its domain DA is bounded by a certain set of (NG − 1)-dimensional
faces, or facets. (Of course, a G-perfect matrix has at least NG orbits
of pairs (±x) of minimal vectors. When it has just NG orbits, we easily
obtain each facet of its domain by simply removing one of the orbits.)
To each facet there corresponds in Sφ a uniquely determined Voronoi
path orthogonal to it that we now describe. Let F be a facet and
F 6= 0 ∈ Sφ orthogonal to F and oriented towards the interior of DA.
Then the open Voronoi path through F is

cF : t ∈ (0, θ) 7→ At = A + t F ,

where θ ∈ (0,∞] is defined by θ = sup {t > 0 | min At = min A}. We
can alternatively define the path cF as the set of matrices M ∈ Sφ such
that min M = min A and S(M) = SF with

SF = {x ∈ S(A) | Ωx ∈ F} .

Following [7], Ch. 13, Th. 3.5., there are two cases:
• If SF spans Rn, θ is finite and the matrix Aθ is G-perfect again, with
sphere S(Aθ) ) SF ; we say that A and Aθ are G-neighbours. Their
domains DA and DAθ

have just the face F in common.
• If SF spans a strict subspace of Rn, θ is infinite. We say that the
path is a dead-end.

We summarize now some results of the classification of eutactic lat-
tices applied to equivariant Voronoi paths (for the general setting, see
[7] or [1]).

Proposition 3.1. Let cF be an equivariant Voronoi path. Then:

(1) There is at most one weakly eutactic matrix in cF .
(2) If cF is a dead-end, it contains no weakly eutactic matrix.
(3) A matrix M ∈ cF is weakly eutactic if and only if it minimizes

Hermite’s function γ over cF .
(4) If cF connects two G-extreme matrices, it contains a weakly

eutactic matrix.

The dimension NG of Voronoi’s space depends on the canonical
decomposition of the representation E (for precise formulae, see [7],
Ch. 11, Th. 3.8.). In this paper, we only consider direct sums E =
E1 ⊥ · · · ⊥ Ek of k non-isomorphic R-irreducible representations of
real type, and then we have NG = k. Note that the irreducible case
is trivial for Voronoi’s theory: there are only finitely many similarity
classes of G-lattices. In contrast, the dimension NG = 2 is of special
interest to effortlessly build 3-designs:
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Proposition 3.2. If NG = 2, any weakly eutactic matrix in a G-
Voronoi path is strongly eutactic. In particular, there is a strongly
eutactic matrix associated with any pair (A, B) of G-extreme neigh-
bours.

Proof. Let S be the (common) sphere of the matrices in the path:
the span of the Ωx, x ∈ S, which contains the positive matrix X =∑

x∈S
tx x, also contains the inverse of any weakly eutactic M in the

path. From the definition of a Voronoi path, this span has dimension
NG−1: under our hypothesis it is a line, hence any eutaxy relation reads
M−1 = ρX for some ρ necessarily positive: this is strong eutaxy. �

We conclude this section by describing the classification of a family
of G-lattices (i.e. an orbit in LG under the action of the centralizer
of G in GL(E)) in the case NG = 2. Denote by E1 and E2 the two
irreducible (non isomorphic) components of E.

Theorem 3.3. If NG = 2, the Voronoi graphs have the form

∞1 L1 · · · Lr ∞2 ,

where L1, . . . , Lr are G-perfect lattices, and where the dead-ends ∞1

and ∞2 correspond to the orthogonal projections onto the irreducible
components E1 and E2. Moreover, r = 1 if and only if E1 and E2 both
contain minimal vectors of L1.

Proof. We follow [7], Ch. 13, § 4: in the dual space S∗
φ, the set of

positive matrices is the angular domain with angle π/2 and edges (Ω1)
and (Ω2) associated with the projections p1 and p2 onto E1 and E2.
The Voronoi domains of the G-perfect matrices form a partition of this
right angle into angular domains. We now prove that there are only
finitely many such domains. For this proof we adopt the geometric
point of view, and evaluate angles in the space Ends(E) equipped with
the scalar product 〈f, g〉 = Tr(f ◦ g). Recall that G-perfect lattices
are proportional to integral lattices, and that up to similarity, there
are finitely many of them (see [7], Ch. 11, § 9, 9.1 and 9.5). Let E
denote the (infinite) set of primitive integral copies of the G-perfect
lattices. Their minimal norms take only finitely many values, let m
be the biggest. Then the inner products x · y, x, y ∈ S(L), bounded
by m

2
, take only finitely many integral values when L runs through E .

Hence there are finitely many values of 〈px, py〉 = (x·y)2

(x·x)(y·y)
, x, y ∈ S(L),

L ∈ E ; by averaging over G we obtain the same conclusion for the

〈ωx, ωy〉, and thus for the cosine 〈ωx,ωy〉√
〈ωx,ωx〉〈ωy ,ωy〉

of the angle of Ωx and

Ωy in S∗
φ. So, the partition of the angular domain (Ω1, Ω2) into Voronoi
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domains is finite, and so is the Voronoi graph (here we do not discard
G-lattices isometric to lattices already found). Finally the first and last
lattices in the sequence must have minimum vectors in the irreducible
subspaces E1 and E2 respectively, corresponding the edges Ω1 and Ω2

of their respective domains. �
The proof above shows that either the Li are pairwise non–G-iso-

metric, or the graph is symmetric. Examples of both types occur in
the next section (the Sn-graph for An is symmetric if n = 2, but not if
n ≥ 3), which also provides graphs with r = 1, 2 or 3.

4. Two sequences of strongly eutactic lattices.

Throughout this section, the group Sn is viewed as the permutation
group of a given orthonormal basis B = (ε1, ε2, . . . , εn) of E.

There are exactly two irreducible stable subspaces of E under this
action of Sn, namely the line 〈

∑
i εi〉 and its orthogonal complement:

the space of G-invariant symmetric bilinear forms on E has dimension
NSn = 2. In matrix form with respect to the basis B, it is the span

S = {aIn + bJn, (a, b) ∈ R2}
of In and of the all-ones matrix Jn.

Any irreducible root lattice in E admits at least one group action
associated with the above permutation representation of Sn. Actually,
one can prove that, up to Z[Sn]-isomorphism, there is just one such
action, except in the case of D4 and E8, which have two.

The Sn-family of Dn. We represent the lattice

Dn =
{∑

i

xiεi | (xi) ∈ Zn,
∑

i

xi even
}

by the generator matrix Gn and the Gram matrix Dn = tGn Gn:

Gn =

(
1 0 ··· 0 1
1 1 ··· 0 0
· · ··· · ·
0 0 ··· 1 0
0 0 ··· 1 (−1)n−1

)
, Dn =

 2 1 ··· 0 1
1 2 ··· 0 0
· · ··· · ·
0 0 ··· 2 (−1)n−1

1 0 ··· (−1)n−1 2


of its basis (ε1 + ε2, ε2 + ε3, · · · , εn−1 + εn, (−1)n−1εn + ε1). This leads
to the following description.

Proposition 4.1. A lattice in E affords the same integral representa-
tion of Sn as Dn if and only if it is isometric to one with Gram matrix

[a, b] := aDn + bKn, with a > 0 and a + nb > 0 ,

where the matrix Kn = tGn Jn Gn is equal to 4Jn if n is odd and to(
4Jn−1 000

t000 0

)
if n is even. It has determinant det([a, b]) = 4an−1(a + nb).
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Proof. The Gram matrix M of a basis permuted by Sn has constant
non-diagonal entries, say b, and constant diagonal entries, say a + b,
hence M = aIn + bJn. The signature and determinant of M follow
from its characteristic equation (x− a)n−1(x− (a + nb)). Conjugating
by the matrix Gn with determinant 2 completes the proof. �

In the following graphs, the Sn-perfect lattices are represented by
their Gram matrices [a, b] = aDn + bKn scaled to minimum 2. The
symbol ∞ indicates a dead-end.

Proposition 4.2. For n ≥ 4, the Voronoi graph associated with the
representation φDn of Sn is:

n even : ∞
Dn
•

[1,0]

Coxn
•

[n+2
n

,−1
n

]
∞ ;

n odd : ∞
Dn
•

[1,0]

Coxn
•

[ n+1
n−1

, −1
n−1

]

Nn
•

[ 3n2+2n−1

2n2−2n
, −3n−1

2n2−2n
]

∞ ,

where Nn (n odd) is a Sn-perfect lattice with s = n+1 pairs of minimal
vectors.

Proof. We have to evaluate the quadratic forms (aIn + bJn)[(xi)] on
the set

E = {(xi) ∈ Zn with
∑

xi ≡ 0 mod 2}
where the group Sn acts by permuting the xi. In this point of view, the
matrix In represents the lattice Dn; it has minimum 2 on E attained at
two orbits (here, as elsewhere, we waive the distinction between mini-
mal vectors and their negatives): the orbit of (1,−1, 0, . . . , 0), that we
disregard because of Proposition 3.1, and the orbit O of (1, 1, 0, . . . , 0).
The corresponding path from Dn is then {tGn M(t) Gn}, where

M(t) = (1 + 2t)In − tJn, 0 < t < θn, with θn =
1

2bn
2
c

.

Indeed, the matrix 2In−Jn vanishes at O and the matrix tGn M(θn) Gn

is Sn-extreme, for as we now prove, it is a Gram matrix for the lattice
Coxn rescaled to minimal norm 2: when n is odd, n−1

n+1
M(θn) = A−1

n is
the standard Gram matrix for A∗

n, and thus represents on E the Coxeter

lattice A
n+1

2
n , of norm 2(n−1)

n+1
; the case where n is even follows from

Definition 2.1. The second orbit O′ of norm 2 vectors of M(θn) is that
of (1, 1, . . . , 1) when n is even (and by 3.1 the algorithm terminates),
and that of (1, . . . , 1, 0) when n is odd. In this case, it is easy to

prove that for (an, bn) = ( (3n−1)(n+1)
2n(n−1)

,− 3n+1
2n(n−1)

), the quadratic form

(anIn + bnJn)[x] = an

∑
(xi −

∑
xi

n
)2 + 1

2
(

∑
xi

n
)2 has minimum 2 on the

set E with in addition to O′ two minimal vectors ±(2, 2, . . . , 2). We
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conclude that the matrix [an, bn] is Sn-perfect, and that the algorithm
terminates at it. �

Note that the family defined by Dn always contains the Barnes-

Coxeter lattice A
n+1

2
n : for n even it lies in the dead-end issuing from

Coxn.

We can now enumerate the eutactic lattices in the family.
For n ≥ 7 odd, the path (Coxn−Nn) affords no such lattices. [Di-

mension five is exceptional, for then the representations defined by
D5 and its dual are integrally equivalent, and afford two eutactic lat-
tices, namely N5 (class e6 in [1]) and D∗

5. Following 3.1 (3), we now
determine the less dense lattice in the path Dn − Coxn. The typical
Gram matrix [1 + 2t,−t], 0 < t < θn for this path has determinant
4(1 + 2t)n−1(1 + (2− n)t), whose derivative vanishes at

tn =
1

2n− 4
∈ (0, θn)

for n > 4. We can now state the following, where it is to be understood
that lattices are defined up to similarity.

Theorem 4.3. For n ≥ 5 the strongly eutactic lattice Cn attached to

the pair (Dn, Coxn) has Gram matrix n−1
n−2

Dn − 1
2n−4

Kn, s = n(n−1)
2

pairs of minimal vectors, and automorphism group {± Id} × Sn except
for n = 5, where C5 ' A2

5. Its primitive integral copy has minimal
norm n− 2 if n is odd, 2(n− 2) if n is even. �

Examples. We display below Gram matrices for C6 and C7:

C6 :

 8 3 −2 −2 −2 5
3 8 3 −2 −2 0
−2 3 8 3 −2 0
−2 −2 3 8 3 0
−2 −2 −2 3 8 −5
5 0 0 0 −5 10

 ; C7 :


5 2 −1 −1 −1 −1 2
2 5 2 −1 −1 −1 −1
−1 2 5 2 −1 −1 −1
−1 −1 2 5 2 −1 −1
−1 −1 −1 2 5 2 −1
−1 −1 −1 −1 2 5 2
2 −1 −1 −1 −1 2 5

 .

The lattice C6 must be added to the list of 19 displayed in [9], whereas
C7 was discovered by Batut and Sigrist (see [9], p.122) using the cyclic
group of order 7 (which does not account for its strong eutaxy).

Other representations of Sn related to root lattices. The integral rep-
resentations of Sn defined (up to integral equivalence) by the lattice
An, n ≥ 2, or by the lattice D∗

n, n ≥ 6, introduce no new 3-design (in
each case there is just one pair of Sn-extreme lattices, with associated
eutactic lattice Zn and D∗

n respectively). Note that the D∗
4 construc-

tion affords the second representation for D4 ' D∗
4, for which it has no

neighbour (the graph is ∞ D4 ∞).
The representation of S6 defined by the root lattice E6 affords the

trivial Voronoi graph ∞ E6 ∞.



14 ANNE-MARIE BERGÉ AND JACQUES MARTINET

For n ≥ 8 even, the (maybe not integral) Kneser-neighbour L of the
cubic lattice

⊕
Zεi has (even for n = 8) exactly two Z[Sn]-structures

corresponding to its two constructions D+
n ' D−

n consisting in adjoining
to Dn the vectors ε1+···++εn−1+εn

2
and ε1+···+εn−1−εn

2
respectively. Dimen-

sion 8 is of no interest from our point of view: as D+
8 the lattice L = E8

has no S8-neighbour, and as D−
8 it has just one neighbour, non-eutactic,

with s = 9. For n ≥ 10, Voronoi’s graphs have a uniform structure. In
particular, they introduce two sequences of strongly eutactic lattices,

say C+
n , n ≥ 18 and C−

n , n ≥ 12, with s = s∗ = n(n−1)
2

; both lattices
contain the lattice Cn to index 2, have the same sphere as it, and dou-
ble density. The Sn-neighbour of D−

n , N−
n say, is perfect in the classical

sense (with just s = n(n+1)
2

pairs of minimal vectors), and even extreme
for n ≥ 12. It belongs to families of perfect lattices with possible odd
minimum of the form

Λ = 〈e1, . . . , en, e =
e1 + · · ·+ en

d
〉, n ≥ 2d ,

constructed by the second author. In the example above, the primitive
integral copy of the lattice N−

n has odd minimum if and only if n ≡ 2
mod 4. In particular, it affords the first example of a perfect, integral
10-dimensional lattice having an odd minimum (namely 11).

The lattice Bn, n odd. The lattices Cn, n ≥ 5 described in Theorem 4.3
are not nested. In contrast, in odd dimension, strong eutaxy happens
to be preserved by the following section of codimension two. Here we
suppose that E has odd dimension 2m + 1, m ≥ 3. We consider the
subspace E ′ of dimension 2m− 1

E ′ =
{ 2m+1∑

i=1

xiεi

∣∣∣ x1 = 0 and
m∑

k=1

x2k =
m∑

k=1

x2k+1

}
and its stabilizer G in S2m+1

G ' Sm × Sm o C2 ,

where C2 is generated by the product of transpositions∏
i≥2,i even(i, 2m + 3− i).

The corresponding equivariant families again have dimension
NG = 2. In particular, the family of G-lattices defined by the root
lattice A2m−1 = D2m+1∩E ′ consists of the sections by E ′ of the (2m+1)-
dimensional lattices described in Proposition 4.1. The typical invariant
matrix can be obtained by removing from the (2m + 1) × (2m + 1)
matrices [a, b] the first and last rows and columns; it has the form



SYMMETRIC GROUPS AND LATTICES 15

aA′
2m−1 + 4bJ2m−1, where

A′
n =

( 2 1 0 ··· 0 0
1 2 1 ··· 0 0
0 1 2 ··· 0 0
· · · ··· ··
0 0 0 ··· 2 1
0 0 0 ··· 1 2

)
;

its determinant is det(aA′
2m−1 + 4bJ2m−1) = 2m a2m−2(a + 2mb).

Proposition 4.4. Let n = 2m − 1 ≥ 5 be an odd integer. The
n-dimensional lattice Bn = Cn+2 ∩ E ′ with Gram matrix n+1

n
A′

n− 2
n

Jn

is strongly eutactic. Its automorphism group ' {± Id} × G acts tran-
sitively on its m2 pairs of minimal vectors, and its primitive integral
copy has minimal norm n.

Proof. It is easy to prove that the family of G-lattices defined by An

has Voronoi graph

∞ An
•

Coxn+2 ∩E′
• ∞ ,

where Coxn+2 ∩E ′ is G-extreme with two G-orbits of minimal vectors.
(Its two eutaxy coefficients 1

m+1
and m−1

2m+2
are distinct except in di-

mension 5, where E∗
7 ∩ E ′ ' A2

5.) The typical matrix for the Voronoi
path is (1 + 2t)A′

n − 4tJn, with 0 ≤ t ≤ θn+2 = 1
n+1

(see the proof of
Theorem 4.3). The derivative of its determinant

(n + 1)(1 + 2t)n−1(1 + (1− n)t)

again vanishes at t = tn+2 = 1
2n
∈ (0, 1

n−1
): the strongly eutactic lattice

attached to the pair (An, Coxn+2 ∩E ′) coincides with Cn ∩ E ′. �
The Gram matrix of B5 obtained from that of C7 by omitting the

first and last rows and columns is equivalent to the matrix given by
Batut (see [9], p. 121).

5. A family of symplectic lattices in dimension 2m ≥ 6.

Here again E is a Euclidean space of odd dimension 2m+1 (m ≥ 3)
equipped with an orthogonal basis (εi, 1 ≤ i ≤ 2m+1) acted on by the
symmetric group S2m+1. We consider its hyperplane

F =
{∑

i

xiεi

∣∣∣ m∑
k=1

x2k =
m∑

k=0

x2k+1

}
,

and the stabilizer of F in S2m+1

G ' Sm+1 × Sm ,

where Sm+1 acts on {ε2k+1} and Sm on {ε2k}.
Regarded as a representation of G, F has three irreducible compo-

nents, and any family of G-lattices in F has dimension NG = 3. As
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an example, let us describe the one defined by the root lattice A2m,
leaving the proof to the reader.

Proposition 5.1. A (2m)−dimensional lattice is a G-lattice in the
family of A2m if and only if it is similar to one with Gram matrix

[a, b, c] :=
(

(a−b)Im+bJm cIm

cIm cAm

)
,

0 < c < min{a− b, (m + 1)a + (m2 − 1)b} .

In particular, [2, 0, 1] is the Gram matrix of the basis

(ε2i + ε2i+1, ε2i+1 − ε1), 1 ≤ i ≤ m
for A2m. �

Note that the path {[2, 2− 2c, c], c ∈ [1, 1 + 1
m

]}, which connects the

lattices D2m+1 ∩ F = A2m and
√

m+1
m

Cox2m+1 ∩F =
√

m+1
m

Cox′2m, is

not a G-Voronoi path.
From the classification provided by Voronoi’s algorithm we only re-

tain that there are just four G-perfect matrices (all of them G-extreme):
apart from [2, 0, 1], there is a not too interesting matrix (minimum 2,
s = 2m + 1), and two neighbouring matrices F2m = [2, −2

m
, 1] and

F ′
2m = [2, −2

m
, 1 + 2

m
] . The remaining of the section is devoted to the

path F2m − F ′
2m, namely the set of matrices

M(x) :=
[
2, − 2

m
,

2m + 2

m
x
]
, x0 ≤ x ≤ 1− x0 ,

where x0 = m
2m+2

, which possess additional symmetries.

Note that M(1
2
) = [2, −2

m
, 1 + 1

m
] is a Gram matrix for the lattice√

m+1
m

Cox′2m.

To describe group actions, we consider for any x a basis (ei, 1 ≤ i ≤
2m + 1) of E acted on by G as (εi) (all permutations of the e2k and all
permutations of the e2k+1), with the following inner products: ei · ej is
equal to − 1

2m
for odd i − j, to 2x + 1

2m
(resp. 2(1 − x) + 1

2m
) for odd

(resp. even) i = j, and to −2x
m

+ 1
2m

(resp. −2(1−x)
m

+ 1
2m

) for odd (resp.
even) i 6= j. The basis (f1, . . . , f2m) of F defined by

fi = e2i + e2i+1, fi+m = e2i+1 − e1, 1 ≤ i ≤ m

has then Gram matrix M(x).

Now for any x, consider the set

V = {e0, e1, . . . , e2m, e2m+1} with e0 = −(e1 + e2 + · · · e2m+1) .
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The inner products ei · ej of these 2m+2 vectors, for i = j or for i 6= j,
only depend on i and j modulo 2. Thus, in the group of any matrix
M(x) there is a subgroup

G′ ' Sm+1 × Sm+1 ,

where the factors act on the e2k and on the e2k+1 respectively. Since
F has just two non-isomorphic irreducible G′-subspaces (the spans
〈ei − ej, i and j odd 〉 and 〈ei − ej, i and j even 〉), any family of G′-
invariant matrices has dimension NG′ = 2 .
Eventually, the product of transpositions Π =

∏k=m
k=0 (e2k, e2k+1) ∈

S2m+2 induces an integral equivalence between the matrices M(x) and
M(1 − x), which stabilizes M(1

2
) and connects F2m = M(x0) and

F ′
2m = M(1 − x0). Therefore, the stabilizer in GL2m(Z) of the path
{M(x)} contains a group

G′′ '< Π > ×Sm+1 × Sm+1 ,

and so does the automorphism group of M(1
2
). Since the representation

F of G′′ is irreducible, the matrix M(1
2
) is strongly eutactic.

We can now state the following proposition.

Proposition 5.2. (1) The matrices M(x) = [2, − 2
m

, 2m+2
m

x] are
up to scale symplectic for any x ∈ (0, 1).

(2) For x ∈ [x0, 1− x0], they have minimum 2.
(3) The matrices F2m = M(x0) and F ′

2m = M(1 − x0) are G′-
extreme, with associated strongly eutactic matrix M(1

2
).

(4) For x ∈ [x0, 1− x0], the automorphism group of M(x) is

Aut(M(x)) =


{± Id} ×G′ if x 6= 1

2
,

{± Id} ×G′′ if x =
1

2
, and m 6= 3.

Proof. For assertion (1), put y =
√

x(1− x). Then

m

2(m + 1)y
M(x) =

1

y

(
A−1

m xIm

xIm (x2+y2)Am

)
is the symplectic matrix canonically identified with the point (x+iy)Am

in the Siegel space Hm = {X + iY | X, Y ∈ Symm(R), Y > 0} (see
[6]). Actually, it lies in the hyperbolic family {zAm, z ∈ H1} attached
by Bavard to the lattice Am ([2]). The determination of the minimum
of M(x) is based on the following result of Bavard.

Lemma 5.3. ([2], th. 2.1) The matrix F2m has minimum 2 and
(m+1)(3m+2)

2
pairs of minimal vectors. �
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These vectors are divided under G′-action into two orbits that we de-
scribe (up to signs) with respect to the set V = {e0, e1, . . . , e2m+1}
corresponding to x = x0 :

O1 = {ei + ej, i− j odd }, O2 = {ei − ej, i < j, i and j odd } ,

which satisfy the unique eutaxy relation

(m + 2)(m + 1) Id = 2m
∑
x∈O1

px + 4
∑
x∈O2

px .

Clearly, Lemma 5.3 is also valid for F ′
2m ∼ F2m, but we have to re-

place O2 by the orbit O′
2 = {ei − ej, i < j, i and j even}. From

Voronoi’s theory it follows that F2m and F ′
2m are G′-extreme and that,

for x0 < x < 1 − x0, M(x) has minimum 2 and sphere S(M(x)) =
O1. The strong eutaxy of M(1

2
) completes the proof of assertions (2)

and (3). Note that under G-action, O2 is stable, but O1 is divided into
two G-orbits, and so is O′

2. We conclude that F2m and F ′
2m are both

G-extreme, but that their equivalence does not preserve group action.
For assertion (4), note that any automorphism of M(x) must stabilize

the orbit O1, and thus the matrix M(1
2
). Taking into account the

inclusions we already know, it remains to establish that {± Id}×G′′ is
the full automorphism group of M(1

2
). We leave the somewhat tedious

proof to the reader. �
In geometric language, the properties of the matrix M(1

2
) read:

Corollary 5.4. For m ≥ 2 the lattice Cox′2m is symplectic, strongly
eutactic, with minimum 2m

m+1
and s = (m + 1)2 pairs of minimal vec-

tors. Its automorphism group is {± Id} × G′′ except for m = 3 where
Aut(D+

6 ) = W (D6) contains {± Id} ×G′′ to index 10. �

Now let us discuss the extremal properties of the isodual lattice FFF 2m

with Gram matrix F2m =
(

2(m+1)
m

A−1
m Im

Im Am

)
.

Theorem 5.5. For m ≥ 2 the lattice FFF 2m is dual-extreme, and non-
perfect except in the case m = 2 where it is isometric to D4.

Proof. Since Λ = FFF 2m is eutactic and isodual, it is dual-eutactic. Let
σ : Λ 7→ Λ∗ be the symplectic similarity corresponding to the matrix(

0 Im
−Im 0

)
.

To prove that Λ is dual-perfect, we extract from the spheres S(Λ)

and S(Λ∗) = σ(S(Λ)) the following set Σ with |Σ| = 2m(2m+1)
2

elements:
• ei + ej, i− j odd , (i, j) 6= (0, 1);
• ei − ej, i and j ≥ 3 odd ;
• σ(e2k+1 − e2k′+1) = m

m+2
(e2k′ − e2k).
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In matrix form with respect to the basis (ek, 1 ≤ k ≤ 2m + 1) of E, it
is easy to prove that the orthogonal projections px, x ∈ Σ are linearly
independent. Similarly, one can prove that a relation

∑
x∈S(Λ) λxpx = 0

has infinitely many solutions depending on m parameters. The rank of

the s = (3m+2)(m+1)
2

projections is then s−m < 2m(2m+1)
2

except when
m = 2. �

6. Tables.

Tables 6.1 and 6.2 display the main invariants of the n-dimensional
lattices constructed in this paper. The symbols µ, γ, γ′, s, s∗, and g
denote respectively the minimum of the primitive integral copy of the
lattice L, its Hermite and dual-Hermite invariants, the half-kissing-
number of L, of L∗, and the order of the automorphism group. The
markers (∗) and (∗∗) point out the usual exceptions in low dimension:
(∗) corresponds to n = 5 when C5 ' A2

5, and (∗∗) to n = 6 when
Cox6 ' Cox′6 ' D+

6 .

Table 6.1 Strongly eutactic lattices of dimension n ≥ 5

Lattice µ γ γ′ s, s∗ g

Cn

n−2 if n is odd

2(n−2) if n is even
(2n−4

n−1
)

n−1
n

√
2

n2−n
2

, n
(∗)

2 n !
(∗)

Bn
n odd

n n ( 2
n+1

)
n+1

n

√
2n

n+1
(n+1

2
)2 , n+1 (2 (n+1

2
)!)2

Cox′n
n even

n if n≡2 mod 4

2n if n≡0 mod 4

2n
n+2

γ′=γ s=s∗=(n
2
+1)2 4 ((n

2
+1)!)2

(∗∗)

Table 6.2. Dual-extreme lattices of even dimension n ≥ 6
Lattice

or matrix µ γ γ′ s, s∗ g

Fn
n even≥6

n
2

if n≡0 mod 4

n if n≡2 mod 4

√
4n

n+4
γ′=γ s=s∗= 3n2+10n+8

8
2((n

2
+1)!)2

Coxn
n even≥6

n if n≡0 mod 4

n
2

if n≡2 mod 4

n 2
n−3

n

(n+2)
n−1

n

√
3n

n+2
n2−n+2

2
, n

(∗∗)

2 n!
(∗∗)
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